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HERMITE-HADAMARD TYPE INEQUALITIES FOR h-CONVEX

FUNCTIONS VIA FRACTIONAL INTEGRALS

ERHAN SET, M. ZEKI SARIKAYA, AND FILIZ KARAKOÇ♣

Abstract. By making use of identity of the established by Sarıkaya [4], some
new Hermite-Hadamard type inequalities for Riemann-Liouville fractional in-

tegral are established. Our results are the generalizations of the results obtain
by Sarıkaya [4].

1. Introduction

The following inequlity is well known in the literature as the Hermite-Hadamard
integral inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2

where f : I ⊆ R → R is a convex function on the interval I of real numbers and
a, b ∈ I with a < b.

Both inequalities hold in the reversed direction if f is concave.
The notion of s−convex function was introduced in Breckner’s paper [1] and a

number of properties and connections with s−convexity in the first sense discussed
in paper [7].

Definition 1.1. A function f : [0,∞) → R is said to be s−convex in the second
sense if

f (λx+ (1− λ) y) ≤ λsf (x) + (1− λ)
s
f (y)

for all x, y ∈ [0,∞), λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. This class of
s−convex function is usually denoted by K2

s .
It can be easily seen that for s = 1, s−convexity reduces to ordinary convexity

of functions defined on [0,∞).
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Definition 1.2. [6] We say that f : I → R is a P−function or that f belongs to
the class P (I) if f is nonnegative and for all x, y ∈ I and α ∈ [0, 1], we have

f (λx+ (1− λ) y) ≤ f(x) + f(y)

Definition 1.3. [15] Let h : J ⊆ R → R be a nonnegative function. We say that
f : I ⊆ R → R is h−convex function, or f belongs to the class SX(h, I), if f is
nonnegative and for all x, y ∈ I and α ∈ (0, 1), we have

(1.2) f (λx+ (1− λ) y) ≤ h(λ)f(x) + h (1− λ) f(y)

If inequality (1.2) is reversed, then f is said to be h−concave, i.e. f ∈ SV (h, I).
Obviously, if h(λ) = λ, then all nonnegative convex functions belongs to SX(h, I)

and all nonnegative concave functions belongs to SV (h, I); if h(λ) = 1, then
SX(h, I) ⊇ P (I); and if h(λ) = λs, where s ∈ (0, 1), then SX(h, I) ⊇ K2

s .
Sarıkaya ([9]) is generalized Kırmacı’s ([8]) results for fractional integral. These

results are given below.

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′| is convex on [a, b] then the following inequality for fractional integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(1.3)

≤ b− a
4 (α+ 1)

[|f ′ (a)|+ |f ′ (b)|]

Theorem 1.2. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′|q is convex on [a, b] for q > 1, then the following inequality for fractional
integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(1.4)

≤ b− a
4

(
1

αp+ 1

) 1
p

[(
|f ′ (a)|+ 3 |f ′ (b)|

4

) 1
q

+

(
3 |f ′ (a)|+ |f ′ (b)|

4

) 1
q

]

≤ b− a
4

(
4

αp+ 1

) 1
p

[|f ′ (a)|+ |f ′ (b)|]

where 1
p + 1

q = 1.

Theorem 1.3. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′|q is convex on [a, b] for q ≥ 1, then the following inequality for fractional
integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(1.5)

≤ b− a
4 (α+ 1)

(
1

2 (α+ 2)

) 1
q [(

(α+ 1) |f ′ (a)|q + (α+ 3) |f ′ (b)|q
) 1

q

+
(
(α+ 3) |f ′ (a)|q + (α+ 1) |f ′ (b)|q

) 1
q

]
We give some necessary definitions and mathematical preliminaries of fractional

calculus theory which are used further this paper.
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Definition 1.4. Let f ∈ L[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > α

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < α

respectively. Here, Γ(α) is the Gamma function and J0
a+f(x) = J0

b−f(x) = f(x).

For some recent results connected with fractional integral ineqalities, see([2]-
[5],[10]-[14]).

2. Main Results

In order to prove our main theorems we need the following lemma see ([9]).

Lemma 2.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L [a, b], then the following inequality for fractional integrals holds:

2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)
(2.1)

=
b− a

4

{∫ 1

0

tαf ′
(
t

2
a+

2− t
2

b

)
dt−

∫ 1

0

tαf ′
(

2− t
2

a+
t

2
b

)
dt

}
with α > 0.
Using lemma 2.1, we obtain the following fractional integral inequality for h−convex

functions.

Theorem 2.1. Let h : J ⊆ R → R be a nonnegative function. f : I ⊆ R → R be
a differentiable mapping on (a, b) with a < b. If |f ′| is h−convex on [a, b] then the
following inequality for fractional integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(2.2)

≤ b− a
4

{∫ 1

0

tα
[
h

(
t

2

)
+ h

(
1− t

2

)]
dt

}
[|f ′ (a)|+ |f ′ (b)|]

Proof. From Lemma 2.1 since |f ′| is h−convex, we have∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

{∫ 1

0

tα
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

∫ 1

0

tα
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt}
≤ b− a

4

{∫ 1

0

tα
[
h

(
t

2

)
|f ′ (a)|+ h

(
1− t

2

)
|f ′ (b)|

]
dt

+

∫ 1

0

tα
[
h

(
1− t

2

)
|f ′ (a)|+ h

(
t

2

)
|f ′ (b)|

]}
=

b− a
4

{∫ 1

0

tα
[
h

(
t

2

)
+ h

(
1− t

2

)]
dt

}
[|f ′ (a)|+ |f ′ (b)|]

�
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Corollary 2.1. If we choose h (t) = ts, then the inequality (2.2) of Theorem 2.1
becomes the following inequality:

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

{
1

2s (α+ s+ 1)
+ 2α+1B

(
1

2
;α+ 1, s+ 1

)}
[|f ′ (a)|+ |f ′ (b)|]

The incomplete beta function, a generalization of the beta function is defined as

B (x; a, b) =

∫ x

0

ta−1 (1− t)b−1
dt, a > 0, b > 0 and 0 ≤ x ≤ 1

and we used the fact that

∫ 1

0

tα
(

1− t

2

)s
dt = 2α+1B

(
1

2
;α+ 1, s+ 1

)

Corollary 2.2. If we choose h (t) = 1, then the inequality (2.2) of Theorem 2.1
becomes the following inequality:

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

2 (α+ 1)
[|f ′ (a)|+ |f ′ (b)|]

Remark 2.1. If we choose h (t) = t, then the inequality (2.2) of Theorem 2.1 reduces
the inequality (1.3) of Theorem 1.1.

Theorem 2.2. Let h : J ⊆ R→ R be a nonnegative function. f : I ⊆ R→ R be a
differentiable mapping on (a, b) with a < b. If |f ′|q is h−convex on [a, b] for q > 1,
then the following inequality for fractional integrals holds:

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(2.3)

≤ b− a
4

(
1

αp+ 1

) 1
p

{(
|f ′ (a)|q

∫ 1

0

h

(
t

2

)
dt+ |f ′ (b)|q

∫ 1

0

h

(
1− t

2

)
dt

) 1
q

+

(
|f ′ (a)|q

∫ 1

0

h

(
1− t

2

)
dt+ |f ′ (b)|q

∫ 1

0

h

(
t

2

)
dt

) 1
q

}
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Proof. From Lemma 2.1, using the Hölder inequality and |f ′|q is h−convex we have

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

{∫ 1

0

tα
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣ dt+

∫ 1

0

tα
∣∣∣∣f ′(2− t

2
a+

t

2
b

)∣∣∣∣ dt}

≤ b− a
4

(∫ 1

0

tαpdt

) 1
p

{(∫ 1

0

∣∣∣∣f ′( t2a+
2− t

2
b

)∣∣∣∣q dt)
1
q

+

(∫ 1

0

∣∣∣∣f ′(2− t
2

a+
t

2
b

)∣∣∣∣q dt)
1
q

}

≤ b− a
4

(
1

αp+ 1

) 1
p

{(
|f ′ (a)|q

∫ 1

0

h

(
t

2

)
dt+ |f ′ (b)|q

∫ 1

0

h

(
1− t

2

)
dt

) 1
q

+

(
|f ′ (a)|q

∫ 1

0

h

(
1− t

2

)
dt+ |f ′ (b)|q

∫ 1

0

h

(
t

2

)
dt

) 1
q

}

�

Corollary 2.3. If we choose h (t) = ts, then the inequality (2.3) of Theorem 2.2
becomes the following inequality:

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

αp+ 1

) 1
p

{(
|f ′ (a)|q 1

2s (s+ 1)
+ |f ′ (b)|q 2s+1

2s (s+ 1)

) 1
q

+

(
|f ′ (a)|q 2s+1

2s (s+ 1)
+ |f ′ (b)|q 1

2s (s+ 1)

) 1
q

}

Corollary 2.4. If we choose h (t) = 1, then the inequality (2.3) of Theorem 2.2
becomes the following inequality:

∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

2

(
1

αp+ 1

) 1
p (
|f ′ (a)|q + |f ′ (b)|q

) 1
q

Remark 2.2. If we choose h (t) = t, then the inequality (2.3) of Theorem 2.2 reduces
the inequality (1.4) of Theorem 1.2.

Theorem 2.3. Let h : J ⊆ R→ R be a nonnegative function. f : I ⊆ R→ R be a
differentiable mapping on (a, b) with a < b. If |f ′|q is h−convex on [a, b] for q ≥ 1,
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then the following inequality for fractional integrals holds:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣(2.4)

≤ b− a
4

(
1

α+ 1

) 1
p

[(
|f ′ (a)|q

∫ 1

0

tαh

(
t

2

)
dt+ |f ′ (b)|q

∫ 1

0

tαh

(
1− t

2

)
dt

) 1
q

+

(
|f ′ (a)|q

∫ 1

0

tαh

(
1− t

2

)
dt+ |f ′ (b)|q

∫ 1

0

tαh

(
t

2

)
dt

) 1
q

]
Proof. From Lemma 2.1, using the power mean inequality and |f ′|q is h−convex
we have∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

{(∫ 1

0

tαdt

) 1
p
(∫ 1

0

tα
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣q dt)
1
q

+

(∫ 1

0

tαdt

) 1
p
(∫ 1

0

tα
∣∣∣∣f ′( t2a+

2− t
2

b

)∣∣∣∣q dt)
}

=
b− a

4

(
1

α+ 1

) 1
p

[(
|f ′ (a)|q

∫ 1

0

tαh

(
t

2

)
dt+ |f ′ (b)|q

∫ 1

0

tαh

(
1− t

2

)
dt

) 1
q

+

(
|f ′ (a)|q

∫ 1

0

tαh

(
1− t

2

)
dt+ |f ′ (b)|q

∫ 1

0

tαh

(
t

2

)
dt

) 1
q

]
�

Corollary 2.5. If we choose h (t) = ts, then the inequality (2.4) of Theorem 2.3
becomes the following inequality:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

4

(
1

α+ 1

) 1
p
{(

|f ′ (a)|q

2s (α+ s+ 1)
+ 2α+1 |f ′ (b)|q B

(
1

2
;α+ 1, s+ 1

))
+

(
2α+1 |f ′ (a)|q B

(
1

2
;α+ 1, s+ 1

)
+

|f ′ (b)|q

2s (α+ s+ 1)

) 1
q

}
and we used the fact that∫ 1

0

tα
(

1− t

2

)s
dt = 2α+1B

(
1

2
;α+ 1, s+ 1

)
Corollary 2.6. If we choose h (t) = 1, then the inequality (2.4) of Theorem 2.3
becomes the following inequality:∣∣∣∣2α−1Γ(α+ 1)

(b− a)
α

[
Jα( a+b

2 )+
f (b) + Jα( a+b

2 )−f (a)
]
− f

(
a+ b

2

)∣∣∣∣
≤ b− a

2 (α+ 1)

(
|f ′ (a)|q + |f ′ (b)|q

) 1
q
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Remark 2.3. If we choose h (t) = t, then the inequality (2.4) of Theorem 2.3 reduces
the inequality (1.5) of Theorem 1.3.
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