Konuralp Journal of Mathematics
Volume 4 No. 1 Pp. 254-260 (2016) ©KJM

HERMITE-HADAMARD TYPE INEQUALITIES FOR h-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

ERHAN SET, M. ZEKI SARIKAYA, AND FILIZ KARAKOÇ*

Abstract

By making use of identity of the established by Sarıkaya [4], some new Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral are established. Our results are the generalizations of the results obtain by Sarıkaya [4].

1. Introduction

The following inequlity is well known in the literature as the Hermite-Hadamard integral inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

where $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is a convex function on the interval I of real numbers and $a, b \in I$ with $a<b$.

Both inequalities hold in the reversed direction if f is concave.
The notion of s-convex function was introduced in Breckner's paper [1] and a number of properties and connections with s-convexity in the first sense discussed in paper [7].

Definition 1.1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be s-convex in the second sense if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda^{s} f(x)+(1-\lambda)^{s} f(y)
$$

for all $x, y \in[0, \infty), \lambda \in[0,1]$ and for some fixed $s \in(0,1]$. This class of s-convex function is usually denoted by K_{s}^{2}.

It can be easily seen that for $s=1, s$-convexity reduces to ordinary convexity of functions defined on $[0, \infty)$.

[^0]Definition 1.2. [6] We say that $f: I \rightarrow \mathbb{R}$ is a P-function or that f belongs to the class $P(I)$ if f is nonnegative and for all $x, y \in I$ and $\alpha \in[0,1]$, we have

$$
f(\lambda x+(1-\lambda) y) \leq f(x)+f(y)
$$

Definition 1.3. [15] Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative function. We say that $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is h-convex function, or f belongs to the class $S X(h, I)$, if f is nonnegative and for all $x, y \in I$ and $\alpha \in(0,1)$, we have

$$
\begin{equation*}
f(\lambda x+(1-\lambda) y) \leq h(\lambda) f(x)+h(1-\lambda) f(y) \tag{1.2}
\end{equation*}
$$

If inequality (1.2) is reversed, then f is said to be h-concave, i.e. $f \in S V(h, I)$.
Obviously, if $h(\lambda)=\lambda$, then all nonnegative convex functions belongs to $S X(h, I)$ and all nonnegative concave functions belongs to $S V(h, I)$; if $h(\lambda)=1$, then $S X(h, I) \supseteq P(I)$; and if $h(\lambda)=\lambda^{s}$, where $s \in(0,1)$, then $S X(h, I) \supseteq K_{s}^{2}$.

Sarıkaya ([9]) is generalized Kırmacı's ([8]) results for fractional integral. These results are given below.

Theorem 1.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|$ is convex on $[a, b]$ then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{1.3}\\
\leq & \frac{b-a}{4(\alpha+1)}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

Theorem 1.2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|^{q}$ is convex on $[a, b]$ for $q>1$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{1.4}\\
\leq & \frac{b-a}{4}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left[\left(\frac{\left|f^{\prime}(a)\right|+3\left|f^{\prime}(b)\right|}{4}\right)^{\frac{1}{q}}+\left(\frac{3\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|}{4}\right)^{\frac{1}{q}}\right] \\
\leq & \frac{b-a}{4}\left(\frac{4}{\alpha p+1}\right)^{\frac{1}{p}}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 1.3. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|^{q}$ is convex on $[a, b]$ for $q \geq 1$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{1.5}\\
\leq & \frac{b-a}{4(\alpha+1)}\left(\frac{1}{2(\alpha+2)}\right)^{\frac{1}{q}}\left[\left((\alpha+1)\left|f^{\prime}(a)\right|^{q}+(\alpha+3)\left|f^{\prime}(b)\right|^{q}\right)^{\frac{1}{q}}\right. \\
& \left.+\left((\alpha+3)\left|f^{\prime}(a)\right|^{q}+(\alpha+1)\left|f^{\prime}(b)\right|^{q}\right)^{\frac{1}{q}}\right]
\end{align*}
$$

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further this paper.

Definition 1.4. Let $f \in L[a, b]$. The Riemann-Liouville integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of order $\alpha>0$ with $\mathrm{a} \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x>\alpha
$$

and

$$
J_{b^{-}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, \quad x<\alpha
$$

respectively. Here, $\Gamma(\alpha)$ is the Gamma function and $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
For some recent results connected with fractional integral ineqalities, see([2]-[5],[10]-[14]).

2. Main Results

In order to prove our main theorems we need the following lemma see ([9]).
Lemma 2.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $f^{\prime} \in L[a, b]$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right) \tag{2.1}\\
= & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha} f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right) d t-\int_{0}^{1} t^{\alpha} f^{\prime}\left(\frac{2-t}{2} a+\frac{t}{2} b\right) d t\right\}
\end{align*}
$$

with $\alpha>0$.
Using lemma 2.1, we obtain the following fractional integral inequality for h-convex functions.

Theorem 2.1. Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|$ is h-convex on $[a, b]$ then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{2.2}\\
\leq & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha}\left[h\left(\frac{t}{2}\right)+h\left(1-\frac{t}{2}\right)\right] d t\right\}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{align*}
$$

Proof. From Lemma 2.1 since $\left|f^{\prime}\right|$ is $h-$ convex, we have

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right)\right| d t+\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{2-t}{2} a+\frac{t}{2} b\right)\right| d t\right\} \\
\leq & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha}\left[h\left(\frac{t}{2}\right)\left|f^{\prime}(a)\right|+h\left(1-\frac{t}{2}\right)\left|f^{\prime}(b)\right|\right] d t\right. \\
& \left.+\int_{0}^{1} t^{\alpha}\left[h\left(1-\frac{t}{2}\right)\left|f^{\prime}(a)\right|+h\left(\frac{t}{2}\right)\left|f^{\prime}(b)\right|\right]\right\} \\
= & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha}\left[h\left(\frac{t}{2}\right)+h\left(1-\frac{t}{2}\right)\right] d t\right\}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{aligned}
$$

Corollary 2.1. If we choose $h(t)=t^{s}$, then the inequality (2.2) of Theorem 2.1 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left\{\frac{1}{2^{s}(\alpha+s+1)}+2^{\alpha+1} B\left(\frac{1}{2} ; \alpha+1, s+1\right)\right\}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{aligned}
$$

The incomplete beta function, a generalization of the beta function is defined as

$$
B(x ; a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t, \quad a>0, b>0 \text { and } 0 \leq x \leq 1
$$

and we used the fact that

$$
\int_{0}^{1} t^{\alpha}\left(1-\frac{t}{2}\right)^{s} d t=2^{\alpha+1} B\left(\frac{1}{2} ; \alpha+1, s+1\right)
$$

Corollary 2.2. If we choose $h(t)=1$, then the inequality (2.2) of Theorem 2.1 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{2(\alpha+1)}\left[\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|\right]
\end{aligned}
$$

Remark 2.1. If we choose $h(t)=t$, then the inequality (2.2) of Theorem 2.1 reduces the inequality (1.3) of Theorem 1.1.

Theorem 2.2. Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|^{q}$ is h-convex on $[a, b]$ for $q>1$, then the following inequality for fractional integrals holds:

$$
\begin{align*}
& \text {.3) } \quad\left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{2.3}\\
& \leq \\
& \quad \frac{b-a}{4}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left\{\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right. \\
& \\
& \left.\quad+\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right\}
\end{align*}
$$

Proof. From Lemma 2.1, using the Hölder inequality and $\left|f^{\prime}\right|^{q}$ is h-convex we have

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left\{\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right)\right| d t+\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{2-t}{2} a+\frac{t}{2} b\right)\right| d t\right\} \\
\leq & \frac{b-a}{4}\left(\int_{0}^{1} t^{\alpha p} d t\right)^{\frac{1}{p}}\left\{\left(\int_{0}^{1}\left|f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{0}^{1}\left|f^{\prime}\left(\frac{2-t}{2} a+\frac{t}{2} b\right)\right|^{q} d t\right)^{\frac{1}{q}}\right\} \\
\leq & \frac{b-a}{4}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left\{\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} h\left(1-\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} h\left(\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

Corollary 2.3. If we choose $h(t)=t^{s}$, then the inequality (2.3) of Theorem 2.2 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left\{\left(\left|f^{\prime}(a)\right|^{q} \frac{1}{2^{s}(s+1)}+\left|f^{\prime}(b)\right|^{q} \frac{2^{s+1}}{2^{s}(s+1)}\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\left|f^{\prime}(a)\right|^{q} \frac{2^{s+1}}{2^{s}(s+1)}+\left|f^{\prime}(b)\right|^{q} \frac{1}{2^{s}(s+1)}\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

Corollary 2.4. If we choose $h(t)=1$, then the inequality (2.3) of Theorem 2.2 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{2}\left(\frac{1}{\alpha p+1}\right)^{\frac{1}{p}}\left(\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}(b)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Remark 2.2. If we choose $h(t)=t$, then the inequality (2.3) of Theorem 2.2 reduces the inequality (1.4) of Theorem 1.2.

Theorem 2.3. Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a nonnegative function. $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable mapping on (a, b) with $a<b$. If $\left|f^{\prime}\right|^{q}$ is h-convex on $[a, b]$ for $q \geq 1$,
then the following inequality for fractional integrals holds:

$$
\begin{align*}
\text { 2.4) } & \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \tag{2.4}\\
\leq & \frac{b-a}{4}\left(\frac{1}{\alpha+1}\right)^{\frac{1}{p}}\left[\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(1-\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(1-\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right]
\end{align*}
$$

Proof. From Lemma 2.1, using the power mean inequality and $\left|f^{\prime}\right|^{q}$ is h-convex we have

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left\{\left(\int_{0}^{1} t^{\alpha} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right)\right|^{q} d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\int_{0}^{1} t^{\alpha} d t\right)^{\frac{1}{p}}\left(\int_{0}^{1} t^{\alpha}\left|f^{\prime}\left(\frac{t}{2} a+\frac{2-t}{2} b\right)\right|^{q} d t\right)\right\} \\
= & \frac{b-a}{4}\left(\frac{1}{\alpha+1}\right)^{\frac{1}{p}}\left[\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(1-\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right. \\
& \left.+\left(\left|f^{\prime}(a)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(1-\frac{t}{2}\right) d t+\left|f^{\prime}(b)\right|^{q} \int_{0}^{1} t^{\alpha} h\left(\frac{t}{2}\right) d t\right)^{\frac{1}{q}}\right]
\end{aligned}
$$

Corollary 2.5. If we choose $h(t)=t^{s}$, then the inequality (2.4) of Theorem 2.3 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{4}\left(\frac{1}{\alpha+1}\right)^{\frac{1}{p}}\left\{\left(\frac{\left|f^{\prime}(a)\right|^{q}}{2^{s}(\alpha+s+1)}+2^{\alpha+1}\left|f^{\prime}(b)\right|^{q} B\left(\frac{1}{2} ; \alpha+1, s+1\right)\right)\right. \\
& \left.+\left(2^{\alpha+1}\left|f^{\prime}(a)\right|^{q} B\left(\frac{1}{2} ; \alpha+1, s+1\right)+\frac{\left|f^{\prime}(b)\right|^{q}}{2^{s}(\alpha+s+1)}\right)^{\frac{1}{q}}\right\}
\end{aligned}
$$

and we used the fact that

$$
\int_{0}^{1} t^{\alpha}\left(1-\frac{t}{2}\right)^{s} d t=2^{\alpha+1} B\left(\frac{1}{2} ; \alpha+1, s+1\right)
$$

Corollary 2.6. If we choose $h(t)=1$, then the inequality (2.4) of Theorem 2.3 becomes the following inequality:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-1} \Gamma(\alpha+1)}{(b-a)^{\alpha}}\left[J_{\left(\frac{a+b}{2}\right)+}^{\alpha} f(b)+J_{\left(\frac{a+b}{2}\right)-}^{\alpha} f(a)\right]-f\left(\frac{a+b}{2}\right)\right| \\
\leq & \frac{b-a}{2(\alpha+1)}\left(\left|f^{\prime}(a)\right|^{q}+\left|f^{\prime}(b)\right|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Remark 2.3. If we choose $h(t)=t$, then the inequality (2.4) of Theorem 2.3 reduces the inequality (1.5) of Theorem 1.3.

References

[1] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math. 23 (1978), 13-20.
[2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math. 10 (3) (2009) Art. 86.
[3] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (4) (2010) 493497.
[4] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (1) (2010) 51-58.
[5] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A 1 (2) (2010) 155-160.
[6] S.S. Dragomir J.Pecaric and L.E.Persson, Some inequalities of Hadamard type, Soochow J. Math 21 (1995), 335-241.
[7] H.Hudzik, L.Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994) 100-111.
[8] U.S. Kırmacı Inequalities for differentiable mappings and applicatons to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137-146.
[9] M.Z.Sarıkaya Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities II (submitted).
[10] M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann-Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.
[11] M.Z. Sarikaya, E.Set, H.Yaldiz and N.Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities Mathematical and Computer Modelling, 57 (2013) 2403-2407.
[12] M.Z. Sarikaya and H. Yaldiz, On weighted Montogomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, 1 (1) (2013) 48-53.
[13] E.Set, M.E. Özdemir, M.Z. Sarıkaya, F. Karakoç, Hermite-Hadamard type inequalities for (α, m) -convex functions via fractional integrals, (submitted).
[14] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., 63(7) (2012), 1147-1154.
[15] S.Varoŝanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
Department of Mathematics, Faculty of Science and Arts, Ordu University, OrduTURKEY

E-mail address: erhanset@yahoo.com
Department of Mathematics, Faculty of Science and Arts, Düzce University, DüzceTURKEY

E-mail address: sarikayamz@gmail.com
*Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY

E-mail address: filinz_41@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 26A51, 26D15.
 Key words and phrases. Hadamard's inequality, convex function, h-convex function, s-convex function, Riemann-Liouville fractional integral.

