MERIDIAN SURFACES OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE \mathbb{E}^{4}

GÜNAY ÖZTÜRK, BETÜL BULCA, BENGÜ K. BAYRAM, AND KADRI ARSLAN

Abstract

In this paper, we study meridian surfaces of Weingarten type in Euclidean 4 -space \mathbb{E}^{4}. We give the necessary and sufficient conditions for a meridian surface in \mathbb{E}^{4} to become Weingarten type.

1. Introduction

A surface M in \mathbb{E}^{n} is called Weingarten surface if there exist a non-trivial function

$$
\begin{equation*}
\Psi(K, H)=0 \tag{1.1}
\end{equation*}
$$

between the Gauss curvature K and mean curvature H of the surface M. The existence of a non-trivial functional relation $\Psi(K, H)=0$ on a surface M parametrized by a patch $X(u, v)$ is equivalent to the vanishing of the corresponding Jacobian determinant, namely

$$
\begin{equation*}
\left|\frac{\partial(K, H)}{\partial(u, v)}\right|=0 . \tag{1.2}
\end{equation*}
$$

The condition (1.2) that must be satisfied for the Weingarten surface M leads to

$$
\begin{equation*}
K_{u} H_{v}-K_{v} H_{u}=0 \tag{1.3}
\end{equation*}
$$

with subscripts denoting partial derivatives.
These surfaces were introduced by Weingarten $[16,17]$ in the context of the problem of finding all surfaces isometric to a given surface of revolution. For the study of these surfaces, W. Kühnel [12] investigated ruled Weingarten surface in a Euclidean 3-space \mathbb{E}^{3}. Further, D. W. Yoon [18] classified ruled linear Weingarten surface in \mathbb{E}^{3}. Meanwhile, F. Dillen and W. Kühnel [5] and Y. H. Kim and D. W. Yoon [11] gave a classification of ruled Weingarten surfaces in a Minkowski 3 -space \mathbb{E}_{1}^{3}. Also, linear Weingarten surfaces were studied by Galvez et. all. [6]. Recently, M. I. Munteanu and I. Nistor [15], R. Lopez [13, 14] and D.W. Yoon [19] studied

[^0]polynomial translation Weingarten surfaces in a Euclidean 3-space. W. Kühnel and M. Steller classified the closed Weingarten surfaces [10].

The study of meridian surfaces in \mathbb{E}^{4} was first introduced by G. Ganchev and V. Milousheva (See, [7], [8] and [9]). Basic source of examples of surfaces in 4dimensional Euclidean or pseudo-Euclidean space are the standard rotational surfaces and the general rotational surfaces. Further, Ganchev and Milousheva defined another class of surfaces of rotational type which are one-parameter system of meridians of a rotational hypersurface. They constructed a family of surfaces with flat normal connection lying on a standard rotational hypersurface in \mathbb{R}^{4} as a meridian surfaces. The geometric construction of the meridian surfaces is different from the construction of the standard rotational surfaces with two dimensional axis in \mathbb{R}^{4}. So, they constructed a surface M^{2} in \mathbb{E}^{4} in the following way:

$$
\begin{equation*}
M^{2}: X(u, v)=f(u) r(v)+g(u) e_{4}, \quad u \in I, v \in J \tag{1.4}
\end{equation*}
$$

where $f=f(u), g=g(u)$ are non-zero smooth functions, defined in an interval $I \subset \mathbb{R}$, such that $\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1, \quad u \in I$ and $r=r(v)(v \in J \subset \mathbb{R})$ is a curve on $S^{2}(1)$ parameterized by the arc-length and e_{4} is the fourth vector of the standard orthonormal frame in \mathbb{E}^{4}. See also [2] and [1] for the classification of meridian surfaces in 4-dimensional Euclidean space and 4-dimensional Minkowski space which have pointwise 1-type Gauss map.

In this paper, we study meridian surfaces of Weingarten type in 4-dimensional Euclidean space \mathbb{E}^{4}. We proved the following main theorem:

Let M^{2} be a meridian surface given with the parametrization (3.2). Then M^{2} is a Weingarten surface if and only if M^{2} is one of the following surfaces;
i) a planar surface lying in the constant 3 -dimensional space spanned by $\left\{x, y, n_{2}\right\}$,
ii) a developable ruled surface in a 3 -dimensional Euclidean space \mathbb{E}^{3},
iii) a developable ruled surface in a 4-dimensional Euclidean space \mathbb{E}^{4},
$i v)$ a surface given with the surface patch

$$
\begin{aligned}
X(u, v)= & \left(\frac{\cos \left(a u+a c_{1}\right)}{a}+c_{2}\right) r(v)+ \\
& +\left(\frac{2\left(\sin \left(a u+a c_{1}\right)-1\right) \sqrt{1+\sin \left(a u+a c_{1}\right)}}{\cos \left(a u+a c_{1}\right)}\right) e_{4}
\end{aligned}
$$

$v)$ a surface given with the surface patch

$$
X(u, v)=\left(c_{1} \cos u+c_{2} \sin u\right) r(v)+\sqrt{1-\left(c_{2} \cos u-c_{1} \sin u\right)^{2}} e_{4}
$$

$v i)$ a surface given with the surface patch

$$
\begin{aligned}
X(u, v)= & \pm \frac{a}{2}\left(e^{\frac{u+c}{b}}+e^{-\frac{u+c}{b}}\right) r(v) \\
& \pm \frac{1}{2 b} \sqrt{\left(2 b-a\left(e^{\frac{u+c}{b}}-e^{-\frac{u+c}{b}}\right)\right)\left(2 b+a\left(e^{\frac{u+c}{b}}-e^{-\frac{u+c}{b}}\right)\right)} e_{4}
\end{aligned}
$$

where a, b, c, c_{1}, c_{2} are real constants.

2. Basic Concepts

Let M be a smooth surface in \mathbb{E}^{n} given with the patch $X(u, v):(u, v) \in D \subset \mathbb{E}^{2}$. The tangent space to M at an arbitrary point $p=X(u, v)$ of $M \operatorname{span}\left\{X_{u}, X_{v}\right\}$.

In the chart (u, v) the coefficients of the first fundamental form of M are given by

$$
\begin{equation*}
E=\left\langle X_{u}, X_{u}\right\rangle, F=\left\langle X_{u}, X_{v}\right\rangle, G=\left\langle X_{v}, X_{v}\right\rangle \tag{2.1}
\end{equation*}
$$

where \langle,$\rangle is the Euclidean inner product. We assume that W^{2}=E G-F^{2} \neq 0$, i.e. the surface patch $X(u, v)$ is regular. For each $p \in M$, consider the decomposition $T_{p} \mathbb{E}^{n}=T_{p} M \oplus T_{p}^{\perp} M$ where $T_{p}^{\perp} M$ is the orthogonal component of $T_{p} M$ in \mathbb{E}^{n}.

Let $\chi(M)$ and $\chi^{\perp}(M)$ be the space of the smooth vector fields tangent to M and the space of the smooth vector fields normal to M, respectively. Given any local vector fields X_{1}, X_{2} tangent to M, consider the second fundamental map $h: \chi(M) \times \chi(M) \rightarrow \chi^{\perp}(M) ;$

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\widetilde{\nabla}_{X_{i}} X_{j}-\nabla_{X_{i}} X_{j} \quad 1 \leq i, j \leq 2 \tag{2.2}
\end{equation*}
$$

where ∇ and $\tilde{\nabla}$ are the induced connection of M and the Riemannian connection of \mathbb{E}^{n}, respectively. This map is well-defined, symmetric and bilinear.

For any arbitrary orthonormal frame field $\left\{N_{1}, N_{2}, \ldots, N_{n-2}\right\}$ of M, recall the shape operator $A: \chi^{\perp}(M) \times \chi(M) \rightarrow \chi(M) ;$

$$
\begin{equation*}
A_{N_{k}} X_{j}=-\left(\widetilde{\nabla}_{X_{j}} N_{k}\right)^{T}, \quad X_{j} \in \chi(M) \tag{2.3}
\end{equation*}
$$

This operator is bilinear, self-adjoint and satisfies the following equation:

$$
\begin{equation*}
\left\langle A_{N_{k}} X_{j}, X_{i}\right\rangle=\left\langle h\left(X_{i}, X_{j}\right), N_{k}\right\rangle=c_{i j}^{k}, 1 \leq i, j \leq 2 ; 1 \leq k \leq n-2 \tag{2.4}
\end{equation*}
$$

where $c_{i j}^{k}$ are the coefficients of the second fundamental form.
The equation (2.2) is called Gaussian formula, and

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\sum_{k=1}^{n-2} c_{i j}^{k} N_{k}, \quad 1 \leq i, j \leq 2 \tag{2.5}
\end{equation*}
$$

Then the Gauss curvature K of a regular patch $X(u, v)$ is given by

$$
\begin{equation*}
K=\frac{1}{W^{2}} \sum_{k=1}^{n-2}\left(c_{11}^{k} c_{22}^{k}-\left(c_{12}^{k}\right)^{2}\right) \tag{2.6}
\end{equation*}
$$

Further, the mean curvature vector of a regular patch $X(u, v)$ is given by

$$
\begin{equation*}
\vec{H}=\frac{1}{2 W^{2}} \sum_{k=1}^{n-2}\left(c_{11}^{k} G+c_{22}^{k} E-2 c_{12}^{k} F\right) N_{k} \tag{2.7}
\end{equation*}
$$

where E, F, G are the coefficients of the first fundamental form and $c_{i j}^{k}$ are the coefficients of the second fundamental form.

The norm of the mean curvature vector $H=\|\vec{H}\|$ is called the mean curvature of M. The mean curvature H and the Gauss curvature K play the most important roles in differential geometry for surfaces [4]. Recall that a surface M is said to be flat (resp. minimal) if its Gauss curvature (resp. mean curvature vector) vanishes identically [3].

3. Meridian Surfaces in \mathbb{E}^{4}

Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard orthonormal frame in \mathbb{E}^{4}, and $S^{2}(1)$ be a 2 dimensional sphere in $\mathbb{E}^{3}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$, centered at the origin O. We consider a smooth curve $c: r=r(v), v \in J, J \subset \mathbb{R}$ on $S^{2}(1)$, parameterized by the arclength $\left(r^{\prime 2}(v)=1\right)$. We denote $t(v)=r^{\prime}(v)$ and consider the moving frame field $\{t(v), n(v), r(v)\}$ of the curve c on $S^{2}(1)$. With respect to this orthonormal frame field the following Frenet formulas hold good:

$$
\begin{align*}
& r^{\prime}(v)=t(v) \\
& t^{\prime}(v)=\kappa(v) n(v)-r(v) \tag{3.1}\\
& n^{\prime}(v)=-\kappa(v) t(v)
\end{align*}
$$

where κ is the spherical curvature of c.
Let $f=f(u), g=g(u)$ be non-zero smooth functions, defined in an interval $I \subset \mathbb{R}$, such that $\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1, u \in I$. Now we construct a surface M^{2} in \mathbb{E}^{4} in the following way:

$$
\begin{equation*}
M^{2}: X(u, v)=f(u) r(v)+g(u) e_{4}, \quad u \in I, v \in J \tag{3.2}
\end{equation*}
$$

The surface M^{2} lies on the rotational hypersurface M^{3} in \mathbb{E}^{4} obtained by the rotation of the meridian curve $\alpha: u \rightarrow(f(u), g(u))$ around the $O e_{4}$-axis in \mathbb{E}^{4}. Since M^{2} consists of meridians of M^{3}, we call M^{2} a meridian surface (see, [7]).

The tangent space of M^{2} is spanned by the vector fields:

$$
\begin{align*}
& X_{u}(u, v)=f^{\prime}(u) r(v)+g^{\prime}(u) e_{4} \\
& X_{v}(u, v)=f(u) t(v) \tag{3.3}
\end{align*}
$$

and hence the coefficients of the first fundamental form of M^{2} are $E=1 ; F=$ $0 ; G=f^{2}(u)$. Without lose of generality we can take $g^{\prime}(u) \neq 0$. Taking into account (3.1), we calculate the second partial derivatives of $X(u, v)$:

$$
\begin{align*}
& X_{u u}(u, v)=f^{\prime \prime}(u) r(v)+g^{\prime \prime}(u) e_{4} \\
& X_{u v}(u, v)=f^{\prime}(u) t(v) \tag{3.4}\\
& X_{v v}(u, v)=f(u) \kappa(v) n(v)-f(u) r(v)
\end{align*}
$$

Let us denote $X=X_{u}, \quad Y=\frac{X_{v}}{f}=t$ and consider the following orthonormal normal frame field of M^{2} :

$$
\begin{equation*}
N_{1}=n(v) ; \quad N_{2}=-g^{\prime}(u) r(v)+f^{\prime}(u) e_{4} \tag{3.5}
\end{equation*}
$$

Thus we obtain a positive orthonormal frame field $\left\{X, Y, N_{1}, N_{2}\right\}$ of M^{2}. If we denote by $\kappa_{\alpha}(u)$ the curvature of the meridian curve $\alpha(u)$, i.e.

$$
\begin{equation*}
\kappa_{\alpha}(u)=f^{\prime}(u) g^{\prime \prime}(u)-g^{\prime}(u) f^{\prime \prime}(u)=\frac{-f^{\prime \prime}(u)}{\sqrt{1-f^{\prime 2}(u)}} \tag{3.6}
\end{equation*}
$$

Using (3.4) and (3.5) we can calculate the coefficients of the second fundamental form of $X(u, v)$ as follows;

$$
\begin{align*}
c_{11}^{1} & =0, c_{22}^{1}=f(u) \kappa(v) \\
c_{12}^{1} & =c_{12}^{2}=0 \\
c_{11}^{2} & =\kappa_{\alpha}(u) \tag{3.7}\\
c_{22}^{2} & =f(u) g^{\prime}(u)
\end{align*}
$$

Lemma 3.1. Let M^{2} be a meridian surface given with the surface patch (3.2) then

$$
A_{N_{1}}=\left[\begin{array}{ll}
0 & 0 \tag{3.8}\\
0 & \frac{\kappa(v)}{f(u)}
\end{array}\right], A_{N_{2}}=\left[\begin{array}{ll}
\kappa_{\alpha}(u) & 0 \\
0 & \frac{g^{\prime}(u)}{f(u)}
\end{array}\right] .
$$

Further by the use of (2.6) and (2.7) with (3.7), the Gauss curvature is given by

$$
\begin{equation*}
K=\frac{\kappa_{\alpha}(u) g^{\prime}(u)}{f(u)} \tag{3.9}
\end{equation*}
$$

and the mean curvature vector field of M^{2} becomes

$$
\begin{equation*}
\vec{H}=\frac{\kappa(v)}{2 f(u)} N_{1}+\frac{\kappa_{\alpha}(u) f(u)+g^{\prime}(u)}{2 f(u)} N_{2} \tag{3.10}
\end{equation*}
$$

From the equation (3.10), we get the mean curvature of M^{2}

$$
\begin{equation*}
H=\frac{1}{2 f(u)} \sqrt{\kappa(v)^{2}+\left(\kappa_{\alpha}(u) f(u)+g^{\prime}(u)\right)^{2}} \tag{3.11}
\end{equation*}
$$

4. Proof of the Main Theorem

Let M^{2} be meridian surface given with the surface patch (3.2). Then differentiating K and H with respect to u and v one can get

$$
\begin{aligned}
K_{v} & =0, K_{u}=-\frac{\left(f(u) f^{\prime \prime \prime}(u)-f^{\prime}(u) f^{\prime \prime}(u)\right)}{f(u)^{2}} \\
H_{v} & =\frac{\kappa(v) \kappa^{\prime}(v)}{2 f(u) \sqrt{\kappa(v)^{2}+\left(\kappa_{\alpha}(u) f(u)+g^{\prime}(u)\right)^{2}}}
\end{aligned}
$$

Suppose that M^{2} is a Weingarten surface then by the use of equation (1.3), we get,

$$
\begin{equation*}
\frac{-\kappa(v) \kappa^{\prime}(v)\left(f(u) f^{\prime \prime \prime}(u)-f^{\prime}(u) f^{\prime \prime}(u)\right)}{2 f(u)^{3} \sqrt{\kappa(v)^{2}+\left(\kappa_{\alpha}(u) f(u)+g^{\prime}(u)\right)^{2}}}=0 \tag{4.1}
\end{equation*}
$$

Thus we distinguish the following cases:
Case I: $\kappa(v)=0$;
Case II: $\kappa^{\prime}(v)=0$;
Case III: $f(u) f^{\prime \prime \prime}(u)-f^{\prime}(u) f^{\prime \prime}(u)=0$.
Let us consider these in turn;
Case I: Suppose $\kappa(v)=0$, i.e. the curve c is a great circle on $S^{2}(1)$. In this case $N_{1}=$ const, and M^{2} is a planar surface lying in the constant 3-dimensional space spanned by $\left\{X, Y, N_{2}\right\}$. Particularly, if in addition $\kappa_{\alpha}(u)=0$, i.e. the meridian
curve lies on a straight line, then M^{2} is a developable surface in the 3-dimensional space span $\left\{X, Y, N_{2}\right\}$ [7].

Case II: Suppose $\kappa^{\prime}(v)=0$. This implies that $\kappa(v)$ is nonzero constant. Then we have the following subcases;

Case II(a): $\kappa_{\alpha}(u)=0$. In this case c is a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in a 3 -dimensional Euclidean space \mathbb{E}^{3}.

Case II(b): $\kappa_{\alpha}(u)$ is nonzero constant. In this case we obtain the following ordinary differential equation.

$$
\begin{equation*}
\frac{-f^{\prime \prime}(u)}{\sqrt{1-f^{\prime 2}(u)}}=a \tag{4.2}
\end{equation*}
$$

Thus, the following expression is obtained from the solution of the differential equation (4.2)

$$
f(u)=\frac{\cos \left(a u+a c_{1}\right)}{a}+c_{2}
$$

Further, using the condition $\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1$ we get

$$
g(u)=\frac{2\left(\sin \left(a u+a c_{1}\right)-1\right) \sqrt{1+\sin \left(a u+a c_{1}\right)}}{\cos \left(a u+a c_{1}\right)} .
$$

Case III: Suppose $f(u) f^{\prime \prime \prime}(u)-f^{\prime}(u) f^{\prime \prime}(u)=0$. Then we have the following subcases;

Case III(a): $f^{\prime \prime}(u)=0$. This implies that $\kappa_{\alpha}(u)=K=0$, i.e. the meridian curve is part of a straight line and M^{2} is a developable ruled surface. If in addition $\kappa(v) \neq$ const, i.e. c is not a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in $\mathbb{E}^{4}[7]$.

Case III(b): $f^{\prime \prime}(u) \neq 0$. In this case we obtain the following ordinary differential equation.

$$
\begin{equation*}
f(u) f^{\prime \prime \prime}(u)-f^{\prime}(u) f^{\prime \prime}(u)=0 \tag{4.3}
\end{equation*}
$$

An easy calculation shows that

$$
f(u)=c_{1} \cos u+c_{2} \sin u
$$

is a non-trivial solution of (4.3). Furthermore, the following expression is obtained from the general solution of the differential equation (4.3)

$$
f(u)= \pm \frac{a}{2}\left(e^{\frac{u+c}{b}}+e^{-\frac{u+c}{b}}\right)
$$

Further, using the condition $\left(f^{\prime}(u)\right)^{2}+\left(g^{\prime}(u)\right)^{2}=1$ one can get

$$
g(u)= \pm \frac{1}{2 b} \sqrt{\left(2 b-a\left(e^{\frac{u+c}{b}}-e^{-\frac{u+c}{b}}\right)\right)\left(2 b+a\left(e^{\frac{u+c}{b}}-e^{-\frac{u+c}{b}}\right)\right)}
$$

where a, b, c, c_{1}, c_{2} are real constants. This completes the proof of the theorem.

References

[1] K. Arslan and V. Milousheva, Meridian Surfaces of Elliptic or Hyperbolic Type with Pointwise 1-type Gauss map in Minkowski 4-Space, accepted Taiwanese Journal of Mathematics.
[2] B. Bulca, K. Arslan and V. Milousheva, Meridian Surfaces in \mathbb{E}^{4} with Pointwise 1-type Gauss Map, Bull. Korean Math. Soc., 51 (2014), 911-922.
[3] B. Y. Chen, Geometry of Submanifolds, Dekker, New York, 1973.
[4] B. Y. Chen, Pseudo-umbilical surfaces with constant Gauss curvature, Proceedings of the Edinburgh Mathematical Society (Series 2), 18(2) (1972), 143-148.
[5] F. Dillen and W. Kühnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math., 98 (1999), 307-320.
[6] J. A. Galvez, A. Martinez and F. Milan, Linear Weingarten Surfaces in \mathbb{R}^{3}, Monatsh. Math., 138 (2003), 133-144.
[7] G. Ganchev and V. Milousheva, Invariants and Bonnet-type theorem for surfaces in \mathbb{R}^{4}, Cent. Eur. J. Math., 8(6) (2010) 993-1008.
[8] G. Ganchev and V. Milousheva, Special Class of Meridian Surfaces in the Four-Dimensional Euclidean Space, arXiv: 1402.5848v1 [math.DG], 24 Feb. 2014.
[9] G. Ganchev and V. Milousheva, Geometric Interpretation of the Invariants of a Surface in \mathbb{R}^{4} via Tangent Indicatrix and the Normal Curvature Ellipse, arXiv:0905.4453v1 [math.DG], 27 May 2009.
[10] W. Kühnel and M. Steller, On Closed Weingarten Surfaces, Monatsh. Math., 146 (2005), 113-126.
[11] Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys., 49 (2004), 89-100.
[12] W. Kühnel, Ruled W-surfaces, Arch. Math., 62 (1994), 475-480.
[13] R. Lopez, On linear Weingarten surfaces, International J. Math., 19 (2008), 439-448.
[14] R. Lopez, Special Weingarten surfaces foliated by circles, Monatsh. Math., 154 (2008), 289302.
[15] M. I. Munteanu and A. I. Nistor, Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space, arXiv:0809.4745v1 [math.DG], 27 Sep 2008.
[16] J. Weingarten, Ueber eine Klasse auf einander abwickelbarer Flaachen, J. Reine Angew. Math. 59 (1861), 382-393.
[17] J. Weingarten, Ueber die Flachen, derer Normalen eine gegebene Flache beruhren, J. Reine Angew. Math. 62 (1863), 61-63.
[18] D. W. Yoon, Some properties of the helicoid as ruled surfaces, JP Jour. Geom. Topology, 2 (2002), 141-147.
[19] D. W. Yoon, Polynomial translation surfaces of Weingarten types in Euclidean 3-space, Cent. Eur. J. Math., 8(3) (2010), 430-436.

Kocaeli University, Science and Art Faculty, Department of Mathematics, KocaeliTURKEY

E-mail address: ogunay@kocaeli.edu.tr
Uludă̆ University, Science and Art Faculty, Department of Mathematics, BursaTURKEY

E-mail address: bbulca@uludag.edu.tr
Balikesir University, Science and Art Faculty, Department of Mathematics, BalikesirTURKEY

E-mail address: benguk@balikesir.edu.tr
Uludağ University, Science and Art Faculty, Department of Mathematics, BursaTURKEY

E-mail address: arslan@uludag.edu.tr

[^0]: Date: January 1, 2013 and, in revised form, February 2, 2013
 2010 Mathematics Subject Classification. 53C40, 53C42.
 Key words and phrases. meridian surface, Weingarten surface, second fundamental form.

