\int Hacettepe Journal of Mathematics and Statistics Volume 46 (5) (2017), 829 – 834

PS-modules over generalized Malcev-Neumann series

Mohamed A. Farahat ^{*†}and Naif S. Al-Harthy[‡]

Abstract

In [1], the first author introduced a new class of extension rings called the generalized Malcev-Neumann series ring $R((S; \sigma; \tau))$ with coefficients in a ring R and exponents in a strictly ordered monoid S which extends the usual construction of Malcev-Neumann series rings. The conditions under which the generalized Malcev-Neumann series module $M((S))_{R((S;\sigma;\tau))}$ is a PS-module are investigated in the present paper.

Keywords: PS-module, generalized Malcev-Neumann series rings.

2000 AMS Classification: Primary 06F05, 16W60, 16D25, 16P60

Received: 03.10.2016 Accepted: 21.12.2016 Doi: 10.15672/HJMS.2017.433

1. Introduction

Throughout this paper R denotes an associative ring with identity and M_R a unitary right R-module. According to Nicholson and Watters [2], M_R is called a PS-module if every simple submodule is projective, equivalently if its socle, $Soc(M_R)$, is projective. Examples of PS-modules include nonsingular modules, regular modules in the sense of Zelmanowitz [3] and modules with zero socle. The class of PS-modules is closed under direct sums and submodules. In [4], Weimin proved that PS-modules are preserved by Morita equivalences and excellent extensions.

For any subset X of R, denote

 $l_M(X) = \{m \in M \mid mX = 0\}.$

^{*}Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, Kingdom of Saudi Arabia (KSA); Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.

Email: m_farahat79@yahoo.com

[†]Corresponding Author.

[‡]Department of Mathematics and Statistics, Faculty of Science, Taif University, Taif, El-Haweiah, Kingdom of Saudi Arabia (KSA)

1.1. Theorem ([4]). The following statements are equivalent for a right R-module M_R : (1) M_R is a PS-module.

(2) If L is a maximal right ideal of R then either $l_M(L) = 0$ or L = eR, where $e^2 = e \in R$.

A left PS-module $_RM$ is defined analogously. A ring R is said to be a *left PS-ring* if $_RR$ is a PS-module. Every semiprime ring is a PS-ring. Every PP-ring is a PS-ring (where a ring R is called PP-ring if every principal left ideal is projective). In particular every Baer ring is a PS-ring (where a ring R is called Baer if every left (or right) annihilator is generated by an idempotent). A ring for which every simple singular module is injective is a PS-ring. If $l_R(J(R)) = 0$, then R is a PS-ring. In fact $J(R) \subset L$ for every maximal right ideal so $l_R(L) = 0$.

The notion of PS-rings is not left-right symmetric (cf. [2]). A ring R is *duo* if each one-sided ideal of R is a two-sided ideal. As a generalization of left duo rings, a ring R is called *weakly left duo* if for every $r \in R$ there is a natural number n(r) such that $Rr^{n(r)}$ is a two-sided ideal of R. A ring R is weakly duo if it is weakly right and left duo. In [4], Weimin proved that a duo ring R is a PS-ring if and only if it is a right PS-ring. In [5], Dingguo generalized this result to weakly duo rings, as follows: A weakly duo reduced ring R is a PS-ring if and only if R is a right PS-ring.

If R is a PS-ring so also are R[x] and R[[x]]. The converse of this result is false in general by the following example:

1.2. Example ([2], Example 3.2). If $R = \mathbb{Z}_4$, then R[x] and R[[x]] are PS-rings but R is not PS-ring.

The main aim of this paper is to investigate conditions for the generalized Malcev-Neumann series module $M((S))_{R((S;\sigma;\tau))}$ to be a PS-module.

2. PS-modules of generalized Malcev-Neumann series rings

Let $(S, ., \leq)$ be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if s < s', then st < s't and ts < ts' for $s, s', t \in S$). Recall that a subset X of (S, \leq) is said to be *artinian* if every strictly decreasing sequence of elements of X is finite and that X is *narrow* if every subset of pairwise order-incomparable elements of X is finite. Suppose the two maps $\sigma : S \longrightarrow \operatorname{End}(R)$ and $\tau : S \times S \longrightarrow U(R)$ (the group of invertible elements of R). Let $A = R((S; \sigma; \tau))$ denote the set of all formal sums $f = \sum_{x \in S} a_x \overline{x}$ such that $\operatorname{supp}(f) = \{x \in S | a_x \neq 0\}$ is an artinian and narrow subset of S,

with componentwise addition and the multiplication rule is given by

$$\left(\sum_{x\in S} a_x \overline{x}\right) \left(\sum_{y\in S} b_y \overline{y}\right) = \sum_{z\in S} \left(\sum_{\{(x,y)\mid xy=z\}} a_x \sigma_x \left(b_y\right) \tau \left(x,y\right)\right) \overline{z},$$

for each $\sum_{x \in S} a_x \overline{x}$ and $\sum_{y \in S} b_y \overline{y} \in A$. In order to ensure the associativity, it is necessary to

impose two additional conditions on σ and τ namely that for all $x, y, z \in S$, (i) $\sigma_x(\tau(y, z))\tau(x, yz) = \tau(x, y)\tau(xy, z)$,

(ii) $\sigma_x \sigma_y = \eta(x, y) \sigma_{xy}$, where $\eta(x, y)$ denotes the automorphism of R defined by

 $\eta(x,y)(r) = \tau(x,y)r\tau(x,y)^{-1} \text{ for all } r \in R.$

It is now routine to check that $A = R((S; \sigma; \tau))$ is a ring which is called the *ring of generalized Malcev-Neumann series*. We can assume that the identity element of A is $\overline{1}$, this means that

 $\sigma_1 = \operatorname{Id}_R$ and $\tau(x, 1) = \tau(1, x) = 1$ for any $x \in S$.

In this case $r \mapsto r\overline{1}$ is an embedding of R as a subring into A.

For each $f \in A \setminus \{0\}$ we denote by $\pi(f)$ the set of minimal elements of $\operatorname{supp}(f)$. If (S, \leq) is a strictly totally ordered monoid, then $\operatorname{supp}(f)$ is a nonempty well-ordered subset of S and $\pi(f)$ consists of only one element.

Clearly, the above construction generalizes the construction of Malcev-Neumann series rings, in case of S = G (an ordered group), which introduced independently by Malcev and Neumann (see [6] and [7]).

If the order \leq is the trivial order, then $A = R((S; \sigma; \tau))$ is the usual crossed product ring $R[S; \sigma; \tau]$. Also, if the monoid S has the trivial order and τ is trivial, then $A = R((S; \sigma; \tau))$ is the usual skew monoid ring $R[S; \sigma]$. Whoever if the monoid S has the trivial order and σ is trivial, then $A = R((S; \sigma; \tau))$ is the usual twisted monoid ring $R[S; \tau]$. Finally, if the monoid S has the trivial order and σ and τ are trivial, then $A = R((S; \sigma; \tau))$ is the usual monoid ring R[S], (see, Sections 3.2 and 3.3 in [8]).

Moreover, if α is a ring endomorphism of R and set $S = \mathbb{Z}_{\geq 0}$ endowed with the trivial order. Define $\sigma: S \longrightarrow \operatorname{End}(R)$ via $\sigma(x) = \alpha^x$ for every $x \in \mathbb{Z}_{\geq 0}$ and $\tau(x, y) = 1$ for any $x, y \in \mathbb{Z}$. We have $A = R((S; \sigma; \tau))$ is the usual skew polynomial ring $R[x, \alpha]$. Whoever if \leq is the usual order, then $A = R((S; \sigma; \tau))$ is the usual skew power series ring $R[[x, \sigma]]$. If α is a ring automorphism of $R, S = \mathbb{Z}$ and \leq is the usual order, then $A = R((S; \sigma; \tau))$ is the usual order, then $A = R((S; \sigma; \tau))$ is the usual order, then $A = R((S; \sigma; \tau))$ is the usual order, then $A = R((S; \sigma; \tau))$ is the usual order.

In the same time, if we set also $\sigma(s) = \sigma_s = \operatorname{Id}_R \in \operatorname{End}(R)$ for all $s \in S$, then it is easy to check that polynomial rings, Laurent polynomial rings, formal power series rings and Laurent power series rings are special cases of $A = R((S; \sigma; \tau))$.

If M_R is a unitary right *R*-module, then the *Malcev-Neumann series module* B = M((S)) is the set of all formal sums $\sum_{x \in S} m_x \overline{x}$ with coefficients in *M* and artinian and narrow supports, with pointwise addition and scalar multiplication rule is defined by

$$\left(\sum_{x\in S} m_x \overline{x}\right) \left(\sum_{y\in S} a_y \overline{y}\right) = \sum_{z\in S} \left(\sum_{\{(x,y)\mid xy=z\}} m_x \sigma_x \left(a_y\right) \tau \left(x,y\right)\right) \overline{z}$$

where $\sum_{x \in S} m_x \overline{x} \in B$ and $\sum_{y \in S} a_y \overline{y} \in A$. One can easily check that (i) and (ii) ensure that M((S)) is a unitary right A-module. For each $\varphi \in B \setminus \{0\}$ we denote by $\pi(\varphi)$ the set of

minimal elements of $\operatorname{supp}(\varphi)$. If (S, \leq) is a strictly totally ordered monoid, then $\operatorname{supp}(\varphi)$ is a nonempty well-ordered subset of S and $\pi(\varphi)$ consists of only one element.

Let V be a subset of M_R , then

$$V((S)) = \left\{ \varphi = \sum_{x \in S} m_x \overline{x} \in B \mid 0 \neq m_x \in V \text{ and } x \in \text{supp}(\varphi) \right\}.$$

2.1. Definition ([9]). A right *R*-module M_R is called *S*-compatible if, for each $m \in M$, $a \in R$ and $x \in S$, ma = 0 if and only if $m\sigma_x(a) = 0$.

A ring R is called S-compatible if R_R is an S-compatible R-module.

Now, we are able to deliver our theorem.

2.2. Theorem. Let $(S, ., \le)$ be a strictly totally ordered monoid which satisfies the condition that $1 \le s$ for every $s \in S$ and M_R an S-compatible module. If M_R is a PS-module, then $B_A = M((S))_{R((S;\sigma;\tau))}$ is a PS-module.

Proof. Let L be a maximal right ideal of A. We will show that either $l_B(L) = 0$ or L = hA, where $h^2 = h \in A$. Since $(S, ., \leq)$ is a strictly totally ordered monoid, $\operatorname{supp}(f)$ is a nonempty well-ordered subset of S, for every $0 \neq f = \sum_{x \in S} a_x \overline{x} \in A$. We denote by

 $\pi(f)$ the smallest element of support f. For any $s \in S$, set

$$I_s = \{a_s \in \text{supp}(f) | f \in L \text{ and } \pi(f) = s\} \subset R \text{ and } I = \bigcup_{s \in S} I_s.$$

Let J be the right ideal of R generated by I. If J = R, then there exist $s_1, \ldots, s_n \in S$, $f_1, \ldots, f_n \in L$ and $r_1, \ldots, r_n \in R$ such that

 $1 = a_{s_1}r_1 + \dots + a_{s_n}r_n,$

where $a_{s_i} \in I_{s_i}$ and $\pi(f_i) = s_i$, for every $1 \le i \le n$. We will show that $l_B(L) = 0$. Suppose that $\varphi = \sum_{y \in S} m_y \overline{y} \in l_B(L)$ and $\varphi \ne 0$. Then $\operatorname{supp}(\varphi)$ is a nonempty well-ordered subset of S. Let $t = \pi(\varphi)$. If

$$m_t \sigma_t (a_{s_i}) \tau (t, s_i) \neq 0$$
 for some $1 \leq i \leq n$,

then the coefficient of φf_i at $ts_i = \pi(\varphi f_i)$ is non zero. This means that $\varphi f_i \neq 0$ for some $1 \leq i \leq n$, a contradiction. Thus

$$m_t \sigma_t (a_{s_i}) \tau (t, s_i) = 0$$
 for all $1 \le i \le n$.

Since $\tau(t, s_i) \in U(R)$ and M_R is an S-compatible module, we get

 $m_t a_{s_i} = 0$ for all $1 \leq i \leq n$.

Consequently,

$$m_t = m_t 1 = m_t (a_{s_1} r_1 + \dots + a_{s_n} r_n) = (m_t a_{s_1}) r_1 + \dots + (m_t a_{s_n}) r_n = 0,$$

a contradiction. Thus $l_B(L) = 0$. Suppose that $J \neq R$. We will show that J is a maximal right ideal of R. Let $r \in R - J$. If $r\overline{1} \in L$, then $r \in I_1 \subset I$ and so $r \in J$, a contradiction. Therefore $r1 \notin L$. Since L is a maximal right ideal of A,

 $A = L + (r\overline{1})A.$

It follows that there exist $f = \sum_{x \in S} a_x \overline{x} \in L$ and $g = \sum_{u \in S} b_u \overline{y} \in A$ such that $\overline{1} = f + (r\overline{1})g$. Thus

$$1 = a_1 + r\sigma_1(b_1)\tau(1,1) = a_1 + rb_1.$$

If $a_1 = 0$, then $1 = rb_1 \in rR$. So R = J + rR.

If $a_1 \neq 0$, then $1 \in \text{supp}(f)$. Since $1 \leq s$ for every $s \in S$, $\pi(f) = 1$. Thus $a_1 \in I_1 \subset I \subset J$, which implies that R = J + rR.

Hence J is a maximal right ideal of R. Since M_R is a PS-module, it follows that either $l_M(J) = 0$ or J = eR, where $e^2 = e \in R$. According to that we have the following two cases:

Case(1). Suppose that $l_M(J) = 0$. We will show that $l_B(L) = 0$. Let $\varphi = \sum_{y \in S} m_y \overline{y} \in \mathcal{F}$ $l_B(L)$ and $\varphi \neq 0$. Then $\operatorname{supp}(\varphi)$ is a nonempty well-ordered subset of S. Let $s = \pi(\varphi)$.

For any $r \in J$, there exist $s_1, \ldots, s_n \in S$, $f_1, \ldots, f_n \in L$ and $r_1, \ldots, r_n \in R$ such that

 $r = a_{s_1}r_1 + \dots + a_{s_n}r_n,$

where $a_{s_i} \in I_{s_i}$ and $\pi(f_i) = s_i$, for every $1 \le i \le n$. Since $\varphi \in l_B(L)$, $f_1, ..., f_n \in L$, we get $\varphi f_i = 0$ for every $1 \le i \le n$. If

 $m_s \sigma_s (a_{s_i}) \tau (s, s_i) \neq 0$ for some 1 < i < n,

832

then the coefficient of φf_i at $ss_i = \pi(\varphi f_i)$ is non zero. This means that $\varphi f_i \neq 0$ for some $1 \leq i \leq n$, a contradiction. Thus

$$m_s \sigma_s(a_{s_i}) \tau(s, s_i) = 0$$
 for all $1 \le i \le n$.

Since $\tau(s, s_i) \in U(R)$ and M_R is an S-compatible module, we get

 $m_s a_{s_i} = 0$ for all $1 \leq i \leq n$.

Consequently,

$$m_s r = m_s \left(a_{s_1} r_1 + \dots + a_{s_n} r_n \right) = \left(m_s a_{s_1} \right) r_1 + \dots + \left(m_s a_{s_n} \right) r_n = 0.$$

Therefore $m_s \in l_M(J) = 0$ and $\pi(\varphi) = s$. Thus $\varphi = 0$, a contradiction. Hence $l_B(L) = 0$. Case(2). Suppose that J = eR, where $e^2 = e \in R$. We will show that $L = (e\overline{1})A$, where

$$(e\overline{1})^2 = (e\overline{1})(e\overline{1}) = e\sigma_1(e)\tau(1,1)\overline{1.1} = (e\overline{1}) \in A.$$

To show that $(e\overline{1})A \subseteq L$, we need to prove that $(e\overline{1}) \in L$. If $(e\overline{1}) \notin L$, then $A = L + (e\overline{1})A$. Thus there exist $f \in L$ and $g \in A$ such that $\overline{1} = f + (e\overline{1})g$. Thus

 $1 = a_1 + e\sigma_1(b_1)\tau(1,1) = a_1 + eb_1.$

If $a_1 = 0$, then $1 = eb_1 \in eR = J$, a contradiction.

If $a_1 \neq 0$, then $1 \in \text{supp}(f)$. Since $1 \leq s$ for every $s \in S$, $\pi(f) = 1$. Thus $a_1 \in I_1 \subset I \subset J$, which implies that $a_1 \in J$ and J = eR. Hence $1 = a_1 + eb_1 \in J + eR = J$, a contradiction. Therefore $(e\overline{1}) \in L$ which implies that $(e\overline{1})A \subseteq L$.

Conversely, suppose that $f \in L$ and $\pi(f) = s$, then $a_s \in I_s \subset I \subset J = eR$ and so $a_s = ea_s$. We claim that $a_u = ea_u$ for any $u \in \text{supp}(f)$.

Suppose that $a_v = ea_v$ for each v < u. Consider the following element $f_u \in A$ defined by:

$$f_u = \sum_{u < v} a_u \overline{u} + \sum_{u \ge v} 0 \overline{u} = \sum_{u < v} a_u \overline{u}.$$

Thus $\pi(f - f_u) = u$. By hypothesis it is easy to see that $f_u = \sum_{u < v} ea_u \overline{u} = (e\overline{1})f_u \in$

 $(e\overline{1})A \subset L$. Thus $f - f_u \in L$. By analogy with the proof above, it follows that $a_u = ea_u$, which implies that $f = (e\overline{1})f \in (e\overline{1})A$. Thus $L = (e\overline{1})A$ and the result follows since $(e\overline{1})$ is an idempotent of A.

In particular, if we set $M_R = R_R$ we get the following:

2.3. Corollary. Let $(S, ., \leq)$ be a strictly totally ordered monoid which satisfies the condition that $1 \leq s$ for every $s \in S$ and R an S-compatible ring. If R is a right PS-ring, then $A = R((S; \sigma; \tau))$ is a right PS-ring.

References

- M. Farahat, Generalized Malcev-Neumann series modules with the Beachy-Blair condition, Algebra (Hindawi Publishing Corporation), Article ID 595274, (2015), doi:10.1155/2015/595274.
- [2] W. Nicholson and J. Watters, *Rings with projective socle*, Proc. Amer. Math. Soc., 102, (1988), 443-450.
- [3] J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163, (1972), 341-355.
- [4] Weimin Xue, Modules with projective socles, Riv. Mat. Univ. Parma, 1(5), (1992), 311-315.
- [5] Dingguo Wang, Modules with flat socles and almost excellent extensions, Acta Math. Vietnam., 21(2), (1996), 295-301.
- [6] A. Malcev, On embedding of group algebras in a division algebra (in russian), Dokl. Akad. Nauk, (1948), 1499-1501.

- [7] B. Neumann, On ordered division rings. Trans. Amer. Math. Soc., 66, (1949), 202-252.
- [8] A. Kelarev, Ring Constructions and Applications, World Scientific, River Edge, New York, 2002.
- [9] R. Zhao and Y. Jiao, Principal quasi-baerness of modules of generalized power series, Taiwanese J. Math., 15(2), (2011), 711-722.

834