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ABSTRACT 
In this study, the photo-corrosion properties of undoped TiO2, Ag/TiO2, and graphene 
aerogel-doped Ag/TiO2 thin films prepared by the dip coating method were investigated in 
a 3.5% NaCl environment. In a 3.5% NaCl solution, Ag-doped TiO2 thin film showed better 
photo-corrosion behavior than the base and pure TiO2 thin film. It was determined that the 
graphene aerogel layer coated on the Ag-TiO2 thin film increased the photo corrosion 
resistance of the Ag-doped film and showed quite superior strength. 

Keywords: TiO2 thin film, sol-gel preparation, photo-corrosion, 3.5% NaCl solution, 
graphene aerogel. 

 

ÖZ 
Bu çalışmada, daldırma kaplama yöntemi ile hazırlanan saf, Ag ve grafen aerojel katkılı TiO2 
nanoyapılı ince filmlerin %3,5 NaCl ortamında foto-korozyon özellikleri incelenmiştir. %3,5 
NaCl çözeltisinde, Ag katkılı TiO2 ince filmi, esas ve saf TiO2 ince filminden daha iyi foto-
korozyon davranışı göstermiştir. Ag-TiO2 ince filmi üzerine kaplanan grafen aerojel 
tabakasının, Ag katkılı filmin foto-korozyon direncini artırdığı ve oldukça üstün bir 
mukavemet gösterdiği belirlenmiştir. 

Anahtar Kelimeler: TiO2 ince film, sol-jel hazırlama, foto-korozyon, %3,5 NaCl çözeltisi, 
grafen aerojel. 
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Introduction 
In recent years, studies have been carried out on the formation of various solid-phase materials by using transition metal 

oxides with a wide variety of chemical and physical properties due to their use in more than one technological process 
(Sidelev et al., 2016; Lv et al., 2019). Today, there are many technologies for forming various thin films based on 
binary/ternary compounds, layered systems, and nanostructured films (Sagu et al., 2018; Zubar et al., 2018). The most 
important reason for using thin films is that they show promise in microelectronic applications for photocatalysis, protective 
coatings, magnetic sensors, and solar energy (Abbasi et al., 2018; Higgins et al., 2018). Titanium dioxide (TiO2) is the most 
promising material to have the chemical resistance and excellent optical properties required for coatings and composite 
materials (Manurung et al., 2013; Yao et al., 2013). TiO2 is a valuable raw material used in composite polymeric materials, 
the dye industry, production of dielectric ceramics, and ceramic films (Tian & Tatsuma, 2005; Kawakami et al., 2018). The 
TiO2 layer has chemical stability, which provides corrosion protection even in very thin layers. The hardness of the oxide film 
improves temperature resistance and wear (Kania et al., 2020). In addition, TiO2-based thin films are accepted as coating 
materials for structural materials exposed to irradiation by ions and electrons, for aggressive environments, and for stainless 
steel materials (Shi et al., 2010; Varnagiris et al., 2017). Therefore, TiO2 thin films can be widely used in modern materials 
science due to their modification possibilities and superior properties (Zhao et al., 2011; Chauhan et al., 2012). Today, 
methods such as the hydrothermal method (Hosono et al., 2004), chemical deposition (CVD) (Al-Kandari et al., 2015), sol-gel 
(Sabzi & Anijdan, 2019), and micro-arc oxidation (MAO) (Wan et al., 2007) are used to produce TiO2-based thin films. Sol-gel 
process enables the production of thin films with thermal/mechanical resistance, thickness/porosity control, high purity, 
chemical resistance (Reddy et al., 2001). The viscosity of the starting solution, the density, the number of dips, the 
concentration of oxides, and the drying temperature affect the sol-gel storage parameters, particle shape, particle size, and 
degree of oxidation affect the properties of the powder (Yu et al., 2000).   

 
In many cases, when the material comes into contact with a solution or various electrolytes, corrosion processes occur, 

with combined electrochemical reactions occurring, resulting in oxidation and degradation of the structure (Curkovic et al., 
2013). The use of thin nanostructured films with high dislocation defects causes a decrease in the oxygen rate transferred to 
the surface layers and reduces the corrosion rate (Liu et al., 2010). Fu et al. (2014) showed that the application of Ag-
containing TiO2 films on the TiNi alloy with surface roughness increased the surface hydrophilicity of the Ag additive by 
reducing the contact angle of the samples. 

Although silver (Ag) has long been reported as antibacterial and antimicrobial material, its film integrity and structure, 
which are important for corrosion resistance and biomedical applications, have rarely been studied. Therefore, in this study, 
the effectiveness of graphene aerogel supported Ag-doped TiO2 thin films on corrosion resistance was investigated. 

 
Methods 

Materials 
Titanium (IV) isopropoxide (TTIP), Absolute ethanol (C2H5OH, 99.8%), Graphite powders, Sodium Nitrate (NaNO3), 

Potassium Permanganate (KMNO4), Hydrogen peroxide, (30%), silver nitrate Ag(NO3), nickel nitrate Ni(NO3)2.6H2O, 3-
Triethoxysilylpropylamine (APTES), Acetic acid (CH3CO2H), Nitric acid (HNO3), Sodium chloride (NaCl) were provided from 
Sigma Aldrich. Sulfuric acid (H2SO4) was provided by Merck.  

 
Synthesis of Graphene Oxide 
Graphene oxide was synthesized according to the Hummers method. Graphite powders (3 g) and sodium nitrate (1.5 g) 

were mixed in sulfuric acid (69 mL). Potassium permanganate (9 g) was added slowly to the mixture. The mixture was heated 
at 35°C and stirred (30 min) by adding ionized water (138 mL). The mixture, kept at 98°C for 15 minutes, was cooled in a 
water bath (10 min). Then, ionized water (480 mL) was added, and GO was obtained by dropping H2O2 (30%). The solution 
was filtered and dried at 60°C. 

 
Synthesis of Graphene Aerogel 
1.25 g of GO was sonicated in a mixture of 100 ml of water and 100 ml of alcohol for approximately 1 hour. Then the 

mixture was transferred to the autoclave and kept at 180˚C for 24 hours. The solution was filtered and dried at 60˚C. 
 
Synthesis of TiO2 Thin Film  
4.4 ml of TTIP was added to 50 ml of ethanol and magnetically stirred for 1.5 hours. On the other hand, 5 ml of the ionized 



  
3 

 

Journal of Energy Recovery and Transfer Processes 

water was added to 10 ml of acetic acid and stirred for 1.5 hours. Then, the acetic acid solution was added dropwise into 
titanium dioxide and stirred for 3 hours. The prepared solution was coated on Ti substrates by the dip-coating method. In 
the dip-coating method, the dipping process was carried out at speeds of 1-2 mm s-1. Then, the obtained thin film was calcined 
at 500°C for 3 h in an air atmosphere. 

 
Synthesis of Ag-TiO2 Thin Film  
4.4 ml of TTIP was added to 50 ml of ethanol and magnetically stirred for 1.5 hours. On the other hand, 1.78 gr 

Ni(NO3)2.6H2O was dissolved in 20 ml of ionized water. The Ni solution was added dropwise into the Ti solution. The pH of 
the solution was adjusted to 3-4 using nitric acid. The prepared solution was coated on Ti substrates by the dip-coating 
method. Then, the obtained thin film was calcined at 500°C for 3 h in an air atmosphere. 

 
Synthesis of GA-Ag-TiO2 Thin Film  
3% APTES solution was used to prepare the GA-TiO2-Ag thin film. 0.1 g of GA was added to the 3% APTES solution and 

stirred for 1 hour. Then the Ag-TiO2 film was immersed in the GA solution, and the coating process was carried out. Finally, 
the sample was dried in an oven at 100°C for 30 minutes. 

 
Photo-corrosion Tests 
Photo-corrosion resistance of the synthesized TiO2, Ag-TiO2, and GA-Ag-TiO2 thin films was investigated in a 3.5% NaCl 

solution. All experiments were carried out with a computer-controlled, 3 electrode connection potentiostat/galvanostat. In 
this system, Ag/AgCl was used as the reference electrode, a graphite rod was used as the counter electrode, and a Ti plate 
was used as the working electrode. After half an hour of equilibration, scanning was stopped when the samples started at a 
cathodic overpotential (open circuit potential) of −1 V to +1 V against Eocp and reached a specified anodic potential (+1V). The 
synthesized thin films were corroded under UV light (with a wavelength of 254 nm, 44 W m-2) and in a 3.5% NaCl aqueous 
solution, and the photo-corrosion activities of the coatings made by giving potential in the specified range were determined. 
The exposed area of the test specimens is approximately 1 cm2, and all data are normalized to the surface area. 

 
Results and Discussion 

One of the most common methods of determining the corrosion rate is to use electrochemical methods such as 
polarization. Figure 1 shows the potentiodynamic polarization curves of TiO2, Ag-TiO2, and GA-TiO2-Ag thin film coatings made 
in a 3.5% NaCl solution. 

 
It was observed that all thin film samples exhibited certain characteristics and passivation behaviors in NaCl aqueous 

solution. Thin film samples exhibit some fluctuations in the passivity regions. It is estimated that the reason for these 
fluctuations is the destruction of the passive layer formed on the thin films after a certain period of time. Corrosion potential 
(Ecorr), corrosion properties, and corrosion current (Icorr) were obtained by the intersection of cathodic and anodic Tafel curve 
tangents using the Tafel extrapolation method.  

 
Table 1.  

Corrosion parameters for samples 

Samples 
Ecorr 
(mV) 

Icorr 
(x 10-9A cm-2) 

Corr 
Rate 

TiO2 substrate -386.576 1638 28.448 

TiO2 thin film -431.576 1538 19.2 

Ag-TiO2 thin film -151.37 462.4 12.811 

GA-TiO2-Ag thin film -107.382 212.914 5.428 
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Figure 1.  
Corrosion current density graph 
 

 

 
Table 1 shows the values obtained from the parameters corresponding to the corrosion, passivation, and passivation 

potentials of Icorr, Ipit, and Ecorr. 
 
As a result of the trials, it is seen that only the TiO₂ coating reduces the corrosion resistance. It is estimated that this 

situation may be due to non-adhesion (adhesion) or insufficient calcination between the TiO₂ coating and the base material. 
However, it is seen that the polarization resistance of the TiO2 thin film increases with the addition of Ag. 

The graphene aerogel layer coated on the Ag-TiO2 thin film contributed positively to the polarization resistance. The 
reason for this is that multilayer graphene increases the corrosion resistance of the base material. The fact that Ag is a more 
noble metal in the galvanic series provides a positive effect on corrosion resistance. Therefore, the addition of Ag to the 
structure increased the polarization resistance of the thin films (Huang et al., 2022). It is understood that TiO2 thin films 
prepared by the dip-coating method with a film thickness of 255 nm have good corrosion resistance. 

 
Conclusions 

In this study, TiO2, Ag-doped TiO2, and graphene aerogel (GA)-supported Ag-TiO2 thin films were successfully synthesized 
by sol-gel and dip-coating methods. The photo-corrosion resistance of these films was evaluated using a 3.5% NaCl solution 
under UV light irradiation. Electrochemical measurement revealed that the undoped TiO2 film exhibited lower corrosion 
resistance compared to Ag-TiO2, which significantly improved the electrochemical stability of the coating. Furthermore, 
graphene aerogel coating on the Ag-TiO2 surface resulted in a further increase in corrosion resistance. Among the samples 
under corrosion measurement, the GA-TiO2-Ag thin film exhibited the lowest corrosion current density and the most positive 
corrosion potential, indicating superior protective performance. Ag, a noble metal, served as a cathodic protector and 
enhanced the corrosion resistance of the TiO2 thin film. These findings suggest that GA-supported Ag-TiO2 thin films are 
promising candidates for protective coatings in chloride-rich environments, especially in applications requiring both 
photocatalytic activity and corrosion resistance. 
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