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Shear horizontal waves in a nonlinear elastic layer
overlying a rigid substratum
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Abstract

In this work, the propagation of shear horizontal (SH) waves in a homo-
geneous, isotropic and compressible nonlinear hyper-elastic layer having
�nite thickness is studied. The upper surface of the layer is assumed
to be free from traction and the lower boundary is rigidly �xed. These
waves are dispersive like the Love waves. The problem is examined by
a perturbation method that balances the nonlinearity and dispersion
in the analysis. A nonlinear Schrödinger equation is derived describing
the nonlinear self modulation of the waves. Then, the e�ect of nonli-
near properties of the material on the propagation characteristics and
on the existence of solitary waves are discussed.
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1. Introduction

Elastic waves propagating in an unbounded media are non-dispersive i.e. phase ve-
locities of waves are constants. On the other hand, in wave guides such as rods, plates,
layered half space, etc.,the phase velocities of the waves depend on wave number, hence
the waves are dispersive. Dispersive elastic waves have been studied extensively, because
of their application in geophysics, nondestructive testing of materials,electronic signal
processing devices, etc.. (see, e.g. Ewing et al. [1], Love [2], Achenbach [3], Graf [4],
Farnell [5], Maugin [6]).

In recent years, the e�ect of the nonlinear material parameters on the propagation
characteristics of dispersive elastic waves has been the subject of numerous investigations
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for similar reasons mentioned above. By employing asymptotic perturbation methods
many problems related with the propagation of nonlinear dispersive waves are examined.
In these works, as a result of balance between nonlinearity and dispersion various nonlin-
ear evaluation equations such as Korteweg-DeVries (KdV) equation, modi�ed Korteweg-
DeVries (mKdV) equation, nonlinear Schrödinger (NLS) equation, Boussinesq equation
etc. have been derived to elucidate the nonlinear wave motion asymptotically. Then
various aspects of the problems such as the stability of modulated wave, the existence of
solitary waves, etc. were discussed on the basis of these equations. For an extensive review
of most of these works we refer to Parker and Maugin [7], Maugin [8], Parker [9], Mayer
[10], Norris [11], Porubov [12]. Among the works on nonlinear dispersive elastic waves,
the investigations of nonlinear shear horizontal(SH) waves occupies an important place.
Below some of these works will be reviewed to relate the present work to them. In [13],
Bataille and Lund considered the propagation of nonlinear Love waves in a layered half
space covered by a thin linear elastic layer. A modi�ed Boussinesq equation is derived by
an intuitive approach guided by physical arguments which accounts the dispersive nature
of Love waves and the nonlinearity. This equation has an approximate modulated solitary
wave (an envelope solitary wave) solution which provides mechanisms for localized en-
ergy propagation along the surface of the layered medium. The propagation of nonlinear
Love waves in a half space covered by a layer of uniform �nite thickness having di�erent
mechanical properties, is investigated by a perturbation method in [14] by Teymur. The
materials of the layer and the half space are both assumed to be homogeneous, isotropic
and compressible hyper-elastic. Then, it is shown that the nonlinear self modulation of
Love waves is governed asymptotically by an NLS equation. The coe�cients of this NLS
equation are valid on all branches of the linear dispersion relation of Love waves for any
wave number. From the numerical evaluation of these coe�cients for various material
parameters it has been observed that the stability of modulated waves, the existence of
envelope ( bright) and dark solitary waves depend strongly on the nonlinear properties of
the layered media as well as the wave number. The problem is reconsidered by Maugin
and Hadouaj [15] where the nonlinear substrate covered by a linear thin elastic layer and
then by Teymur et al.[16] if the top layer is made of a thin nonlinear elastic material.
In [17], Ahmetolan and Teymur studied the propagation of nonlinear SH waves and the
formation of Love waves in a double layered plate each having �nite thickness. In [18],
Ahmetolan and Teymur examined the propagation of nonlinear SH waves in a plate hav-
ing �nite thickness and made of a generalized neo-Hookean material. An NLS equation
is derived which governs the nonlinear self modulation of waves asymptotically and the
e�ect of nonlinearity on the propagation characteristics is discussed. The propagation of
small but �nite amplitude long SH waves in a double layered plate is examined in [25] by
Teymur . I! n that work by an asymptotic analysis, a modi�ed KdV equation is derived
and then the dependence of various types of solitary wave solutions on the nonlinear
material parameters are discussed. The propagation of large amplitude Love waves in
a layered half-space made of di�erent pre-stressed compressible neo-Hookean materials
(restricted Hadamard materials) is examined by Ferreira and Boluenger [20] and an exact
solution of the problem is given. Later, the anti-plane shear motions coupled with an
in-plane motion for a Hadamard materials are considered by Pucci and Saccomandi [21].
The pure anti-plane motion may be sustained in a Hadamard material in the absence
of body forces. When the constitutive parameter β is small, a perturbation analysis is
developed using this small parameter. Then this approach is also applied to the propaga-
tion of �nite amplitude Love waves in a layered half space made of Hadamard materials.
And the solutions exhibiting a secondary in-plane motion caused by a principal anti-plane
motion are given.
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In the present work, we consider the propagation SH waves in a homogeneous isotropic
compressible nonlinear elastic �nite layer deposited on a rigid substratum. The upper
surface of the layer is assumed to be free from the stress. This problem may model some
real world problem. A uniform layer of a nonlinear soil overlying a rigid bedrock is an
example from soil dynamics (see for example[22]). Also a soft material layer overlying
an almost rigid material is an another example from the signal processing applications
(see for example [8] and [15]). The problem is examined by a perturbation method. By
balancing the nonlinearity and dispersion in the analysis, an NLS equation is derived
describing the nonlinear self modulation of SH waves. Then, the e�ect of nonlinearity
on the propagation characteristics of waves and on the existence of solitary waves are
discussed.

2. Formulation of the Problem

Let (x1, x2, x3) and (X1, X2, X3) be, respectively, the spatial and material coordinates
of a point referred to the same rectangular Cartesian system of axes. Consider an elastic
layer of uniform thickness h, occupying the regions between the planes X2 = 0 and
X2 = h in the reference frame XK . It is assumed that the boundary X2 = h is free of
traction and the displacements are zero at the rigid boundary X2 = 0. Now, an SH wave
described by the equations

(2.1) xk = XKδkK + u3(X∆, t)δk3

is supposed to propagate along the X1-axis in the layer, where u3 is the displacement
of a particle in the X3−direction, t is the time and δkK is the Kronecker symbol. The
summation convention on repeated indices is implied in (2.1) and in the sequel of this
section, and Latin and Greek indices have respective ranges (1, 2, 3) and (1, 2). Since
det(∂xk/∂XK) = 1; the deformation �eld de�ned by (2.1) is isochoric and the density ρ
of the layer in motion remain constant, i.e. ρ = ρ0 = constant.

Let TKl be the �rst Piola-Kircho� stress tensor �eld accompanying the deformation
�eld (2.1); in the absence of body forces, the equation of motion in the reference state
take the following forms

(2.2) T∆β,∆ + T3β,3 = 0, T∆3,∆ + T33,3 = ρ0ü3

where subscripts preceded by a comma indicate partial di�erentiation with respect to
coordinates XK and an over dot represents the partial di�erentiation with respect to t
[14].

The assumption of vanishing traction on the free surface of the layer imposes the
boundary condition

(2.3) T2k = 0 on X2 = h,

and on the rigid boundary

(2.4) u3 = 0 on X2 = 0.

Let us now assume that the constituent material of the layer is nonlinear, homoge-
neous, isotropic and compressible hyper-elastic. Stress constitutive equations for such a
material may be expressed as

(2.5) TKk = (
∂Σ

∂I1
δLK + 2

∂Σ

∂I2
ELK + 3

∂Σ

∂I3
ELMEMK)xk,L

where EKL = (xk,Kxk,L − δKL)/2 is the Lagrangian strain tensor and Σ is the strain
energy function (see e.g. Eringen and Suhubi [23]). For an isotropic material, Σ is an
isotropic function of the invariants of E de�ned as

(2.6) I1 = trE, I2 = trE2, I3 = trE3.
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For the deformation �eld (2.1), the invariants are found to be

(2.7) I1 = Q/2, I2 = Q(1 +Q/2)/2, I3 = Q2(3 +Q)/8.

where

(2.8) Q = Q(u3) = u3,∆u3,∆.

The stress-strain relations (2.5) now read [14],

T∆β = [
∂Σ

∂I1
δΩ∆ + (

∂Σ

∂I2
+

3

4
(1 +Q)

∂Σ

∂I3
)u3,Ωu3,∆]δβΩ, T∆3 = 2

∂Σ

∂Q
u3,∆,

T3α = −u3,∆T∆α + δα∆T∆3, T33 =
∂Σ

∂I1
+ (

∂Σ

∂I2
+

3

4
(1 +Q)

∂Σ

∂I3
)Q.(2.9)

Note that for a speci�c material Σ is a prescribed function of Q through the invariants
(2.7). Hence the equations of motion (2.2) are three equations to be satis�ed by a single
function u3 . For any material de�ned by (2.5), if the �rst two equations in (2.2) are
satis�ed by a given solution of the third equation in (2.2), then the motion (2.1) can
exist in the medium in the absence of body forces. This is only the case if Σ = Σ(I1), i.e.
if the medium is made of a generalized Neo-Hookean material ( see e.g. Teymur [19] or
in more detail Saccomandi and Ogden [24] ). In general without any restriction on the
constitutive relation (2.5)(or (2.9)), the system of equations (2.2) is not compatible so that
the motion (2.1) cannot be maintained without body forces acting in the (X1, X2)-plane
(see for details Carroll [25], Pucci and Saccomandi [26], Rogers et al. [27]). Therefore as
in [14](or in [16]) we will assume that the motion (2.1) takes place in a material for which
the Cauchy stress components tαβ are identically zero as in the case of linear problem.
Hence, since T∆β = δ∆αtαβ then T∆β =0 and as a consequence of this assumption, the
�rst two equations in (2.2) are satis�ed identically and the third equation becomes

(2.10) 2(
∂Σ

∂Q
u3,∆ ),∆ = ρ0ü3.

It is seen from (2.9) that for such a material the strain energy function Σ must satisfy
the following conditions

(2.11)
∂Σ

∂I1
= 0,

∂Σ

∂I2
+

3

4
(1 +Q)

∂Σ

∂I3
= 0,

whenever the invariants are given by (2.7). We now employ the following fourth order
polynomial expansion of Σ in terms of the strain invariants Ii to deduce approximate
equations

(2.12) Σ = α1I
2
1 + α2I2 + α3I

3
1 + α4I1I2 + α5I3 + α6I

4
1 + α7I

2
1I2 + α8I1I3 + α9I

2
2

+O(I5
1 , I

5/2
2 , I

5/3
3 )

where α1 = λ/2, α2 = µ are second order (λ and µ are the usual Lamé constants),
α3, α4, α5 are third order and α6, α7, α8, α9 are fourth-order elastic constants. The third
order elastic constants related to the Murnaghan`s constants l, m, n as (see Norris [11])

(2.13) α3 =
1

3
(l −m+

1

2
n) , α4 = (m− 1

2
n), α5 =

n

3

Then employing (2.12) in the stress-strain relation (2.9) and applying the restrictions on
Σ de�ned in (2.11) we get

T11 = T12 = T21 = T22 = T33 = 0,

T∆3 = µu3,∆ + (α9 +m/2)u3,∆Q+O(Q2),(2.14)

and the equation (2.10) becomes

(2.15) ü3 − c2Tu3,∆∆ = nT (u3,∆Q),∆ +O(Q2)
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where

(2.16) c2T = µ/ρ0, nT = (α9 +m/2)/ρ0

Here, cT is the linear shear velocity and nT the nonlinear material constant which exhibit
the nonlinear characteristics of the constituent material. When nT > 0, the medium is
hardening in shear, but if nT < 0, then it is softening.

Hence, the SH wave motion (2.1) can be maintained in the restricted hyper-elastic
material de�ned by (2.14) without body forces acting in the (X1, X2)− plane. Now,
let X = X1, Y = X2, Z = X3 and u = u3. Then from (2.14) and(2.15) the following
approximate governing equation and boundary conditions involving terms not higher
than the third degree in the deformation gradients are written;

(2.17)
∂2u

∂ t2
− c2T

(
∂2u

∂ X2
+

∂2u

∂ Y 2

)
= nT

[
∂

∂ X

(
∂ u

∂ X
Q(u)

)
+

∂

∂ Y

(
∂ u

∂ Y
Q(u)

)]
(2.18)

∂ u

∂ Y

(
1 +

nT
c2T
Q(u)

)
= 0 on Y = h,

(2.19) u = 0 on Y = 0,

3. Asymptotic analysis of the nonlinear SH waves

In this work, how the slowly varying amplitude of a weakly nonlinear SH wave is
modulated by nonlinear self interaction is investigated by a perturbation method. For
this purpose, the method of the multiple scales is employed by introducing the following
new independent variables

(3.1) xi = εiX, ti = εit, y = Y ; i = 0, 1, 2, . . .

instead of X,Y, t [28]. Here ε > 0 is a small parameter which measures the weakness of
the nonlinearity, {x0, t0, y} are fast variables describing the fast variations in the problem
while {x1, x2, . . . , t1, t2, . . .} are slow variables describing the slow variations. Now, u is
considered to be a function of these new variables and it is expanded in the following
asymptotic series in ε;

(3.2) u =

∞∑
n=1

εnun(x0, x1, x2, . . . , y, t0, t1, t2, . . .)

In this work we aimed to obtain �rst order uniformly valid asymptotic solution of the
problem. Therefore in the following part we will assume the dependence of un on the
slow scales {x1, x2, t1, t2} only. If one studies the contribution of higher order terms
then the third order, in the analysis the dependence on the slower scales {x3, . . . , t3, . . .}
should also be considered as independent variables. Now, �rst writing the equation of
motion (2.17), the boundary conditions (2.18) and (2.19) in terms of the new indepen-
dent variables (3.1) and then employing the asymptotic expansion (3.2) in the resulting
expressions and collecting the terms of like powers of in ε , we obtain a hierarchy of
problems from which it is possible to determine un, successively. Up to third order in ε
these are given as follows;

O(ε) :

(3.3) Lu1 ,
∂2u1

∂t20
− c2T

(
∂2u1

∂x2
0

+
∂2u1

∂y2

)
= 0,

(3.4)
∂u1

∂y
= 0 on y = h,

(3.5) u1 = 0 on y = 0.
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O(ε2) :

(3.6) Lu2 = 2

(
c2T

∂2u1

∂x0∂x1
− ∂2u1

∂t0∂t1

)
,

(3.7)
∂u2

∂y
= 0 on y = h,

(3.8) u2 = 0 on y = 0.

O(ε3) :

Lu3 = 2

(
c2T

∂2u2

∂x0∂x1
− ∂2u2

∂t0∂t1

)
+ c2T

(
∂2u1

∂x2
1

+ 2
∂2u1

∂x0∂x2

)
− ∂2u1

∂t21
− 2

∂2u1

∂t0∂t2

(3.9) +nT

[
∂

∂x0

(
∂u1

∂x0
K(u1)

)
+

∂

∂y

(
∂u1

∂y
K(u1)

)]
(3.10)

∂u3

∂y
+
nT
c2T

K(u1)
∂u1

∂y
= 0 on y = h

(3.11) u3 = 0 on y = 0

where

(3.12) K(u1) =

(
∂u1

∂x0

)2

+

(
∂u1

∂y

)2

Note that the perturbation problems are linear in each step. Moreover the �rst order
problem is simply the classical linear problem which was �rst investigated by Hudson
[29]. Let us examine this problem. For the existence of an SH wave in the layer, the
phase velocity of the wave must satisfy the inequality

(3.13) c > cT

i.e. an SH wave having a phase velocity less than the linear shear wave velocity cT of
the medium does not propagate in the layer. We proceed by assuming that the above
inequality is satis�ed by the phase velocity of the SH wave. Then by using the separation
of variables method, the solution of the governing equation (3.3) is found to be

(3.14) u1 =

∞∑
`=1

[
A

(`)
1 (x1, x2, t1, t2)ei`kpy +B

(`)
1 (x1, x2, t1, t2)e−i`kpy

]
ei`φ + c.c.

where

(3.15) p = (c2/c2T − 1)1/2, φ = kx0 − ωt0.

and A
(`)
1 , B

(`)
1 are the �rst order amplitude functions of the slow variables, k is the wave

number, ω is the angular frequency, c = ω/k is the phase velocity, and c.c. denotes the
complex conjugate to the preceding terms. The substitution (3.14) into the boundary
conditions (3.4) and (3.5) yields the following system of homogeneous linear equations
for the �rst order amplitude functions;

(3.16) W`U
(`)
1 = 0

where

(3.17) W` =

[
i`kpei`kph −i`kpe−i`kph

1 1

]
is the dispersion matrix and, U

(`)
1 are the �rst order amplitude vectors de�ned as

(3.18) U
(`)
1 =

[
A

(`)
1

B
(`)
1

]
.



807

Note that detW1 = 0 gives the dispersion relation of the linear SH waves [29];

(3.19) cos(kph) = 0.

Hence

(3.20) kph = (2n− 1)
π

2
, for n = 1, 2, ...

From here we write

(3.21)
c2

c2T
= 1 +

[
(2n− 1)π

2kh

]2

or ω2 = k2c2T

{
1 +

[
(2n− 1)π

2kh

]2
}

where n denotes the branches of the linear dispersion relation ω = ω(k;n). Note that
the dispersion relation (3.19) (or (3.21)) is the same of the dispersion relation for the
antisymmetric motion of SH waves in an elastic isotropic plate with the thickness 2h
occupying the region between the planes Y = h and Y = −h. Therefore, the displacement
�eld also corresponds to the antisymmetric deformation of the plate in the half part [h, 0]
(see [4]or [18]). Since the purpose of this paper is to examine the nonlinear self modulation
of waves centered around a wave number k, with corresponding frequency ω. To exclude
the harmonic-resonance in the analysis, we have to assume that

(3.22) detW` 6= 0 for ` 6= 1.

Then the solutions of the system of linear equations (3.16) are found to be

(3.23) U
(1)
1 = A1(x1, x2, t1, t2)R

and

(3.24) U
(`)
1 = 0 for ` ≥ 2

where A1 is a complex function of the slow variables describing slowly varying amplitude
of wave modulation, and R is a column vector satisfying

(3.25) W1R = 0

Hence R can be taken as

(3.26) R =

[
R1

R2

]
=

[
1

e2ikph

]
and the �rst order solution is written explicitly as

(3.27) u1 = A1(x1, x2, t1, t2)[2i sin(kpy)]eiφ + c.c.

Note that, the �rst order solution given in (3.27) and the solution of the linear problem
are of the same form(see [29]). The only di�erence is that, in the linear problem A1

is a constant, but here it is a slowly varying function of the slow variables representing
the nonlinear self-modulation of a wave train. To complete the �rst order solution of
the nonlinear problem this function has to be determined. Therefore, to achieve this we
proceed to examine the higher order perturbation problems. The use of the �rst order
solution (3.27) in (3.6) of the second order perturbation problem yields

(3.28) Lu2 = 2i

(
ω
∂A1

∂t1
+ kc2T

∂A1

∂x1

)(
eikpy + eikp(2h−y)

)
eiφ + c.c.

We now decompose the solution of (3.28) as

(3.29) u2 = ū2 + ũ2
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where ū2 is the particular solution of non-homogeneous equation (3.28) and ũ2 denotes
the solution of the following problem obtained from the second order problem by the use
of the decomposition (3.29)

(3.30) Lũ2 = 0

(3.31) y = 0; ũ2 = −ū2

(3.32) y = h;
∂ũ2

∂y
= −∂ū2

∂y

The particular solution ū2 of the non-homogeneous equation (3.28) is found by the
method of undetermined coe�cient as

(3.33) ū2 =
1

kpc2T

(
ω
∂A1

∂t1
+ kc2T

∂A1

∂x1

)(
−eikpy + eikp(2h−y)

)
yeiφ + c.c.

The solution ũ2 of the homogeneous equation (3.30), as in the �rst order problem, can
be written as follows

(3.34) ũ2 =

∞∑
`=1

[
A

(`)
2 (x1, x2, t1, t2)ei`kpy +B

(`)
2 (x1, x2, t1, t2)e−i`kpy

]
ei`φ + c.c.

where A
(`)
2 and B

(`)
2 are the second order amplitude functions of the slow variables.

Then the use of this solution together with the particular solution (3.33) in the boundary
conditions (3.32) and (3.33), yields the following linear system of equations to determine

A
(`)
2 and B

(`)
2

(3.35) W`U
(`)
2 = b

(`)
2

where

(3.36) U
(`)
2 =

[
A

(`)
2

B
(`)
2

]
.

and the vectors b
(`)
2 are found as

(3.37) b
(1)
2 =

[
2ih
c2
T

(
ω ∂A1
∂t1

+ kc2T
∂A1
∂x1

)
eikph

]
and

(3.38) b
(`)
2 = 0 for ` ≥ 2

A little algebra reveals that , b
(1)
2 can be put into the following form

(3.39) b
(1)
2 = −i

(
∂A1

∂t1

∂W1

∂ω
− ∂A1

∂x1

∂W1

∂k

)
R

For ` 6= 1, since it is assumed that detW` 6= 0 for ` 6= 1, the solutions of (3.35) are

(3.40) U
(`)
2 ≡ 0, ` 6= 1,

but, since detW1 = 0 and b
(1)
2 6= 0, in order that the linear system of equations (3.35)

solvable for U
(1)
2 , the compatibility condition

(3.41) L.b
(1)
2 = 0

must be satis�ed, where L is a row vector de�ned by

(3.42) LW1 = 0

and an L can be taken as

(3.43) L = [L1, L2] =
[
i, kpeikph

]
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The compatibility condition (3.41) then yields

(3.44)
∂A1

∂t1
+ Vg

∂A1

∂x1
= 0

where Vg is the group velocity of the waves de�ned as

(3.45) Vg =
dω

dk
= −(L

∂W1

∂k
R)/(L

∂W1

∂ω
R)

This equation state that the �rst order amplitude A1 remains constant in a frame of
reference moving with the group velocity Vg, i.e. A1 = A1(x1 − Vgt1, x2, t2). Then the
solution of the equation (3.35) for ` = 1 can be written as

(3.46) U
(1)
2 = A2R− i

∂A1

∂x1

(
∂R

∂k
+ Vg

∂R

∂ω

)
where the complex function A2 is the second order amplitude and is a function of slow
variables, and it remains arbitrary in this order. It can be calculated in higher-order
problems when necessary. But, since this work is centered around the propagation of
weakly non-linear waves it is aimed to obtain just uniformly valid �rst order solution. To
obtain the �rst order solution, A2 need not to be calculated explicitly, the determination
of A1 will be su�cient and it will be done at the third order problem. Note that, if
we assume that A2 depends on x1 and t1 through the combination x1 − Vgt1 as A1, we
can absorb it into A1 since it is proportional to eiφ as A1. Therefore in the following
calculations we omit A2. Now the substitution of the �rst and second order solutions
into the third order equation (3.9) yields

Lu3 = [(C1 + C2y)eikpy + (C3 + C4y)e−ikpy + C5e
3ikpy + C6e

−3ikpy]eiφ

+c.c. + terms in(e±3iφ)(3.47)

where

C1 = 2i(ω
∂A1

∂t2
+ kc2T

∂A1

∂x2
) + c2T

∂2A1

∂x2
1

− ∂2A1

∂t21
− nT k4(9p4 + 2p2 + 9)A1|A1|2,

C2 = (−2i/kpc2T )(ω2 ∂
2A1

∂t21
+ 2ωkc2T

∂2A1

∂t1∂x1
+ k2c4T

∂2A1

∂x2
1

), C3 = C1e
2ikhp,

C4 = −C2e
2ikhp, C5 = nT k

4(9p4 − 2p2 − 3)e−2ikhpA1|A1|2,
C6 = nT k

4(9p4 − 2p2 − 3)e4ikhpA1|A1|2.(3.48)

Now, as in the second order problem we decompose u3 as

(3.49) u3 = ū3 + ũ3

where ū3 denotes the particular solution of the equation (3.47) and ũ3 denotes the solution
of the following problem

(3.50) Lũ3 = 0

(3.51) ũ3 = −ū3 on y = 0,

(3.52)
∂ũ3

∂y
= −∂ū3

∂y
− nT
c2T

K(u1)
∂u1

∂y
on y = h.

The particular solution ū3 of the equation (3.47) can be expressed as a sum of linearly
independent terms of the form

(3.53) ū3 = f
(1)
3 (x1, x2, y, t1, t2)eiφ + f

(3)
3 (x1, x2, y, t1, t2)e3iφ + c.c.,

where the terms f
(1)
3 and f

(3)
3 represent the self interaction and the third harmonic inter-

action of the waves, respectively.In this work since only the self interaction is considered,

in the sequel the explicit form of the term f
(3)
3 will not be required. Therefore, only f

(1)
3
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will be calculated and this solution is obtained by the method of undetermined coe�cient
as

(3.54) f
(1)
3 = (D1 + D2y)yeikpy + (D3 + D4y)ye−ikpy + D5e

3ikpy + D6e
−3ikpy

where

D1 = iC1/2kpc
2
T − C2/4k

2p2c2T , D2 = iC2/4kpc
2
T ,

D3 = −iC3/2kpc
2
T − C4/4k

2p2c2T , D4 = −iC4/4kpc
2
T ,

D5 = C5/8k
2p2c2T , D6 = C6/8k

2p2c2T .(3.55)

The problem posed for ũ3 can be treated as in the second order problem. The solution
of the homogeneous equation (3.50) therefore can be written as

(3.56) ũ3 =

∞∑
`=1

[
A

(`)
3 (x1, x2, t1, t2)ei`kpy +B

(`)
3 (x1, x2, t1, t2)e−i`kpy

]
ei`φ + c.c.

where A
(`)
3 and B

(`)
3 are the third order slowly varying amplitude functions. Then the

use of this solution together with the solutions u1, u2 and ū3 in the boundary conditions

(3.51)-(3.52) yields the following linear system of equations to determine A
(`)
3 and B

(`)
3 ;

(3.57) W`U
(`)
3 = b

(`)
3

where

(3.58) b
(1)
3 6= 0, b

(3)
3 6= 0, and b

(`)
3 = 0 for all ` 6= 1, 3.

A lengthy but straight forward calculation discloses that b
(1)
3 can be expressed as in the

following form

b
(1)
3 = −i

(
∂W1

∂ω

∂A1

∂t2
− ∂W1

∂k

∂A1

∂x2

)
R

+
1

2

(
∂2W1

∂ω2

∂2A1

∂t21
− 2

∂2W1

∂ω∂k

∂2A1

∂x1∂t1
+
∂2W1

∂k2

∂2A1

∂x2
1

)
R

(3.59) +

(
∂W1

∂k

∂2A1

∂x2
1

− ∂W1

∂ω

∂2A1

∂x1∂t1

)(
∂R

∂k
+ Vg

∂R

∂ω

)
+ F|A1|2A1

where the components of the vector F are found to be

(3.60)

F1 = −i
[
nT k

4h

c2T
(9p4 + 2p2 + 9) sin(kph)

]
, F2 = 0

The explicit form of the vector b
(3)
3 is not given here, since it represents the third harmonic

interactions and therefore in the sequel it will not be required. For ` = 1, (3.57) is an
inhomogeneous equation and since detW1 = 0, in order that this equation be solvable

for U
(1)
3 the following compatibility condition

(3.61) L.b
(1)
3 = 0

must be satis�ed. For ` = 3, (3.57) is an inhomogeneous equation, but since it is assumed
that detW3 6= 0 then the solution of (3.57) for this case is written as

(3.62) U
(3)
3 = W

−1
3 b

(3)
3

When ` 6= 1, 3, (3.57) is a homogeneous equation and since detW` 6= 0 for ` 6= 1 by
assumption, then the solutions are

(3.63) U
(`)
3 = 0
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An attempt will not be made towards obtaining the third order solutions explicitly since
there will be no need for their explicit forms. The analysis will be continued by the
examination of the solvability condition (3.61) to be satis�ed at this order. This condition
yields the following equations for A1;

(3.64) i

(
∂A1

∂t2
+ Vg

∂A1

∂x2

)
+ Γ̃

∂2A1

∂x2
1

+ ∆̃|A1|2A1 = 0

where

(3.65) Γ̃=
1

2

dVg
dk

=
1

2

d2ω

dk2
, ∆̃ = −L · F

/(
L
∂W1

∂ω
R

)
In terms of the following non-dimensional variables and constants

(3.66) τ = ωt2, ξ = k(x1 − Vgt1), A = kA1, Γ = k2Γ̃/ω, ∆ = ∆̃/ωk2

this equation can be rewritten in the standard NLS equation form as

(3.67) i
∂A

∂τ
+ Γ

∂2A

∂ξ2
+ ∆|A |2A = 0

Thus, once a solution for A is derived from (3.67) for a given initial value of the form

(3.68) A (ξ, 0) = A0(ξ)

then the �rst order solution u1 can be constructed by (3.27). Hence our task is completed.
Here,it is obvious that the initial value A0 is related to the initial values of the �rst order
displacement in the layer via (3.27).

4. Concluding remarks

We now examine the coe�cients Γ and ∆ of the NLS equation obtained in this work,
so that solutions of this equation are e�ected strongly by the sign of the product Γ∆.
From (3.65) and (3.66) it is found that

(4.1) Γ∆ = −nT
p2c4T
4c6

(9p4 + 2p2 + 9)

Since

(4.2)
p2c4T
4c6

(9p4 + 2p2 + 9) > 0

for all phase velocities c > cT , then it is seen that if nT < 0, i.e. if the layer is made of
a softening material, then Γ∆ > 0 for all phase velocities c > cT . But if nT > 0,i.e if
the layer is made of a hardening material, then Γ∆ < 0 for all phase velocities c > cT .
The variation of C, Vg, Γ, ∆, and Γ∆ with the non-dimensional wave number K = kh
for the �rst three branches of the dispersion relation (3.21) are calculated and they are
plotted in Fig(1), Fig(2), and Fig(3) respectively.

The NLS equation (3.67), as in this work, asymptotically describes the self modulation
of the monochromatic plane waves in a nonlinear dispersive medium[30, 31]. It is also
well known that the criterion whether Γ∆ > 0 or Γ∆ < 0 is important in determining
how a given initial data will evolve for long times for the asymptotic wave �eld governed
by the NLS equation. An initial disturbance vanishing as |ξ| → ∞ tends to become a
series of envelope solitary waves if Γ∆ > 0, while it evolves into decaying oscillations if
Γ∆ < 0. On the other hand for disturbances that tend to a uniform state at in�nity
the envelope dark solitons exist for Γ∆ < 0 [30, 31]. The behavior of the traveling wave
solutions of the NLS equation of the form

(4.3) A (ξ, τ) = φ(η)ei(Kξ−Ωτ), η = ξ − V0τ, V0 = constant
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also depend on the sign of Γ∆. For Γ∆ > 0, if φ → 0 and dφ/dη → 0 as |η| → ∞ the
solution for φ is

(4.4) φ(η) = φ0sech[(∆/2Γ)1/2φ0η], V0 = 2KΓ

where (ΓK
2

− Ω)/∆φ2
0 = 1/2. This solution is known as envelope soliton or bright

soliton [30, 31, 32]. When Γ∆ < 0 and (ΓK
2

− Ω)/∆φ2
0 = 1, if φ → φ0 and dφ/dη → 0

as |η| → ∞, the solution for φ is

(4.5) φ(η) = φ0 tanh[(−∆/2Γ)1/2φ0η], V0 = 2KΓ

which represents the propagation of a phase jump [30, 31, 32]. Also, when Γ∆ < 0 there
are no solutions of the NLS equation (3.67) corresponding to the envelope soliton solution
(4.5) of the case Γ∆ > 0. However, a solution of the form

(4.6) A (ξ, τ) = φ(η)ei[Γ
2∆φ2

0τ−F (η)]

which tends to the uniform solution φ0e
iΓ2∆φ2

0τ as |η| → ∞ exists, where

(4.7) φ2 = φ2
0(1− sin2 B sech2ψ), F = arctan(tanB tanhψ)

In (4.8) B is a constant, ψ and V0 are given as

(4.8) ψ = (−Γ∆/2)1/2φ0η sinB, V0 = ±2−3/2Γ(−Γ∆)1/2φ0

This solution is known as dark soliton and it has all the usual soliton features [32]. The
NLS equation (3.67) has also plane wave solutions whether Γ∆ > 0 or Γ∆ < 0. Hence,
by considering the above given short review about the e�ect of the sign of Γ∆ on the
properties of the solution of an NLS equation, we conclude that when the layer is made
of a softening material, since Γ∆ > 0 for all kh > 0 in this case, the envelope solitary
SH waves will exist and propagate in such a medium. But, when the plate is made of a
hardening material since Γ∆ < 0 for all kh > 0 in this case, then only the dark solitary
SH waves will exist in such a layer. The modulated envelope solitary waves (4.4) existing
in a softening elastic layer may provide mechanisms for an e�cient energy propagation
along the free surface of the layer. Several investigator have shown that the shear stress
is a nonlinear function of the strain in certain soils and nT < 0, that is the response of
the soil is softening in shear (see e.g.[33] and references given there). Therefore, when we
consider a �nite soil layer deposited on a rigid bedrock and showing this behavior under
dynamic loading; one can observe the existence of an envelope soliton. An experimental
result about the observation of solitons in soil mechanics was reported in [34] by Dimitriu.
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Figure 1. (a) The Variation of C(upper curves) and Vg(lower curves)
vs K, (b) The Variation of Γ vs K for the �rst three branches of the
dispersion relation (3.21).
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Figure 2. (a) The Variation of ∆c2T /nT vs K for a hardening layer,
(b) The Variation of ∆c2T /nT vs K for a softening layer, for the �rst
three branches of the dispersion relation (3.21).

0 5 10 15 20 25 30
-2.5

-2.0

-1.5

-1.0

-0.5

0.0

K

c T2
G

D
�

n
T

n=0

n=1

n=2

0 5 10 15 20 25 30

0.0

0.5

1.0

1.5

2.0

2.5

K

c T2
G

D
�

n
T

n=2

n=1

n=0

(a) (b)

Figure 3. (a) The Variation of Γ∆c2T /nT vs K for a hardening layer,
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