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MERIDIAN SURFACES OF WEINGARTEN TYPE IN

4-DIMENSIONAL EUCLIDEAN SPACE E4

GÜNAY ÖZTÜRK, BETÜL BULCA, BENGÜ K. BAYRAM, AND KADRI ARSLAN

Abstract. In this paper, we study meridian surfaces of Weingarten type in

Euclidean 4-space E4. We give the necessary and sufficient conditions for a

meridian surface in E4 to become Weingarten type.

1. Introduction

A surfaceM in En is called Weingarten surface if there exist a non-trivial function

(1.1) Ψ(K,H) = 0

between the Gauss curvature K and mean curvature H of the surface M . The exis-
tence of a non-trivial functional relation Ψ(K,H) = 0 on a surface M parametrized
by a patch X(u, v) is equivalent to the vanishing of the corresponding Jacobian
determinant, namely

(1.2)

∣∣∣∣∂(K,H)

∂(u, v)

∣∣∣∣ = 0.

The condition (1.2) that must be satisfied for the Weingarten surface M leads to

(1.3) KuHv −KvHu = 0

with subscripts denoting partial derivatives.
These surfaces were introduced by Weingarten [16, 17] in the context of the

problem of finding all surfaces isometric to a given surface of revolution. For the
study of these surfaces, W. Kühnel [12] investigated ruled Weingarten surface in a
Euclidean 3-space E3. Further, D. W. Yoon [18] classified ruled linear Weingarten
surface in E3. Meanwhile, F. Dillen and W. Kühnel [5] and Y. H. Kim and D. W.
Yoon [11] gave a classification of ruled Weingarten surfaces in a Minkowski 3-space
E3
1. Also, linear Weingarten surfaces were studied by Galvez et. all. [6]. Recently,

M. I. Munteanu and I. Nistor [15], R. Lopez [13, 14] and D.W. Yoon [19] studied
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polynomial translation Weingarten surfaces in a Euclidean 3-space. W. Kühnel and
M. Steller classified the closed Weingarten surfaces [10].

The study of meridian surfaces in E4 was first introduced by G. Ganchev and
V. Milousheva (See, [7], [8] and [9]). Basic source of examples of surfaces in 4-
dimensional Euclidean or pseudo-Euclidean space are the standard rotational sur-
faces and the general rotational surfaces. Further, Ganchev and Milousheva de-
fined another class of surfaces of rotational type which are one-parameter system
of meridians of a rotational hypersurface. They constructed a family of surfaces
with flat normal connection lying on a standard rotational hypersurface in R4 as a
meridian surfaces. The geometric construction of the meridian surfaces is different
from the construction of the standard rotational surfaces with two dimensional axis
in R4. So, they constructed a surface M2 in E4 in the following way:

(1.4) M2 : X(u, v) = f(u) r(v) + g(u) e4, u ∈ I, v ∈ J

where f = f(u), g = g(u) are non-zero smooth functions, defined in an interval
I ⊂ R, such that (f ′(u))2 + (g′(u))2 = 1, u ∈ I and r = r(v) (v ∈ J ⊂ R) is
a curve on S2(1) parameterized by the arc-length and e4 is the fourth vector of
the standard orthonormal frame in E4. See also [2] and [1] for the classification of
meridian surfaces in 4-dimensional Euclidean space and 4-dimensional Minkowski
space which have pointwise 1-type Gauss map.

In this paper, we study meridian surfaces of Weingarten type in 4-dimensional
Euclidean space E4. We proved the following main theorem:

Let M2 be a meridian surface given with the parametrization (3.2). Then M2

is a Weingarten surface if and only if M2 is one of the following surfaces;
i) a planar surface lying in the constant 3-dimensional space spanned by {x, y, n2},
ii) a developable ruled surface in a 3-dimensional Euclidean space E3,
iii) a developable ruled surface in a 4-dimensional Euclidean space E4,
iv) a surface given with the surface patch

X(u, v) =

(
cos (au+ ac1)

a
+ c2

)
r(v) +

+

(
2 (sin (au+ ac1)− 1)

√
1 + sin (au+ ac1)

cos (au+ ac1)

)
e4,

v) a surface given with the surface patch

X(u, v) = (c1 cosu+ c2 sinu) r(v) +
√

1− (c2 cosu− c1 sinu)2e4,

vi) a surface given with the surface patch

X(u, v) = ±a
2

(
e

u+c
b + e−

u+c
b

)
r(v)

± 1

2b

√(
2b− a(e

u+c
b − e−u+c

b )
)(

2b+ a(e
u+c
b − e−u+c

b )
)
e4

where a, b, c, c1, c2 are real constants.

2. Basic Concepts

Let M be a smooth surface in En given with the patch X(u, v) : (u, v) ∈ D ⊂ E2.
The tangent space to M at an arbitrary point p = X(u, v) of M span {Xu, Xv}.
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In the chart (u, v) the coefficients of the first fundamental form of M are given by

(2.1) E = 〈Xu, Xu〉 , F = 〈Xu, Xv〉 , G = 〈Xv, Xv〉 ,

where 〈, 〉 is the Euclidean inner product. We assume that W 2 = EG−F 2 6= 0, i.e.
the surface patch X(u, v) is regular. For each p ∈ M , consider the decomposition
TpEn = TpM ⊕ T⊥p M where T⊥p M is the orthogonal component of TpM in En.

Let χ(M) and χ⊥(M) be the space of the smooth vector fields tangent to M
and the space of the smooth vector fields normal to M , respectively. Given any
local vector fields X1, X2 tangent to M , consider the second fundamental map
h : χ(M)× χ(M)→ χ⊥(M);

(2.2) h(Xi, Xj ) = ∇̃X
i
Xj −∇Xi

Xj 1 ≤ i, j ≤ 2.

where ∇ and
∼
∇ are the induced connection of M and the Riemannian connection

of En, respectively. This map is well-defined, symmetric and bilinear.
For any arbitrary orthonormal frame field {N1, N2, ..., Nn−2} of M , recall the

shape operator A : χ⊥(M)× χ(M)→ χ(M);

(2.3) ANk
Xj = −(∇̃XjNk)T , Xj ∈ χ(M).

This operator is bilinear, self-adjoint and satisfies the following equation:

(2.4) 〈ANk
Xj , Xi〉 = 〈h(Xi, Xj), Nk〉 = ckij , 1 ≤ i, j ≤ 2; 1 ≤ k ≤ n− 2

where ckij are the coefficients of the second fundamental form.
The equation (2.2) is called Gaussian formula, and

(2.5) h(Xi, Xj) =

n−2∑
k=1

ckijNk, 1 ≤ i, j ≤ 2.

Then the Gauss curvature K of a regular patch X(u, v) is given by

(2.6) K =
1

W 2

n−2∑
k=1

(ck11c
k
22 − (ck12)2).

Further, the mean curvature vector of a regular patch X(u, v) is given by

(2.7)
−→
H =

1

2W 2

n−2∑
k=1

(ck11G+ ck22E − 2ck12F )Nk.

where E,F,G are the coefficients of the first fundamental form and ckij are the
coefficients of the second fundamental form.

The norm of the mean curvature vector H =
∥∥∥−→H∥∥∥ is called the mean curvature

of M . The mean curvature H and the Gauss curvature K play the most important
roles in differential geometry for surfaces [4]. Recall that a surface M is said to be
flat (resp. minimal) if its Gauss curvature (resp. mean curvature vector) vanishes
identically [3].
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3. Meridian Surfaces in E4

Let {e1, e2, e3, e4} be the standard orthonormal frame in E4, and S2(1) be a 2-
dimensional sphere in E3 = span{e1, e2, e3}, centered at the origin O. We consider
a smooth curve c : r = r(v), v ∈ J, J ⊂ R on S2(1), parameterized by the arc-

length (r′
2
(v) = 1). We denote t(v) = r′(v) and consider the moving frame field

{t(v), n(v), r(v)} of the curve c on S2(1). With respect to this orthonormal frame
field the following Frenet formulas hold good:

(3.1)

r′(v) = t(v);

t′(v) = κ(v) n(v)− r(v);

n′(v) = −κ (v)t(v),

where κ is the spherical curvature of c.
Let f = f(u), g = g(u) be non-zero smooth functions, defined in an interval

I ⊂ R, such that (f ′(u))2 + (g′(u))2 = 1, u ∈ I. Now we construct a surface M2 in
E4 in the following way:

(3.2) M2 : X(u, v) = f(u) r(v) + g(u) e4, u ∈ I, v ∈ J

The surface M2 lies on the rotational hypersurface M3 in E4 obtained by the
rotation of the meridian curve α : u → (f(u), g(u)) around the Oe4-axis in E4.
Since M2 consists of meridians of M3, we call M2 a meridian surface (see, [7]).

The tangent space of M2 is spanned by the vector fields:

(3.3)
Xu(u, v) = f ′(u)r(v) + g′(u)e4;

Xv(u, v) = f(u) t(v),

and hence the coefficients of the first fundamental form of M2 are E = 1; F =
0; G = f2(u). Without lose of generality we can take g′(u) 6= 0. Taking into
account (3.1), we calculate the second partial derivatives of X(u, v):

(3.4)

Xuu(u, v) = f ′′(u)r(v) + g′′ (u)e4;

Xuv(u, v) = f ′(u)t(v);

Xvv(u, v) = f(u)κ(v) n(v)− f(u) r(v).

Let us denote X = Xu, Y = Xv

f = t and consider the following orthonormal

normal frame field of M2:

(3.5) N1 = n(v); N2 = −g′(u) r(v) + f ′(u) e4.

Thus we obtain a positive orthonormal frame field {X,Y,N1, N2} of M2. If we
denote by κα(u) the curvature of the meridian curve α(u), i.e.

(3.6) κα(u) = f ′(u) g′′(u)− g′(u)f ′′(u) =
−f ′′(u)√
1− f ′2(u)

.
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Using (3.4) and (3.5) we can calculate the coefficients of the second fundamental
form of X(u, v) as follows;

c111 = 0, c122 = f(u)κ(v),

c112 = c212 = 0,

c211 = κα(u),(3.7)

c222 = f(u)g′(u).

Lemma 3.1. Let M2 be a meridian surface given with the surface patch (3.2) then

(3.8) AN1
=

[
0 0

0 κ(v)
f(u)

]
, AN

2
=

[
κα(u) 0

0 g′(u)
f(u)

]
.

Further by the use of (2.6) and (2.7) with (3.7), the Gauss curvature is given by

(3.9) K =
κα(u)g′(u)

f(u)
.

and the mean curvature vector field of M2 becomes

(3.10)
−→
H =

κ(v)

2f(u)
N

1
+
κα(u)f(u) + g′(u)

2f(u)
N

2
.

From the equation (3.10), we get the mean curvature of M2

(3.11) H =
1

2f(u)

√
κ(v)2 + (κα(u)f(u) + g′(u))

2
.

4. Proof of the Main Theorem

Let M2 be meridian surface given with the surface patch (3.2). Then differenti-
ating K and H with respect to u and v one can get

Kv = 0, Ku = −

(
f(u)f

′′′
(u)− f ′

(u)f
′′
(u)
)

f(u)2
,

Hv =
κ(v)κ

′
(v)

2f(u)

√
κ(v)2 + (κα(u)f(u) + g′(u))

2
.

Suppose that M2 is a Weingarten surface then by the use of equation (1.3), we
get,

(4.1)
−κ(v)κ

′
(v)
(
f(u)f

′′′
(u)− f ′

(u)f
′′
(u)
)

2f(u)3
√
κ(v)2 + (κα(u)f(u) + g′(u))

2
= 0.

Thus we distinguish the following cases:
Case I: κ(v) = 0;

Case II: κ
′
(v) = 0;

Case III: f(u)f
′′′

(u)− f ′
(u)f

′′
(u) = 0.

Let us consider these in turn;
Case I: Suppose κ(v) = 0, i.e. the curve c is a great circle on S2(1). In this case

N1 = const, and M2 is a planar surface lying in the constant 3-dimensional space
spanned by {X,Y,N2}. Particularly, if in addition κα(u) = 0, i.e. the meridian
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curve lies on a straight line, then M2 is a developable surface in the 3-dimensional
space span {X,Y,N2} [7].

Case II: Suppose κ
′
(v) = 0. This implies that κ(v) is nonzero constant. Then

we have the following subcases;
Case II(a): κα(u) = 0. In this case c is a circle on S2(1), then M2 is a

developable ruled surface in a 3-dimensional Euclidean space E3.
Case II(b): κα(u) is nonzero constant. In this case we obtain the following

ordinary differential equation.

(4.2)
−f ′′(u)√
1− f ′2(u)

= a.

Thus, the following expression is obtained from the solution of the differential equa-
tion (4.2)

f(u) =
cos (au+ ac1)

a
+ c2.

Further, using the condition (f ′(u))2 + (g′(u))2 = 1 we get

g(u) =
2 (sin (au+ ac1)− 1)

√
1 + sin (au+ ac1)

cos (au+ ac1)
.

Case III: Suppose f(u)f
′′′

(u) − f ′
(u)f

′′
(u) = 0. Then we have the following

subcases;
Case III(a): f

′′
(u) = 0. This implies that κα(u) = K = 0, i.e. the meridian

curve is part of a straight line and M2 is a developable ruled surface. If in addition
κ(v) 6= const, i.e. c is not a circle on S2(1), then M2 is a developable ruled surface
in E4 [7].

Case III(b): f
′′
(u) 6= 0. In this case we obtain the following ordinary differential

equation.

(4.3) f(u)f
′′′

(u)− f
′
(u)f

′′
(u) = 0

An easy calculation shows that

f(u) = c1 cosu+ c2 sinu

is a non-trivial solution of (4.3). Furthermore, the following expression is obtained
from the general solution of the differential equation (4.3)

f(u) = ±a
2

(
e

u+c
b + e−

u+c
b

)
.

Further, using the condition (f ′(u))2 + (g′(u))2 = 1 one can get

g(u) = ± 1

2b

√(
2b− a(e

u+c
b − e−u+c

b )
)(

2b+ a(e
u+c
b − e−u+c

b )
)

where a, b, c, c1, c2 are real constants. This completes the proof of the theorem.
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