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PS-modules over generalized Malcev-Neumann
series
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Abstract

In [1], the first author introduced a new class of extension rings called
the generalized Malcev-Neumann series ring R((S;o0;7)) with coeffi-
cients in a ring R and exponents in a strictly ordered monoid S which
extends the usual construction of Malcev-Neumann series rings. The
conditions under which the generalized Malcev-Neumann series module
M ((5)) p((s:0:r)) 15 @ PS-module are investigated in the present paper.
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1. Introduction

Throughout this paper R denotes an associative ring with identity and Mg a unitary
right R-module. According to Nicholson and Watters [2], Mg is called a PS-module if
every simple submodule is projective, equivalently if its socle, Soc (MRg), is projective.
Examples of PS-modules include nonsingular modules, regular modules in the sense of
Zelmanowitz [3] and modules with zero socle. The class of PS-modules is closed under
direct sums and submodules. In [4], Weimin proved that PS-modules are preserved by
Morita equivalences and excellent extensions.

For any subset X of R, denote

IAT(X)I{MEM‘ mX:O}.
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1.1. Theorem ([4]). The following statements are equivalent for a right R-module Mg:
(1) Mg is a PS-module.
(2) If L is a mazimal right ideal of R then either 1y (L) = 0 or L = eR, where e* = e € R.

A left PS-module g M is defined analogously. A ring R is said to be a left PS-ring if
rRis a PS-module. Every semiprime ring is a PS-ring. Every PP-ring is a PS-ring (where
a ring R is called PP-ring if every principal left ideal is projective). In particular every
Baer ring is a PS-ring (where a ring R is called Baer if every left (or right) annihilator is
generated by an idempotent). A ring for which every simple singular module is injective
is a PS-ring. If 1z (J (R)) = 0, then R is a PS-ring. In fact J (R) C L for every maximal
right ideal so 1z (L) = 0.

The notion of PS-rings is not left-right symmetric (cf. [2]). A ring R is duo if each
one-sided ideal of R is a two-sided ideal. As a generalization of left duo rings, a ring R is
called weakly left duo if for every r € R there is a natural number n(r) such that Rr™(")
is a two-sided ideal of R. A ring R is weakly duo if it is weakly right and left duo. In [4],
Weimin proved that a duo ring R is a PS-ring if and only if it is a right PS-ring. In [5],
Dingguo generalized this result to weakly duo rings, as follows: A weakly duo reduced
ring R is a PS-ring if and only if R is a right PS-ring.

If R is a PS-ring so also are R[z] and R[[z]]. The converse of this result is false in
general by the following example:

1.2. Example ([2], Example 3.2). If R = Z, then R[z] and R][z]] are PS-rings but R
is not PS-ring.

The main aim of this paper is to investigate conditions for the generalized Malcev-
Neumann series module M ((5)) g((s,5.7)) t0 be a PS-module.

2. PS-modules of generalized Malcev-Neumann series rings

Let (S, ., <) be a strictly ordered monoid (that is, (S, <) is an ordered monoid satisfying
the condition that, if s < s/, then st < st and ts < ts for s7sl,t € S). Recall that a
subset X of (S, <) is said to be artinian if every strictly decreasing sequence of elements of
X is finite and that X is narrow if every subset of pairwise order-incomparable elements
of X is finite. Suppose the two maps ¢ : S — End (R) and 7 : S x § — U (R) (the
group of invertible elements of R). Let A = R ((S;0;7)) denote the set of all formal sums

f = 3" a.T such that supp(f) = { € S| ar # 0} is an artinian and narrow subset of S,
z€eS
with componentwise addition and the multiplication rule is given by

(Zw) (Zbyy)—E S o b)) | 7

z€eS yeS z€S \{(z,y)|zy==2}

for each > a,T and ) b,y € A. In order to ensure the associativity, it is necessary to
zeS yeSs
impose two additional conditions on ¢ and 7 namely that for all z,y,z € S,

(i) o2(7(y, 2))7 (2, y2) = 7(z,y)7(2Y, 2),
(ii) oz0y = n(x,y)ozy, where n(z,y) denotes the automorphism of R defined by

n(z,y)(r) = 7(z,y)r7 (=, yf1 for all r € R.

It is now routine to check that A = R((S;0;7)) is a ring which is called the ring of
generalized Malcev-Neumann series. We can assume that the identity element of A is 1,
this means that

o1 =1dg and 7(z,1) = 7(1,z) = 1 for any = € S.

In this case r — r1 is an embedding of R as a subring into A.
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For each f € A\{0} we denote by 7 (f) the set of minimal elements of supp(f).
If (S, <) is a strictly totally ordered monoid, then supp(f) is a nonempty well-ordered
subset of S and 7 (f) consists of only one element.

Clearly, the above construction generalizes the construction of Malcev-Neumann series
rings, in case of S = G (an ordered group), which introduced independently by Malcev
and Neumann (see [6] and [7]).

If the order < is the trivial order, then A = R((S;0;7)) is the usual crossed product
ring R[S;o0;7]. Also, if the monoid S has the trivial order and 7 is trivial, then A =
R((S;0;7)) is the usual skew monoid ring R[S;o]. Whoever if the monoid S has the
trivial order and o is trivial, then A = R((S;0;7)) is the usual twisted monoid ring
R[S;7]. Finally, if the monoid S has the trivial order and ¢ and 7 are trivial, then
A = R((S;0;7)) is the usual monoid ring R[S], (see, Sections 3.2 and 3.3 in [8]).

Moreover, if « is a ring endomorphism of R and set S = Z>( endowed with the trivial
order. Define o : S — End (R) via o (z) = o for every & € Z>¢ and 7 (z,y) = 1 for any
z,y € Z. We have A = R((S;0;7)) is the usual skew polynomial ring R [z, o] . Whoever if
< is the usual order, then A = R((S;0;7)) is the usual skew power series ring R [[z,0]].
If o is a ring automorphism of R, S = Z and < is the usual order, then A = R((S;0;7))
is the usual ring of skew Laurent power series R Hx, z a]] .

In the same time, if we set also o (s) = 05, = Idgr € End(R) for all s € S, then it is
easy to check that polynomial rings, Laurent polynomial rings, formal power series rings
and Laurent power series rings are special cases of A = R((S;0;7)).

If Mg is a unitary right R-module, then the Malcev-Neumann series module B =

M ((S)) is the set of all formal sums > m,Z with coefficients in M and artinian and
€S
narrow supports, with pointwise addition and scalar multiplication rule is defined by

(Z mm:r) <Z ayy> => | > meoa(a)7(z,y) |z

zeS yeS zeS \{(z,y)|zy==z}

where > m,T € B and ) a,7 € A. One can easily check that (i) and (ii) ensure that
z€S yeSs

M ((S)) is a unitary right A-module. For each ¢ € B\{0} we denote by 7 () the set of
minimal elements of supp(p) . If (S, <) is a strictly totally ordered monoid, then supp(p)
is a nonempty well-ordered subset of S and 7 (¢) consists of only one element.

Let V be a subset of Mg, then

V((S))—{Qp—ZmzxeBO#mIGVandeSUpp(np)}.

€S

2.1. Definition ([9]). A right R-module Mg is called S-compatible if, for each m € M,
a € Rand z € S, ma = 0 if and only if mo, (a) = 0.

A ring R is called S-compatible if R is an S-compatible R-module.

Now, we are able to deliver our theorem.

2.2. Theorem. Let (S,.,<) be a strictly totally ordered monoid which satisfies the con-
dition that 1 < s for every s € S and Mg an S-compatible module. If Mg is a PS-module,
then Ba = M ((S)) g((s.0:ry) 15 @ PS-module.

Proof. Let L be a maximal right ideal of A. We will show that either 1z3(L) = 0 or
L = hA, where h> = h € A. Since (S, ., <) is a strictly totally ordered monoid, supp(f)

is a nonempty well-ordered subset of S, for every 0 # f = > a,T € A. We denote by
€S
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m(f) the smallest element of support f.
For any s € S, set

I, ={as esupp (f)|f € Land 7(f) =s} C Rand I = | J L.
seS

Let J be the right ideal of R generated by I. If J = R, then there exist s1,...,$, € 5,
fi,...,fn € Land r1,...,r, € R such that

l=as,71+---+as,mn,

where as; € I, and w(f;) = s;, for every 1 < ¢ < n. We will show that 1g(L) = 0.

Suppose that ¢ = > m,y € 1g(L) and ¢ # 0. Then supp(y) is a nonempty well-ordered
yES
subset of S. Let t = w(p). If

myot (as;) 7 (t,8:) # 0 for some 1 < i < n,

then the coefficient of ¢ f; at ts; = w(wf;) is non zero. This means that ¢f; # 0 for some
1 <i < n, a contradiction. Thus

meoy (as;) 7 (t,8)) =0for all 1 <i<mn.

Since 7 (¢, s;) € U(R) and Mg is an S-compatible module, we get
meas; =0 forall1 <i<n.

Consequently,

my = mil=my(as, 1+ -+ as, )

= (mias;)r1+ -+ (meas,) 7 =0,

a contradiction. Thus 1g(L) = 0. Suppose that J # R. We will show that J is a maximal
right ideal of R. Let r € R— J. If r1 € L, then r € I; C I and so r € J, a contradiction.
Therefore 71 ¢ L. Since L is a maximal right ideal of A,

A=L+ (DA

It follows that there exist f = > a,T € Land g= . b,y € A such that T = f + (r1)g.
reS yeS
Thus

1=ai+roi(bi)7(1,1) = a1 + rb1.

If a1 =0, then 1 =7by € rR. So R=J + rR.

If a1 # 0, then 1 € supp (f) . Since 1 < sforevery s € S, n(f) = 1. Thus a1 € I C I C J,
which implies that R = J + rR.

Hence J is a maximal right ideal of R. Since Mg is a PS-module, it follows that either
Iar(J) = 0 or J = eR, where ¢* = e € R. According to that we have the following two
cases:

Case(1). Suppose that 1as(J) = 0. We will show that 1g(L) = 0. Let p = >, m,y €
yeSs
15(L) and ¢ # 0. Then supp(y) is a nonempty well-ordered subset of S. Let s = m(¢p).

For any r € J, there exist s1,...,8, € S, f1,...,fn € L and r1,...,7, € R such that
r=as;7T1 + - +asnrn7

where as; € I, and 7 (f;) = s, for every 1 < i < n. Since ¢ € 1g(L), fi,..., fn € L, we
get of; =0 for every 1 <i <n.If

msos (as;) T (s,8i) # 0 for some 1 < <n,
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then the coefficient of ¢f; at ss; = w(¢f;) is non zero. This means that ¢f; # 0 for some
1 <4 < n, a contradiction. Thus

Mmsos (as;)T(s,8:) =0forall 1 <i<mn.
Since 7 (s, s;) € U(R) and Mg is an S-compatible module, we get
msas; =0 for all 1 <i < n.
Consequently,
msr =ms (as, 71+ -+ + as,7n) = (Msas,)r1 + -+ + (Mmsas, ) rn = 0.

Therefore ms € 1p7(J) = 0 and w(p) = s. Thus ¢ = 0, a contradiction. Hence 15(L) = 0.
Case(2). Suppose that J = eR, where e = e € R. We will show that L = (el)A, where

(e1)? = (eI)(eI) = eai1(e)7 (1,1) T.T = (el) € A.

To show that (el)A C L, we need to prove that (el) € L. If (el) ¢ L, then A = L+ (el)A.
Thus there exist f € L and g € A such that 1= f + (el)g. Thus

l=ai+eoi(bi)T(1,1) = a1 + eb:.

If a; =0, then 1 = eb; € eR = J, a contradiction.
If a1 # 0, then 1 € supp (f). Since 1 < sforevery s € S, 7 (f) =1. Thusa1 € 1 C I C J,
which implies that a1 € J and J = eR. Hence 1 = a1 +¢eb; € J+eR = J, a contradiction.
Therefore (el) € L which implies that (el)A C L.
Conversely, suppose that f € L and n(f) = s, then as € I, C I C J = eR and so
as = eas. We claim that a, = ea, for any u € supp (f).
Suppose that a, = ea, for each v < u. Consider the following element f,, € A defined by:
fu=> i+ 0T=Y a,i.
u<v u>v u<v
Thus 7(f — fu) = u. By hypothesis it is easy to see that f, = > ea,u = (el)f, €
u<v
(el)A C L. Thus f — fu. € L. By analogy with the proof above, it follows that a, = ea.,
which implies that f = (el)f € (el)A. Thus L = (el)A and the result follows since (el)
is an idempotent of A. 1

In particular, if we set Mr = Rr we get the following:

2.3. Corollary. Let (S, ., <) be a strictly totally ordered monoid which satisfies the con-
dition that 1 < s for every s € S and R an S-compatible ring. If R is a right PS-ring,
then A = R((S;0;7)) is a right PS-ring.

References

[1] M. Farahat, Generalized Malcev-Neumann series modules with the Beachy-Blair
condition, Algebra (Hindawi Publishing Corporation), Article ID 595274, (2015),
doi:10.1155,/2015/595274.

[2] W. Nicholson and J. Watters, Rings with projective socle, Proc. Amer. Math. Soc., 102,
(1988), 443-450.

[3] J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc., 163, (1972), 341-355.

[4] Weimin Xue, Modules with projective socles, Riv. Mat. Univ. Parma, 1(5), (1992), 311-315.

[5] Dingguo Wang, Modules with flat socles and almost excellent extensions, Acta Math. Viet-
nam., 21(2), (1996), 295-301.

[6] A. Malcev, On embedding of group algebras in a division algebra (in russian), Dokl. Akad.
Nauk, (1948), 1499-1501.



834

[7] B. Neumann, On ordered division rings. Trans. Amer. Math. Soc., 66, (1949), 202-252.

[8] A. Kelarev, Ring Constructions and Applications, World Scientific, River Edge, New York,
2002.

[9] R. Zhao and Y. Jiao, Principal quasi-baerness of modules of generalized power series, Tai-
wanese J. Math., 15(2), (2011), 711-722.



