

HERMITE-HADAMARD TYPE INEQUALITIES FOR *h*-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

ERHAN SET, M. ZEKI SARIKAYA, AND FILIZ KARAKOÇ*

ABSTRACT. By making use of identity of the established by Sarıkaya [4], some new Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral are established. Our results are the generalizations of the results obtain by Sarıkaya [4].

1. INTRODUCTION

The following inequality is well known in the literature as the Hermite-Hadamard integral inequality

(1.1)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}$$

where $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with a < b.

Both inequalities hold in the reversed direction if f is concave.

The notion of s-convex function was introduced in Breckner's paper [1] and a number of properties and connections with s-convexity in the first sense discussed in paper [7].

Definition 1.1. A function $f:[0,\infty) \to \mathbb{R}$ is said to be *s*-convex in the second sense if

$$f(\lambda x + (1 - \lambda)y) \le \lambda^{s} f(x) + (1 - \lambda)^{s} f(y)$$

for all $x, y \in [0, \infty)$, $\lambda \in [0, 1]$ and for some fixed $s \in (0, 1]$. This class of s-convex function is usually denoted by K_s^2 .

It can be easily seen that for s = 1, s-convexity reduces to ordinary convexity of functions defined on $[0, \infty)$.

²⁰⁰⁰ Mathematics Subject Classification. 26A51, 26D15.

Key words and phrases. Hadamard's inequality, convex function, h-convex function, s-convex function, Riemann-Liouville fractional integral.

Definition 1.2. [6] We say that $f: I \to \mathbb{R}$ is a *P*-function or that *f* belongs to the class P(I) if *f* is nonnegative and for all $x, y \in I$ and $\alpha \in [0, 1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le f(x) + f(y)$$

Definition 1.3. [15] Let $h: J \subseteq \mathbb{R} \to \mathbb{R}$ be a nonnegative function. We say that $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is *h*-convex function, or *f* belongs to the class SX(h, I), if *f* is nonnegative and for all $x, y \in I$ and $\alpha \in (0, 1)$, we have

(1.2)
$$f(\lambda x + (1 - \lambda)y) \le h(\lambda)f(x) + h(1 - \lambda)f(y)$$

If inequality (1.2) is reversed, then f is said to be h-concave, i.e. $f \in SV(h, I)$. Obviously, if $h(\lambda) = \lambda$, then all nonnegative convex functions belongs to SX(h, I)and all nonnegative concave functions belongs to SV(h, I); if $h(\lambda) = 1$, then $SX(h, I) \supseteq P(I)$; and if $h(\lambda) = \lambda^s$, where $s \in (0, 1)$, then $SX(h, I) \supseteq K_s^2$.

Sarıkaya ([9]) is generalized Kırmacı's ([8]) results for fractional integral. These results are given below.

Theorem 1.1. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with a < b. If |f'| is convex on [a,b] then the following inequality for fractional integrals holds:

(1.3)
$$\left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\ \leq \frac{b-a}{4(\alpha+1)} \left[|f'(a)| + |f'(b)| \right]$$

Theorem 1.2. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with a < b. If $|f'|^q$ is convex on [a,b] for q > 1, then the following inequality for fractional integrals holds:

$$(1.4) \qquad \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b) + J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\ \leq \frac{b-a}{4} \left(\frac{1}{\alpha p+1} \right)^{\frac{1}{p}} \left[\left(\frac{|f'(a)|+3|f'(b)|}{4} \right)^{\frac{1}{q}} + \left(\frac{3|f'(a)|+|f'(b)|}{4} \right)^{\frac{1}{q}} \right] \\ \leq \frac{b-a}{4} \left(\frac{4}{\alpha p+1} \right)^{\frac{1}{p}} [|f'(a)|+|f'(b)|] \\ \text{where } \frac{1}{p} + \frac{1}{q} = 1.$$

Theorem 1.3. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with a < b. If $|f'|^q$ is convex on [a,b] for $q \ge 1$, then the following inequality for fractional integrals holds:

(1.5)
$$\left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f(a) \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{b-a}{4(\alpha+1)} \left(\frac{1}{2(\alpha+2)} \right)^{\frac{1}{q}} \left[\left((\alpha+1) \left| f'(a) \right|^{q} + (\alpha+3) \left| f'(b) \right|^{q} \right)^{\frac{1}{q}} \right]$$

$$+ \left((\alpha+3) \left| f'(a) \right|^{q} + (\alpha+1) \left| f'(b) \right|^{q} \right)^{\frac{1}{q}} \right]$$

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further this paper.

Definition 1.4. Let $f \in L[a, b]$. The Riemann-Liouville integrals $J_{a^+}^{\alpha} f$ and $J_{b^-}^{\alpha} f$ of order $\alpha > 0$ with $a \ge 0$ are defined by

$$J_{a^+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt, \qquad x > \alpha$$

and

$$J^{\alpha}_{b^-}f(x) = \frac{1}{\Gamma(\alpha)}\int_x^b (t-x)^{\alpha-1}f(t)dt, \qquad x < \alpha$$

respectively. Here, $\Gamma(\alpha)$ is the Gamma function and $J^0_{a^+}f(x) = J^0_{b^-}f(x) = f(x)$.

For some recent results connected with fractional integral inequalities, see([2]-[5],[10]-[14]).

2. Main Results

In order to prove our main theorems we need the following lemma see ([9]).

Lemma 2.1. Let $f : [a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) with a < b. If $f' \in L[a,b]$, then the following inequality for fractional integrals holds:

(2.1)
$$\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f(a) \right] - f\left(\frac{a+b}{2}\right) \\ = \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha}f'\left(\frac{t}{2}a + \frac{2-t}{2}b\right) dt - \int_{0}^{1} t^{\alpha}f'\left(\frac{2-t}{2}a + \frac{t}{2}b\right) dt \right\}$$

with $\alpha > 0$.

Using lemma 2.1, we obtain the following fractional integral inequality for h-convex functions.

Theorem 2.1. Let $h: J \subseteq \mathbb{R} \to \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on (a, b) with a < b. If |f'| is h-convex on [a, b] then the following inequality for fractional integrals holds:

(2.2)
$$\left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+} f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-} f(a) \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha} \left[h\left(\frac{t}{2}\right) + h\left(1-\frac{t}{2}\right) \right] dt \right\} \left[|f'(a)| + |f'(b)| \right]$$

Proof. From Lemma 2.1 since |f'| is h-convex, we have

$$\begin{aligned} & \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f\left(b\right) + J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f\left(a\right) \right] - f\left(\frac{a+b}{2}\right) \right| \\ & \leq \quad \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha} \left[f'\left(\frac{t}{2}a + \frac{2-t}{2}b\right) \right] dt + \int_{0}^{1} t^{\alpha} \left[f'\left(\frac{2-t}{2}a + \frac{t}{2}b\right) \right] dt \right\} \\ & \leq \quad \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha} \left[h\left(\frac{t}{2}\right) |f'(a)| + h\left(1 - \frac{t}{2}\right) |f'(b)| \right] dt \\ & \quad + \int_{0}^{1} t^{\alpha} \left[h\left(1 - \frac{t}{2}\right) |f'(a)| + h\left(\frac{t}{2}\right) |f'(b)| \right] \right\} \\ & = \quad \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha} \left[h\left(\frac{t}{2}\right) + h\left(1 - \frac{t}{2}\right) \right] dt \right\} [|f'(a)| + |f'(b)|] \end{aligned}$$

Corollary 2.1. If we choose $h(t) = t^s$, then the inequality (2.2) of Theorem 2.1 becomes the following inequality:

$$\left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+} f\left(b\right) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-} f\left(a\right) \right] - f\left(\frac{a+b}{2}\right) \right|$$

$$\leq \frac{b-a}{4} \left\{ \frac{1}{2^{s} \left(\alpha+s+1\right)} + 2^{\alpha+1} B\left(\frac{1}{2}; \alpha+1, s+1\right) \right\} \left[|f'(a)| + |f'(b)| \right]$$

The incomplete beta function, a generalization of the beta function is defined as

$$B(x; a, b) = \int_0^x t^{a-1} (1-t)^{b-1} dt, \quad a > 0, b > 0 \text{ and } 0 \le x \le 1$$

and we used the fact that

$$\int_{0}^{1} t^{\alpha} \left(1 - \frac{t}{2}\right)^{s} dt = 2^{\alpha + 1} B\left(\frac{1}{2}; \alpha + 1, s + 1\right)$$

Corollary 2.2. If we choose h(t) = 1, then the inequality (2.2) of Theorem 2.1 becomes the following inequality:

$$\left|\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f\left(b\right)+J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f\left(a\right)\right]-f\left(\frac{a+b}{2}\right)\right|$$

$$\leq \frac{b-a}{2\left(\alpha+1\right)}\left[\left|f'\left(a\right)\right|+\left|f'\left(b\right)\right|\right]$$

Remark 2.1. If we choose h(t) = t, then the inequality (2.2) of Theorem 2.1 reduces the inequality (1.3) of Theorem 1.1.

Theorem 2.2. Let $h: J \subseteq \mathbb{R} \to \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on (a, b) with a < b. If $|f'|^q$ is h-convex on [a, b] for q > 1, then the following inequality for fractional integrals holds:

$$(2.3) \quad \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+} f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-} f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\ \leq \quad \frac{b-a}{4} \left(\frac{1}{\alpha p+1} \right)^{\frac{1}{p}} \left\{ \left(|f'(a)|^q \int_0^1 h\left(\frac{t}{2}\right) dt + |f'(b)|^q \int_0^1 h\left(1-\frac{t}{2}\right) dt \right)^{\frac{1}{q}} + \left(|f'(a)|^q \int_0^1 h\left(1-\frac{t}{2}\right) dt + |f'(b)|^q \int_0^1 h\left(\frac{t}{2}\right) dt \right)^{\frac{1}{q}} \right\}$$

Proof. From Lemma 2.1, using the Hölder inequality and $|f'|^q$ is h-convex we have

$$\begin{aligned} \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f\left(b\right) + J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f\left(a\right) \right] - f\left(\frac{a+b}{2}\right) \right| \\ &\leq \frac{b-a}{4} \left\{ \int_{0}^{1} t^{\alpha} dt \right\}^{\frac{1}{p}} \left\{ \left(\int_{0}^{1} \left| f'\left(\frac{t}{2}a + \frac{2-t}{2}b\right) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ &+ \left(\int_{0}^{1} \left| f'\left(\frac{2-t}{2}a + \frac{t}{2}b\right) \right|^{q} dt \right)^{\frac{1}{q}} \right\} \\ &\leq \frac{b-a}{4} \left(\frac{1}{\alpha p+1} \right)^{\frac{1}{p}} \left\{ \left(|f'\left(a\right)|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) dt + |f'\left(b\right)|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) dt \right)^{\frac{1}{q}} \right\} \\ &+ \left(|f'\left(a\right)|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) dt + |f'\left(b\right)|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) dt \right)^{\frac{1}{q}} \right\} \end{aligned}$$

Corollary 2.3. If we choose $h(t) = t^s$, then the inequality (2.3) of Theorem 2.2 becomes the following inequality:

$$\begin{aligned} &\left|\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f\left(b\right)+J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f\left(a\right)\right]-f\left(\frac{a+b}{2}\right)\right|\\ &\leq \frac{b-a}{4}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left\{\left(\left|f'\left(a\right)\right|^{q}\frac{1}{2^{s}\left(s+1\right)}+\left|f'\left(b\right)\right|^{q}\frac{2^{s+1}}{2^{s}\left(s+1\right)}\right)^{\frac{1}{q}}\right.\\ &\left.+\left(\left|f'\left(a\right)\right|^{q}\frac{2^{s+1}}{2^{s}\left(s+1\right)}+\left|f'\left(b\right)\right|^{q}\frac{1}{2^{s}\left(s+1\right)}\right)^{\frac{1}{q}}\right\}\end{aligned}$$

Corollary 2.4. If we choose h(t) = 1, then the inequality (2.3) of Theorem 2.2 becomes the following inequality:

$$\left|\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f\left(b\right)+J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f\left(a\right)\right]-f\left(\frac{a+b}{2}\right)\right|$$

$$\leq \frac{b-a}{2}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left(\left|f'\left(a\right)\right|^{q}+\left|f'\left(b\right)\right|^{q}\right)^{\frac{1}{q}}$$

Remark 2.2. If we choose h(t) = t, then the inequality (2.3) of Theorem 2.2 reduces the inequality (1.4) of Theorem 1.2.

Theorem 2.3. Let $h: J \subseteq \mathbb{R} \to \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on (a, b) with a < b. If $|f'|^q$ is h-convex on [a, b] for $q \ge 1$,

then the following inequality for fractional integrals holds:

$$(2.4) \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f(b) + J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\ \leq \frac{b-a}{4} \left(\frac{1}{\alpha+1}\right)^{\frac{1}{p}} \left[\left(|f'(a)|^q \int_0^1 t^{\alpha}h\left(\frac{t}{2}\right) dt + |f'(b)|^q \int_0^1 t^{\alpha}h\left(1-\frac{t}{2}\right) dt \right)^{\frac{1}{q}} + \left(|f'(a)|^q \int_0^1 t^{\alpha}h\left(1-\frac{t}{2}\right) dt + |f'(b)|^q \int_0^1 t^{\alpha}h\left(\frac{t}{2}\right) dt \right)^{\frac{1}{q}} \right]$$

Proof. From Lemma 2.1, using the power mean inequality and $|f'|^q$ is h-convex we have

$$\begin{aligned} \left| \frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f\left(b\right) + J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f\left(a\right) \right] - f\left(\frac{a+b}{2}\right) \right| \\ &\leq \frac{b-a}{4} \left\{ \left(\int_{0}^{1} t^{\alpha} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} t^{\alpha} \left| f'\left(\frac{t}{2}a + \frac{2-t}{2}b\right) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ &+ \left(\int_{0}^{1} t^{\alpha} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} t^{\alpha} \left| f'\left(\frac{t}{2}a + \frac{2-t}{2}b\right) \right|^{q} dt \right) \right\} \\ &= \frac{b-a}{4} \left(\frac{1}{\alpha+1} \right)^{\frac{1}{p}} \left[\left(|f'(a)|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) dt + |f'(b)|^{q} \int_{0}^{1} t^{\alpha} h\left(1 - \frac{t}{2}\right) dt \right)^{\frac{1}{q}} \\ &+ \left(|f'(a)|^{q} \int_{0}^{1} t^{\alpha} h\left(1 - \frac{t}{2}\right) dt + |f'(b)|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) dt \right)^{\frac{1}{q}} \right] \\ \Box \end{aligned}$$

Corollary 2.5. If we choose $h(t) = t^s$, then the inequality (2.4) of Theorem 2.3 becomes the following inequality:

$$\begin{aligned} &\left|\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha}f\left(b\right) + J_{\left(\frac{a+b}{2}\right)-}^{\alpha}f\left(a\right)\right] - f\left(\frac{a+b}{2}\right)\right| \\ &\leq \frac{b-a}{4} \left(\frac{1}{\alpha+1}\right)^{\frac{1}{p}} \left\{ \left(\frac{|f'\left(a\right)|^{q}}{2^{s}\left(\alpha+s+1\right)} + 2^{\alpha+1}\left|f'\left(b\right)\right|^{q}B\left(\frac{1}{2};\alpha+1,s+1\right)\right) \right. \\ &\left. + \left(2^{\alpha+1}\left|f'\left(a\right)\right|^{q}B\left(\frac{1}{2};\alpha+1,s+1\right) + \frac{|f'\left(b\right)|^{q}}{2^{s}\left(\alpha+s+1\right)}\right)^{\frac{1}{q}} \right\} \end{aligned}$$

and we used the fact that

$$\int_{0}^{1} t^{\alpha} \left(1 - \frac{t}{2} \right)^{s} dt = 2^{\alpha + 1} B\left(\frac{1}{2}; \alpha + 1, s + 1 \right)$$

Corollary 2.6. If we choose h(t) = 1, then the inequality (2.4) of Theorem 2.3 becomes the following inequality:

$$\left|\frac{2^{\alpha-1}\Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J^{\alpha}_{\left(\frac{a+b}{2}\right)+}f\left(b\right)+J^{\alpha}_{\left(\frac{a+b}{2}\right)-}f\left(a\right)\right]-f\left(\frac{a+b}{2}\right)\right|$$

$$\leq \frac{b-a}{2\left(\alpha+1\right)}\left(\left|f'\left(a\right)\right|^{q}+\left|f'\left(b\right)\right|^{q}\right)^{\frac{1}{q}}$$

Remark 2.3. If we choose h(t) = t, then the inequality (2.4) of Theorem 2.3 reduces the inequality (1.5) of Theorem 1.3.

References

- W.W. Breckner, Stetigkeitsaussagen f
 ür eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. 23 (1978), 13-20.
- [2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math. 10 (3) (2009) Art. 86.
- [3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (4) (2010) 493– 497.
- [4] Z. Dahmani, On Minkowski and Hermite–Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (1) (2010) 51–58.
- [5] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A 1 (2) (2010) 155–160.
- [6] S.S. Dragomir J.Pecaric and L.E.Persson, Some inequalities of Hadamard type, Soochow J. Math 21 (1995), 335-241.
- [7] H.Hudzik, L.Maligranda, Some remarks on $s-{\rm convex}$ functions, Aequationes Math., 48 (1994) 100-111.
- [8] U.S. Kırmacı Inequalities for differentiable mappings and applicatons to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137-146.
- [9] M.Z.Sarıkaya Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities II (submitted).
- [10] M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.
- [11] M.Z. Sarikaya, E.Set, H.Yaldiz and N.Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities Mathematical and Computer Modelling, 57 (2013) 2403-2407.
- [12] M.Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, 1 (1) (2013) 48-53.
- [13] E.Set, M.E. Özdemir, M.Z. Sarıkaya, F. Karakoç, Hermite-Hadamard type inequalities for (α, m) -convex functions via fractional integrals, (submitted).
- [14] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., 63(7) (2012), 1147-1154.
- [15] S.Varoŝanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, ORDU UNIVERSITY, ORDUTURKEY

 $E\text{-}mail\ address:\ \texttt{erhanset}\texttt{@yahoo.com}$

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ARTS, DÜZCE UNIVERSITY, DÜZCE-TURKEY

E-mail address: sarikayamz@gmail.com

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY

E-mail address: filinz_41@hotmail.com