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On neutrosophic submodules of a module
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Abstract

The target of this study is to observe some of the algebraic structures
of a single valued neutrosophic set. So, we introduce the concept of
a neutrosophic submodule of a given classical module and investigate
some of the crucial properties and characterizations of the proposed
concept.
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1. Introduction

Neutrosopy is a branch of philosophy introduced by Smarandache in 1980. It is the
basis of neutrosophic logic, neutrosophic probability, neutrosophic set and neutrosophic
statistics. While neutrosophic set generalizes the fuzzy set, neutrosophic probability
generalizes the classical and imprecise probability, neutrosophic statistics generalizes the
classical and imprecise statistics, neutrosophic logic however generalizes fuzzy logic, intu-
itionistic logic, Boolean logic, multi-valued logic, paraconsistent logic and dialetheism. In
the neutrosophic logic, each proposition is estimated to have the percentage of truth in a
subset T , the percentage of indeterminacy in a subset I, and the percentage of falsity in
a subset F. The use of neutrosophic theory becomes inevitable when a situation involving
indeterminacy is to be modeled since fuzzy set theory is limited to modeling a situation
involving uncertainty. From scienti�c and engineering point of view, the de�nition of a
neutrosophic set was speci�ed to the single valued neutrosophic set. The single valued
neutrosophic set was introduced for the �rst time by F. Smarandache, Neutrosophy /
Neutrosophic probability, set, and logic, American Res. Press, see pages 7-8, 1998 [10],
which is also mentioned by Denis Howe, from England, in The Free Online Dictionary
of Computing, 1999, and by Wang et al.[11]. The single valued neutrosophic set is a
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generalization of classical set, fuzzy set, intuitionistic fuzzy set and paraconsistent set
etc.

The introduction of neutrosophic theory has led to the establishment of the concept
of neutrosophic algebraic structures. Vasantha Kandasamy and Florentin Smarandache
[6] for the �rst time introduced the concept of algebraic structures which has caused a
paradigm shift in the study of algebraic structures. Single valued neutrosophic set is also
applied to algebraic and topological structures (see [1, 2, 3, 7, 8, 9]). Çetkin and Aygün
[4] proposed the de�nitions of neutrosophic subgroups [3] and neutrosophic subrings [4]
of a given classical group and classical ring, respectively. In this paper, as a continuation
of the studies [3] and [4], we present the concept of neutrosophic submodules and also
we investigate crucial properties and characterizations of the proposed concept.

2. Preliminaries

In this chapter, we give some preliminaries about single valued neutrosophic sets and
set operations, which will be called neutrosophic sets, for simplicity.

2.1 De�nition [10] A neutrosophic set A on the universe of X is de�ned as A =
{< x, tA(x), iA(x), fA(x) >, x ∈ X} where tA, iA, fA : X →]−0, 1+[ and −0 ≤ tA(x) +
iA(x) + fA(x) ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real stan-
dard or non standard subsets of ]−0, 1+[. But in real life applications in scienti�c and
engineering problems it is di�cult to use neutrosophic set with value from real standard
or non-standard subset of ]−0, 1+[. Hence throughout this work, the following speci�ed
de�nition of a neutrosophic set known as single valued neutrosophic set is considered.

2.2 De�nition [11] Let X be a space of points (objects), with a generic element in X
denoted by x. A single valued neutrosophic set (SVNS) A on X is characterized by truth-
membership function tA, indeterminacy-membership function iA and falsity-membership
function fA. For each point x in X, tA(x), iA(x), fA(x) ∈ [0, 1].

A neutrosophic set A can be written as

A =

n∑
i=1

< t(xi), i(xi), f(xi) > /xi, xi ∈ X.

2.3 Example[11] Assume that X = {x1, x2, x3}, x1 is capability, x2 is trustworthiness
and x3 is price. The values of x1, x2 and x3 are in [0, 1]. They are obtained from the
questionnaire of some domain experts, their option could be a degree of "good service", a
degree of indeterminacy and a degree of "poor service". A is a single valued neutrosophic
set of X de�ned by
A =< 0.3, 0.4, 0.5 > /x1+ < 0.5, 0.2, 0.3 > /x2+ < 0.7, 0.2, 0.2 > /x3.
Since the membership functions tA, iA, fA are de�ned from X into the unit interval

[0, 1] as tA, iA, fA : X → [0, 1], a (single valued) neutrosophic set A will be denoted by a
mapping de�ned as A : X → [0, 1] × [0, 1] × [0, 1] and A(x) = (tA(x), iA(x), fA(x)), for
simplicity.

2.4 De�nition [8, 11] Let A and B be two neutrosophic sets on X. Then
(1) A is contained in B, denoted as A ⊆ B, if and only if A(x) ≤ B(x). This means

that tA(x) ≤ tB(x), iA(x) ≤ iB(x) and fA(x) ≥ fB(x). Two sets A and B is called equal,
i.e., A = B i� A ⊆ B and B ⊆ A.

(2) the union of A and B is denoted by C = A∪B and de�ned as C(x) = A(x)∨B(x)
where A(x) ∨ B(x) = (tA(x) ∨ tB(x), iA(x) ∨ iB(x), fA(x) ∧ fB(x)), for each x ∈ X.
This means that tC(x) = max{tA(x), tB(x)}, iC(x) = max{iA(x), iB(x)} and fC(x) =
min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A ∩ B and de�ned as C(x) =
A(x) ∧ B(x) where A(x) ∧ B(x) = (tA(x) ∧ tB(x), iA(x) ∧ iB(x), fA(x) ∨ fB(x)), for
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each x ∈ X. This means that tC(x) = min{tA(x), tB(x)}, iC(x) = min{iA(x), iB(x)} and
fC(x) = max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and de�ned as Ac(x) = (fA(x), 1 −
iA(x), tA(x)), for each x ∈ X. Here (Ac)c = A.

2.1. Proposition. [11] Let A,B and C be the neutrosophic sets on the common universe
X. Then the following properties are valid.

(1) A ∪B = B ∪A,A ∩B = B ∩A.
(2) A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.
(3) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) A ∩ ∅̃ = ∅̃, A ∪ ∅̃ = A,A ∪ X̃ = X̃, A ∩ X̃ = A, where t∅̃ = i∅̃ = 0, f∅̃ = 1 and
tX̃ = iX̃ = 1, fX̃ = 0.

(5) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

2.6 De�nition Let A and B be two neutrosophic sets on X and Y , respectively.
Then the cartesian product of A and B which is denoted by A × B is a neutrosophic
set on X × Y and it is de�ned as (A × B)(x, y) = A(x) × B(y) where A(x) × B(y) =
(tA×B(x, y), iA×B(x, y), fA×B(x, y)), i.e.,
tA×B(x, y) = tA(x)∧tB(y), iA×B(x, y) = iA(x)∧iB(y) and fA×B(x, y) = fA(x)∨fB(y).
2.7 De�nition [3] Let A be a neutrosophic set on X and α ∈ [0, 1]. De�ne the α-level

sets of A as follows:
(tA)α = {x ∈ X | tA(x) ≥ α}, (iA)α = {x ∈ X | iA(x) ≥ α}, and (fA)

α = {x ∈ X |
fA(x) ≤ α}.

2.8 De�nition [3] Let g : X1 → X2 be a function and A,B be the neutrosophic sets
of X1 and X2, respectively. Then the image of a neutrosophic set A is a neutrosophic set
of X2 and it is de�ned as follows:
g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y)) = (g(tA)(y), g(iA)(y), g(fA)(y)),∀y ∈ X2 where

g(tA)(y) =

{∨
tA(x), if x ∈ g−1(y);

0, otherwise
, g(iA)(y) =

{∨
iA(x), if x ∈ g−1(y);

0, otherwise
,

g(fA)(y) =

{∧
fA(x), if x ∈ g−1(y);

1, otherwise.

And the preimage of a neutrosophic set B is a neutrosophic set of X1 and it is de�ned
as follows:
g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x)) = (tB(g(x)), iB(g(x)), fB(g(x))) =

B(g(x)), ∀x ∈ X1.

3. Neutrosophic submodules

In this section, we de�ne the concept of a neutrosophic submodule of a given classical
module over a ring and also investigate its elementary properties and characterizations.
Throughout this paper, R denotes a commutative ring with unity 1.

3.1 De�nition Let M be a module over a ring R. A neutrosophic set A on M is
called a neutrosophic submodule of M if the following conditions are satis�ed:

(M1)A(0) = X̃, i.e.,
tA(0) = 1, iA(0) = 1, fA(0) = 0.
(M2)A(x+ y) ≥ A(x) ∧A(y), for each x, y ∈M i.e.,
tA(x+ y) ≥ tA(x) ∧ tA(y), iA(x+ y) ≥ iA(x) ∧ iA(y) and fA(x+ y) ≤ fA(x) ∨ fA(y).
(M3)A(rx) ≥ A(x), for each x ∈M, r ∈ R, i.e.,
tA(rx) ≥ tA(x), iA(rx) ≥ iA(x) and fA(rx) ≤ fA(x).
The collection of all neutrosophic submodules of M is denoted by NSM(M).
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3.2 Example Let us take the classical ring R = Z4 = {0, 1, 2, 3}. Since each ring is
a module on itself, we consider M = Z4 as a classical module. De�ne the single valued
neutrosophic set A as follows:
A = {< 1, 1, 0 > /0+ < 0.6, 0.3, 0.6 > /1+ < 0.8, 0.1, 0.4 > /2+ < 0.6, 0.3, 0.6 > /3}.
It is clear that the neutrosophic set A is a neutrosophic submodule of the module M.
3.3 De�nition Let A,B be neutrosophic sets on M. Then their sum A + B is a

neutrosophic set on M, de�ned as follows:
tA+B(x) = ∨{tA(y) ∧ tB(z) | x = y + z, y, z ∈M},
iA+B(x) = ∨{iA(y) ∧ iB(z) | x = y + z, y, z ∈M},
fA+B(x) = ∧{fA(y) ∨ fB(z) | x = y + z, y, z ∈M}.
3.4 De�nition Let A be a neutrosophic set on M, then −A is a neutrosophic set on

M, de�ned as follows:
t−A(x) = tA(−x), i−A(x) = iA(−x) and f−A(x) = fA(−x), for each x ∈M.
3.5 De�nition Let A be a neutrosophic set on an R-module M and r ∈ R. De�ne

neutrosophic set rA on M as follows:
trA(x) = ∨{tA(y) | y ∈ M, x = ry}, irA(x) = ∨{iA(y) | y ∈ M, x = ry} and

frA(x) = ∧{fA(y) | y ∈M, x = ry},

3.1. Proposition. If A is a neutrosophic submodule of an R-module M, then (−1)A =
−A.

Proof. Let x ∈M be arbitrary.

t(−1)A(x) =
∨

x=(−1)y

tA(y) =
∨
y=−x

tA(x) = tA(−x) = t−A(x).

Since similarly i(−1)A(x) = i−A(x) and f(−1)A(x) = f−A(x), for each x ∈ M , the
following is valid,

(−1)A = (t(−1)A, i(−1)A, f(−1)A) = (t−A, i−A, f−A) = −A. �

3.2. Proposition. If A and B are neutrosophic sets on M , with A ⊆ B, then rA ⊆ rB,
for each r ∈ R.

Proof. It is straightforward by the de�nition. �

3.3. Proposition. If A is a neutrosophic set on M, then r(sA) = (rs)A, for each
r, s ∈ R.

Proof. Let x ∈M and r, s ∈ R be arbitrary.

fr(sA)(x) =
∧
x=ry

fsA(y) =
∧
x=ry

∧
y=sz

fA(z) =
∧

x=r(sz)

fA(z) =
∧

x=(rs)z

fA(z) = f(rs)A(x).

By the similar calculations the other equalities are obtained, so
r(sA) = (tr(sA), ir(sA), fr(sA)) = (t(rs)A, i(rs)A, f(rs)A) = (rs)A. �

3.4. Proposition. If A and B are neutrosophic sets on M , then r(A+B) = rA+ rB,
for each r ∈ R.

Proof. Let A and B are neutrosophic sets on M , x ∈M and r ∈ R.
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ir(A+B)(x) =
∨
x=ry

iA+B(y)

=
∨
x=ry

∨
y=z1+z2

(iA(z1) ∧ iB(z2))

=
∨

x=rz1+rz2

(iA(z1) ∧ iB(z2))

=
∨

x=x1+x2

((
∨

x1=rz1

iA(z1)) ∧ (
∨

x2=rz2

iB(z2)))

=
∨

x=x1+x2

(irA(x1) ∧ irB(x2)) = irA+rB(x).

The other equalities are obtained similarly.
Hence, r(A + B) = (tr(A+B), ir(A+B), fr(A+B)) = (trA+rB , irA+rB , frA+rB) = rA +

rB. �

3.5. Proposition. If A is a neutrosophic set on M, then trA(rx) ≥ tA(x), irA(rx) ≥
iA(x) and frA(rx) ≤ fA(x).

Proof. It is straightforward by the de�nition. �

3.6. Proposition. If A and B are neutrosophic sets on M , then
(1) tB(rx) ≥ tA(x), for each x ∈M, if and only if trA ≤ tB .
(2) iB(rx) ≥ iA(x), for each x ∈M, if and only if irA ≤ iB .
(3) fB(rx) ≤ fA(x), for each x ∈M, if and only if frA ≥ fB .

Proof. (1) Suppose tB(rx) ≥ tA(x), for each x ∈ M, then trA(x) =
∨

x=ry,y∈M

tA(y). So,

trA ≤ tB .
Conversely, suppose trA ≤ tB is satis�ed. Then trA(x) ≤ tB(x), for each x ∈ M.

Hence, tB(rx) ≥ trA(rx) ≥ tA(x), for each x ∈M (by Proposition 3.5).
(2) and (3) are proved in a similar way. �

3.7. Proposition. If A and B are neutrosophic sets on M , then
(1) trA4sB(rx+ sy) ≥ tA(x) ∧ tB(y),
(2) irA4sB(rx+ sy) ≥ iA(x) ∧ iB(y),
(3) frA4sB(rx+ sy) ≤ fA(x) ∨ fB(y), for each x, y ∈M, r, s ∈ R.

Proof. It is proved by using De�nition 3.3, De�nition 3.5 and Proposition 3.5. �

3.8. Proposition. If A,B,C are neutrosophic sets onM, then the followings are satis�ed
for each r, s ∈ R;

(1) tC(rx+ sy) ≥ tA(x) ∧ tB(y), for all x, y ∈M if and only if trA+sB ≤ tC .
(2) iC(rx+ sy) ≥ iA(x) ∧ iB(y), for all x, y ∈M if and only if irA+sB ≤ iC .
(3) fC(rx+ sy) ≤ fA(x) ∨ fB(y), for all x, y ∈M if and only if frA+sB ≥ fC .

Proof. It is proved by using Proposition 3.7. �

3.9. Theorem. Let A be a neutrosophic set on M and r, s ∈ R. Then
(1) trA ≤ tA ⇔ tA(rx) ≥ tA(x), irA ≤ iA ⇔ iA(rx) ≥ iA(x) and frA ≥ fA ⇔

fA(rx) ≤ fA(x), for each x ∈M.
(2) trA+sA ≤ tA ⇔ tA(rx+ sy) ≥ tA(x) ∧ tA(y),

irA+sA ≤ iA ⇔ iA(rx+ sy) ≥ iA(x) ∧ iA(y),
and frA+sA ≥ fA ⇔ fA(rx+ sy) ≤ fA(x) ∨ fA(y).

Proof. The proof follows from Propositions 3.6 and 3.8. �
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3.10. Theorem. Let A be a neutrosophic set on M. Then A is a neutrosophic submodule
of M if and only if A is a neutrosophic subgroup of the additive group M , in the sense
of [3], and satis�es the conditions trA ≤ tA, irA ≤ iA and frA ≥ fA, for each r ∈ R.

Proof. Proof is clear from the de�nition of a neutrosophic subgroup in [3], and Theorem
3.9. �

3.11. Theorem. Let A be a neutrosophic set on M . Then A ∈ NSM(M) if and only if
the following properties are satis�ed:

(i) A(0) = X̃.
(ii) A(rx+ sy) ≥ A(x) ∧A(y), for each x, y ∈M, r, s ∈ R.

Proof. Let A be a neutrosophic submodule ofM and x, y ∈M . From the condition (M1)

of De�nition 3.1, it is obvious that A(0) = X̃. From (M2) and (M3), the followings are
true,
tA(rx+ sy) ≥ tA(rx) ∧ tA(sy) ≥ tA(x) ∧ tA(y),
iA(rx+ sy) ≥ iA(rx) ∧ iA(sy) ≥ iA(x) ∧ iA(y) and
fA(rx+ sy) ≤ fA(rx) ∨ fA(sy) ≤ fA(x) ∨ fA(y). for each x, y ∈M, r, s ∈ R.
Hence,
A(rx+ sy) = (tA(rx+ sy), iA(rx+ sy), fA(rx+ sy))

≥ (tA(x) ∧ tA(y), iA(x) ∧ iA(y), fA(x) ∨ fA(y))
= (tA(x), iA(x), fA(x)) ∧ (tA(y), iA(y), fA(y))
= A(x) ∧A(y).

Conversely, suppose A satis�es the conditions (i) and (ii). Then it is clear by hypoth-

esis A(0) = X̃.
tA(x+ y) = tA(1.x+ 1.y) ≥ tA(x) ∧ tA(y)
iA(x+ y) = iA(1.x+ 1.y) ≥ iA(x) ∧ iA(y)
fA(x+ y) = fA(1.x+ 1.y) ≤ fA(x) ∨ fA(y).
So, A(x+ y) ≥ A(x) ∧A(y) and the condition (M2) of De�nition 3.1 is satis�ed.
Now let us show the validity of condition (M3).By the hypothesis,
tA(rx) = tA(rx+ r0) ≥ tA(x) ∧ tA(0) = tA(x)
iA(rx) = iA(rx+ r0) ≥ iA(x) ∧ iA(0) = iA(x)
fA(rx) = fA(rx+ r0) ≤ fA(x) ∨ fA(0) = fA(x), for each x, y ∈M, r ∈ R.
Therefore, (M3) of De�nition 3.1 is satis�ed. �

3.12. Theorem. If A and B are neutrosophic submodules of a classical module M , then
the intersection A ∩B is also a neutrosophic submodule of M .

Proof. Since A,B ∈ NSM(M), we have A(0) = X̃, B(0) = X̃.
tA∩B(0) = tA(0) ∧ tB(0) = 1
iA∩B(0) = iA(0) ∧ iB(0) = 1
fA∩B(0) = fA(0) ∨ fB(0) = 0.

Hence (A∩B)(0) = X̃ and we obtain the condition (M1) of De�nition 3.1 is satis�ed.
Let x, y ∈M, r, s ∈ R. By Theorem 3.11, it is enough to show that
(A ∩B)(rx+ sy) ≥ (A ∩B)(x) ∧ (A ∩B)(y), i.e.,
tA∩B(rx+sy) ≥ tA∩B(x)∧tA∩B(y), iA∩B(rx+sy) ≥ iA∩B(x)∧iA∩B(y) and fA∩B(rx+

sy) ≤ fA∩B(x) ∨ fA∩B(y).
Now we consider the truth-membership degree of the intersection,
tA∩B(rx+ sy) = tA(rx+ sy) ∧ tB(rx+ sy)

≥ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))
= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y)) = tA∩B(x) ∧ tA∩B(y).

The other inequalities are proved similarly. Hence, A ∩B ∈ NSM(M). �
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A nonempty subset N of M is a submodule of M if and only if rx + sy ∈ N for all
x, y ∈M, r, s ∈ R.

3.13. Proposition. Let M be a module over R. A ∈ NSM(M) if and only if for all
α ∈ [0, 1], α-level sets of A, (tA)α, (iA)α and (fA)

α are classical submodules of M where

A(0) = X̃.

Proof. Let A ∈ NSM(M), α ∈ [0, 1], x, y ∈ (tA)α and r, s ∈ R be any elements.
Then tA(x) ≥ α, tA(y) ≥ α and tA(x) ∧ tA(y) ≥ α. By using Theorem 3.11, we have
tA(rx + sy) ≥ tA(x) ∧ tA(y) ≥ α. Hence rx + sy ∈ (tA)α. Therefore (tA)α is a classical
submodule of M for each α ∈ [0, 1].

Similarly, for x, y ∈ (iA)α, (fA)
α we obtain rx+ sy ∈ (iA)α, (fA)

α for each α ∈ [0, 1].
Consequently, (iA)α, (fA)

α are classical submodules of M for each α ∈ [0, 1].
Conversely, let (tA)α be a classical submodules of M for each α ∈ [0, 1]. Let x, y ∈

M , α = tA(x) ∧ tA(y). Then tA(x) ≥ α and tA(y) ≥ α. Thus, x, y ∈ (tA)α. Since
(tA)α is a classical submodule of M , we have rx + sy ∈ (tA)α for all r, s ∈ R. Hence,
(tA)(rx+ sy) ≥ α = tA(x) ∧ tA(y).

Similarly we obtain (iA)(rx+ sy) ≥ iA(x) ∧ iA(y).
Now we consider (fA)

α. Let x, y ∈M , α = fA(x)∨fA(y). Then fA(x) ≤ α, fA(y) ≤ α.
Thus x, y ∈ (fA)

α. Since (fA)
α is a submodule of M , we have rx + sy ∈ (fA)

α for all
r, s ∈ R. Thus (fA)(rx+ sy) ≤ α = fA(x) ∨ fA(y).

It is also obvious that A(0) = X̃. Hence the conditions of Theorem 3.11 are satis�ed.
�

3.14. Proposition. Let A and B be two neutrosophic sets on X and Y , respectively.
Then the following equalities are satis�ed for the α-levels.

(tA×B)α = (tA)α × (tB)α, (iA×B)α = (iA)α × (iB)α and (fA×B)
α = (fA)

α × (fB)
α.

Proof. Let (x, y) ∈ (tA×B)α be arbitrary. So,
tA×B(x, y) ≥ α ⇔ tA(x) ∧ tB(y) ≥ α

⇔ tA(x) ≥ α and tB(y) ≥ α
⇔ (x, y) ∈ (tA)α × (tB)α.

(iA×B)α = (iA)α × (iB)α is proved in a similar way.
Let (x, y) ∈ (fA×B)

α be arbitrary. Hence,
fA×B(x, y) ≤ α ⇔ fA(x) ∨ fB(y) ≤ α

⇔ (fA(x) ≤ α, fB(y) ≤ α
⇔ (x, y) ∈ (fA)

α × (fB)
α.

�

3.15. Theorem. Let A,B ∈ NSM(M). Then the product A×B is also a neutrosophic
submodule of M .

Proof. We know that direct product of two submodules is a submodule. So, by Proposi-
tion 3.13 and Proposition 3.14, we obtain the result. �

3.16. Proposition. Let A and B be two neutrosophic sets on X and Y , respectively and
g : X → Y be a mapping. Then the followings hold:

(i) g((tA)α) ⊆ (tg(A))α, g((iA)α) ⊆ (ig(A))α, g((fA)
α) ⊇ (fg(A))

α.

(ii) g−1((tB)α) = (tg−1(B))α, g
−1((iB)α) = (ig−1(B))α, g

−1((fB)
α) = (fg−1(B))

α.

Proof. (i) Let y ∈ g((tA)α). Then there exists x ∈ (tA)α such that g(x) = y. Hence

tA(x) ≥ α. So,
∨

x∈g−1(y)

tA(x) ≥ α, i.e., tg(A)(y) ≥ α and y ∈ (tg(A))α. Hence g((tA)α) ⊆

(tg(A))α. Similarly, we obtain other inclusions.
(ii)
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(tg−1(B))α = {x ∈ X : tg−1(B)(x) ≥ α}
= {x ∈ X : tB(g(x)) ≥ α}
= {x ∈ X : g(x) ∈ (tB)α}
= {x ∈ X : x ∈ g−1((tB)α)} = g−1((tB)α)

The other equalities are obtained in a similar way. �

3.17. Theorem. Let M,N be the classical modules and g :M → N be a homomorphism
of modules. If B is a neutrosophic submodule of N , then the preimage g−1(B) is a
neutrosophic submodule of M .

Proof. By Proposition 3.16 (ii), we have
g−1((tB)α) = (tg−1(B))α, g

−1((iB)α) = (ig−1(B))α, g
−1((fB)

α) = (fg−1(B))
α.. Since

preimage of a submodule is a submodule, by Proposition 3.13 we obtain the result. �

3.18. Corollary. If g : M → N is a homomorphism of modules and {Bj : j ∈ I} is a
family of neutrosophic submodules of N , then g−1(∩Bj) is a neutrosophic submodule of
M .

3.19. Theorem. Let M,N be the classical modules and g :M → N be a homomorphism
of modules. If A is a neutrosophic submodule ofM , then the image g(A) is a neutrosophic
submodule of N .

Proof. By Proposition 3.13, it is enough to show that (tg(A))α, (ig(A))α, (fg(A))
α are

submodules of N for all α ∈ [0, 1].
Let y1, y2 ∈ (tg(A))α. Then tg(A)(y1) ≥ α and tg(A)(y2) ≥ α. There exist x1, x2 ∈ M

such that tA(x1) ≥ tg(A)(y1) ≥ α and tA(x2) ≥ tg(A)(y2) ≥ α. Then tA(x1) ≥ α,
tA(x2) ≥ α and tA(x1)∧ tA(x2) ≥ α. Since A is a neutrosophic submodule of M , for any
r, s ∈ R, we have tA(rx1 + sx2) ≥ tA(x1) ∧ tA(x2) ≥ α. Hence,
rx1 + sx2 ∈ (tA)α ⇒ g(rx1 + sx2) ∈ g((tA)α) ⊆ (tg(A))α
⇒ rg(x1) + sg(x2) ∈ (tg(A))α ⇒ ry1 + sy2 ∈ (tg(A))α.
Therefore, (tg(A))α is a submodule of N . Similarly, (ig(A))α, (fg(A))

α are classical sub-
modules of N for each α ∈ [0, 1]. By Proposition 3.13, g(A) is a neutrosophic submodule
of N . �

3.20. Corollary. If g : M → N is a surjective module homomorphism and {Ai : i ∈ I}
is a family of neutrosophic submodule of M , then g(∩Ai) is a neutrosophic submodule of
N .

4. Conclusion

Modules over a ring are a generalization of abelian groups (which are modules over
Z) [5]. From the philosophical point of view, it has been shown that a neutrosophic
set generalizes a classical set, fuzzy set, interval valued fuzzy set, intuitionistic fuzzy set
etc. A single valued neutrosophic set is an instance of neutrosophic set which can be
used in real scienti�c and engineering problems. Therefore, the study of single valued
neutrosophic sets and their properties have a considerable signi�cance in the sense of
applications as well as in understanding the fundamentals of uncertainty. So, as a con-
tinuation of the studies [3, 4], we decided to introduce the concept of a neutrosophic
submodule and examine its elementary properties. Consequently, this study is concerned
with carrying over to neutrosophic modules various concepts and results of neutrosophic
subgroup theory concerned in [3].
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