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Experimental investigation of wear behavior in Al2O3-reinforced glass fiber 

composites and comparative analysis of artificial neural network and machine 

learning models 

Al2O3 takviyeli cam elyaf kompozitlerde aşınma davranışının deneysel 

incelenmesi ve yapay sinir ağları ile makine öğrenmesi modellerinin 

karşılaştırmalı analizi 
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Abstract  Öz  

This study experimentally investigates the effects of adding 

different amounts (1-5 wt.%) of Al2O3 particles on the wear 

behavior of glass fiber-reinforced epoxy composites to 

improve their tribological performance. Composite 

laminates produced using the hand-lay up method were 

subjected to wear tests using a ball-on-disc test setup under 

dry sliding conditions. Among all tested compositions, the 

composite containing 3 wt.% Al2O3 exhibited the highest 

wear resistance. Compared to the neat composite, the 

specific wear rate was reduced by up to 70%. In contrast, 

4% and 5% Al2O3 additions resulted in a decrease in wear 

resistance due to particle agglomeration. While the highest 

specific wear rate was 260×10⁻⁶ mm³/Nm, this value 

decreased to 80×10⁻⁶ mm³/Nm in the 3% added sample. 

Furthermore, wear rate predictions were performed using 

models such as artificial neural network and different 

machine learning regressors. Random Forest (17.62%), 

Ridge regressor (18.46) and artificial neural network 

(19.92%) achieved the lowest MAPE values, indicating 

strong predictive performance for Al2O3-reinforced glass 

fiber composites. The artificial neural network model 

optimized with grid search achieved a mean squared error 

of 0.90 and a coefficient of determination of 0.92, while the 

random forest regressor demonstrated strong generalization 

with a coefficient of determination of 0.91. The results 

demonstrated the critical roles of both particle ratio and 

data-driven models in wear performance analysis. 

 Bu çalışmada, cam elyaf takviyeli epoksi kompozitlerin 

tribolojik performanslarını iyileştirmek amacıyla farklı 

miktarlarda (%1-5 ağırlıkça) eklenen Al2O3 partiküllerinin 

aşınma davranışları üzerindeki etkileri deneysel olarak 

araştırılmıştır. Elle yatırma yöntemiyle üretilen kompozit 

laminantlar, ball-on-disc bilye test düzeneği kullanılarak 

aşınma testlerine tabi tutulmuştur. Test edilen tüm 

numuneler arasında, %3 ağırlıkça Al2O3 içeren kompozit 

en yüksek aşınma direncini göstermiştir. Saf kompozitle 

karşılaştırıldığında, özgül aşınma oranı %70'e kadar 

azalmıştır. Buna karşılık, %4 ve %5 Al2O3 ilavesi, partikül 

aglomerasyonu nedeniyle aşınma direncinde bir azalmaya 

neden olmuştur. En yüksek özgül aşınma oranı 260x10⁻⁶ 

mm³/Nm iken, %3 eklenen numunede bu değer 80x10⁻⁶ 

mm³/Nm'ye düşmüştür. Ayrıca, yapay sinir ağı ve farklı 

makine öğrenimi regresörleri kullanılarak aşınma oranı 

tahminleri gerçekleştirilmiştir. En düşük MAPE 

değerlerine Random Forest (%17.62), Ridge regresörü 

(%18.46) ve ANN (%19.92) ulaşmış olup, bu da Al2O3 

takviyeli cam elyaf kompozitler için güçlü tahmin 

performansına işaret etmektedir. Grid search metodu ile 

optimize edilen yapay sinir ağı modeli 0.9'lık bir ortalama 

karesel hata ve 0.92'lik bir belirlilik katsayısı değeri elde 

ederken, rastgele orman regresörü 0.91'lik bir belirlilik 

katsayısı değeriyle güçlü bir genelleme göstermiştir. 

Sonuçlar, aşınma performansı analizinde hem parçacık 

oranının hem de veri odaklı modellerin kritik rollerini 

ortaya koymuştur. 

Keywords: GFRP, Wear, Al2O3, Machine learning, 

Artificial neural network 

 Anahtar kelimeler: GFRP, Aşınma, Al2O3, Makine 

öğrenmesi, Yapay sinir ağları 

1 Introduction 

Glass fiber reinforced polymer composites (GFRP) are 

widely used in many industries from aviation to automotive, 

from wind turbines to aircraft systems due to their 

advantages such as lightness, high mechanical strength, 

corrosion resistance and low cost [1]. Glass fibers show both 

thermal and chemical resistance because of their silica-based 

structures and increase the rigidity and impact resistance, 

especially integrated with epoxy matrix systems [2]. In 

addition, glass fibers offer a more economical solution 

compared to high-performance fibers with their easy 

manufacturability and commercially affordable prices [3]. 

Composite structures are not limited to fiber 

reinforcement only but also hybridized with micro or nano-

sized ceramic particles, providing significant improvements 

in properties such as wear, hardness and high temperature 
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resistance [4]. In this context, aluminium oxide (Al2O3) 

stands out as an ideal particle reinforcement in glass fiber 

reinforced systems due to its improved hardness, chemical 

stability and heat transfer properties [5-8]. Load transfer 

efficiency was increased, and crack propagation is delayed 

by dispersing Al2O3 particles in the polymer matrix. 

Furthermore, it provides significant surface hardness and 

tribological improvements, which are specifically 

advantageous for the parts exposed to corrosion [9]. Another 

aspect of the study is the prediction of wear behavior by 

processing experimental data with multiple regression 

models. The performance of the models under 

hyperparameters, both unoptimized and optimized with 

techniques such as grid search metod, was compared. This 

methodology offers an alternative to the time-consuming and 

costly nature of traditional wear tests, indicating that 

tribological behaviors can be predicted based on data-driven 

Artificial Intelligence - based models. 

Glass fiber composite materials reinforced with alumina 

or other ceramic particles have been widely studied in 

tribological studies and data-driven prediction models. 

Sourabh K Singh et al. [10] developed an AI-based approach 

to predict the specific wear rates of glass fiber reinforced 

composites by adding different amounts of graphene 

nanoparticles into the epoxy matrix. In the study, R² scores 

of up to 99% were obtained using machine learning 

algorithms such as DNN, RF, GBM and XGBoost. The 

results revealed that parameters such as load and density 

have decisive effects on the wear behavior. Li et al. [11] 

investigated the effect of PTFE particle size on friction and 

wear properties in glass fiber reinforced epoxy matrix 

composites. Four different composites were produced with 

particle sizes ranging from 1 µm to 180 µm and it was 

observed that the lowest wear rate was obtained in the 

composites with the largest particle size. This was attributed 

to the fact that large particles increase the fiber anchoring 

effect and cause less deformation during wear. Similarly, in 

another study conducted by  Kumar et al. [12] wear 

performances were evaluated using 0.5% and 1% graphene 

nanoparticles in glass fabric reinforced epoxy composites, 

and it was shown that specific wear rates could be 

successfully predicted with models developed with ANN, 

RF and GBM algorithms. This study emphasizes that strong 

correlations can be established between mechanical 

properties and tribological performance. Parikh and Gohil 

[13] evaluated the wear behavior under dry friction 

conditions by adding different amounts of graphite (3 and 5 

wt%) to natural cotton fiber reinforced polyester composites. 

In the experiments carried out with Box-Behnken design, it 

was shown that graphite addition significantly increased the 

wear resistance, and the predictions made by ANN models 

were in high agreement with the experimental data. Padhi et 

al. [14] evaluated both mechanical and tribological 

properties of polypropylene matrix composites reinforced 

with short glass fibers by adding blast furnace slag (BFS). In 

the study conducted according to the Taguchi design, it was 

shown that the predictions generated by ANN models largely 

coincide with the experimental data and that the increase in 

the amount of BFS positively affects the wear resistance 

(Padhi et al., Journal of Thermoplastic Composite Materials, 

2015). Yadav et al. [15] systematically investigated the wear 

behavior of epoxy matrix composites by applying different 

ratios (0-20 wt%) of Al2O3 and E-glass fiber reinforcement. 

In the experiments conducted with air jet erosion device, 

Taguchi L25 orthogonal array was used and reinforcement 

ratio, impact velocity, flow rate and impact angle were 

selected as the influencing factors. According to ANOVA 

analysis, it was determined that the impact velocity with 41% 

contribution ratio was the most determining factor on the 

wear rate. The lowest wear was obtained in the composite 

containing 10% Al2O3, at 30 m/s speed and 45° impact angle. 

SEM analyses revealed that Al2O3 particles showed strong 

interfacial interaction with the matrix. 

This study systematically investigates the effect of 

particle ratio on wear behavior by adding different ratios of 

Al2O3 particles to glass fiber reinforced epoxy matrix 

composites that have an originally designed stacking 

sequence structure. Wear tests were performed at different 

load and distance parameters, and experimental results were 

evaluated based on specific wear rates and wear coefficients. 

SEM analyses were performed to understand surface 

morphologies, microstructural deteriorations and matrix-

particle interfaces. In addition, wear losses were evaluated 

through the relationships established between the obtained 

general structural properties of the material and the applied 

experimental test parameters; these relationships were used 

in training artificial neural networks and machine learning-

based algorithms, allowing the creation of predictive models. 

The simultaneous use of experimental wear characterization 

and machine learning-based predictive modeling constitutes 

a unique methodological contribution, offering a new 

perspective for correlating microstructural behavior with 

wear performance. 

2 Material and methods 

2.1 Materials 

In this study, glass fiber reinforced woven composite 

laminates were fabricated using the hand lay-up technique, 

which is one of the most common methods for 

manufacturing fiber-reinforced polymer matrix composites. 

Three types of glass fiber fabrics supplied by SPM 

Composite Company - SPM EGU 110 P (plain weave), SPM 

EGU 163 T (twill weave), and SPM EGU 195 T (weave 

structure) - were utilized as reinforcement materials. The 

fabrics possess areal densities of 110, 163, and 195 g/m2, 

respectively, and corresponding fiber diameters of 9, 9, and 

13 μm. Prior to fabrication, all fabric sheets were cut into 100 

× 100 mm dimensions. 

A resin system consisting of 80% ARC-152 epoxy resin 

and 20% W-152 hardener by volume was prepared and 

manually applied to each fabric layer to ensure adequate 

impregnation. A roller brush was employed to remove 

entrapped air and enhance interlaminar bonding. For 

additional reinforcement, approximately 98% pure Al2O3 

micro-particles (particle size: 0–50 μm) were dispersed into 

the resin. 
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To investigate the effect of particle ratio on wear 

behavior, Al2O3 particles were added by 1wt%, 2wt%, 3wt%, 

4wt%, 5wt% ratios to glass fiber reinforced epoxy matrix 

composites. For the accuracy and repeatability of mechanical 

tests, homogeneous particle distribution within the epoxy 

matrix is crucial. To prevent agglomeration, the Al2O3 

particles were first stirred in a magnetic stirrer for 15 minutes 

and then dispersed in an ultrasonic bath for 60 minutes. The 

magnetic stirrer ensured even distribution of the particles 

within the resin, while the ultrasonic bath broke up particle 

clusters, resulting in a more homogeneous distribution. A 

symmetric six-layer composite laminate was constructed in 

the stacking sequence of [110P/163T/195T]s. The schematic 

representation of the stacking sequence is shown in Figure 1. 

Following lay-up, the laminates were cured at ambient 

conditions (∼24 hours). The average thickness of the 

laminates was measured at three different points using a 

digital caliper, and found to be approximately 1.3 mm. 

 

 

Figure 1. Schematic representation of the symmetric 

laminated composite structure with a [110P/163T/195T]s 

stacking sequence 

2.2 Wear test 

Wear tests were conducted using a ball-on-disc 

configuration in accordance with ASTM G99 standards to 

evaluate the tribological performance of the composite 

laminates. AISI 304 stainless steel balls with a diameter of 6 

mm were employed as the counterface material. Test 

samples were extracted from the central region of the 

composite plates. Wear tests were performed at room 

temperature (∼23 °C) and 50% relative humidity under dry 

sliding conditions. The tests were conducted at a constant 

sliding speed of 3 cm/s, using two levels of normal load and 

two different sliding distances. Each test was repeated three 

times to ensure reproducibility. The wear scar diameter was 

held constant at 6 mm throughout all trials. The specific wear 

rate was determined by measuring the volume loss due to 

wear and normalizing it with respect to the applied load and 

sliding distance. The design of experiment with the number 

of repetitions conducted under each condition is given in 

Table 1. 

2.3 Artificial neural network and machine learning 

models 

In this study, data-driven regression models were 

developed to predict the target variable using experimentally 

obtained wear loss. The modeling workflow was designed to 

include data preprocessing, algorithm implementation, 

performance evaluation, and systematic hyperparameter 

optimization. A total of 24 distinct composite configurations 

were fabricated as presented in Table 2. Considering that 

three independent tests were conducted for each 

configuration, the overall dataset size reached 72 

experimental observations. In order to optimize the dataset, 

numerical variables were normalized using z-score 

standardization, and categorical variables were fitted to the 

model using one-hot encoding. These preprocessing steps 

aimed to minimize learning imbalances that could arise from 

inputs at different scales. The dataset was randomly split into 

training and testing subsets with an 80:20 ratio. 

A wide range of regression models was employed to 

explore different learning behaviors and generalization 

capabilities. The models selected for this study included 

Artificial Neural Network (ANN), Decision Tree Regressor 

(DTR), Random Forest Regressor (RFR), Support Vector 

Regressor (SVR), K-Nearest Neighbor Regressor (KNNR), 

Extreme Gradient Boosting Regressor (XGBR), and Ridge 

Regressor (RR). 

These models collectively represent both linear and non-

linear learning paradigms, covering a wide spectrum of 

modeling techniques ranging from parametric to non-

parametric, shallow to deep, and interpretable to complex. 

Each algorithm was chosen to capture distinct aspects of the 

data structure, such as feature interactions, local proximity 

patterns, kernel-based mappings, or deep nonlinear 

transformations.  

 

Table 1. Wear test parameters for Al2O3 reinforced composites 

No. Al2O3 (wt.%) Force (N) Distance (m) No. Al2O3 (wt.%) Force (N) Distance (m) 

1 Neat 7.5 150 13 %3 7.5 150 

2 Neat 7.5 300 14 %3 7.5 300 

3 Neat 15 150 15 %3 15 150 

4 Neat 15 300 16 %3 15 300 

5 %1 7.5 150 17 %4 7.5 150 

6 %1 7.5 300 18 %4 7.5 300 

7 %1 15 150 19 %4 15 150 

8 %1 15 300 20 %4 15 300 

9 %2 7.5 150 21 %5 7.5 150 

10 %2 7.5 300 22 %5 7.5 300 

11 %2 15 150 23 %5 15 150 

12 %2 15 300 24 %5 15 300 
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A regression-based ANN model structured with an input 

layer and two hidden layers, each containing 32 and 16 

neurons, respectively. ReLU was used as an activation 

function, and linear activation was used in the output layer. 

The model was optimized with Mean Squared Error (MSE) 

as the error function and updated using the Adam algorithm. 

100 epochs were applied during the training process, and the 

model's early performance was monitored using a 10% 

validation set. Hyperparameters such as neuron numbers, 

learning rate, and batch size were comprehensively 

optimized using grid search strategy. The parameter 

combinations tested included the number of neurons in the 

hidden layers (16 and 32), activation functions (ReLU and 

tanh), optimization algorithms (Adam and SGD), and 

learning rates (0.001 and 0.01). A total of 64 different model 

configurations were trained, and the MSE performance for 

each model was calculated on the validation set. During this 

process, it was observed that the learning rate, optimizer 

selection, and activation functions played a critical role in the 

model's generalization ability. The final model was 

determined based on the configuration that provided the 

lowest MSE and the highest R² value, as validated through 

k-fold cross-validation. 

For the ML models, DTR was used with the default 

settings for parameters such as maximum depth and splitting 

criterion. RFR was run with an ensemble structure of 100 

decision trees by default. SVR was implemented with RBF 

kernel function and default regularization parameter 

(C=1.0). KNNR was run using the number of neighbors k=5 

and the Minkowski distance metric (p=2). XGBR was based 

on the library defaults of learning rate (0.1), maximum depth 

(6), and 100 trees. For RR, the L2 penalty was kept at the 

default α=1.0. Hyperparameter optimization for the ML 

models was performed using the grid search method. For the 

DTR, parameters such as maximum depth (3, 5, 10, None), 

split criteria (squared error, Friedman MSE), minimum 

number of leaves (1, 2, 4), and maximum feature selection 

(None, sqrt, log2) were scanned. For the RFR, the number of 

trees (50, 100, 200), maximum depth (None, 5, 10, 20), 

minimum sample split (2, 5, 10), minimum number of leaves 

(1, 2, 4), and maximum feature selection (auto, sqrt, log2) 

were evaluated. For SVR, different kernel functions (linear, 

rbf, poly, sigmoid), regularization parameter C (0.1–1000), 

epsilon (0.001-1.0), gamma (scale, auto, fixed values) and 

degree (2-5) for the polynomial kernel have been extensively 

tested. For KNNR, the number of neighbors (1 to 29), 

weighting functions (uniform, distance), distance metrics 

(euclidean, manhattan, minkowski), p parameter (1, 2) and 

algorithm selection (auto, ball tree, kd tree, brute) have been 

investigated. For RR, the regularization coefficient α (in the 

range of 10⁻⁴-10³), solution algorithms (auto, svd, cholesky, 

lsqr, sparse_cg, sag, saga) and inclusion or exclusion of the 

intercept term have been optimized. With these 

comprehensive parameter scanning, the performance of each 

algorithm was systematically evaluated in the 

multidimensional hyperparameter space, and the models that 

provided the lowest mean squared error (MSE) were used to 

obtain the final results. 

Absolute Percentage Error (APE) and Mean Absolute 

Percentage Error (MAPE) metrics were also used to evaluate 

the predictive performance of the predictive models by using 

Equations 1 and 2. APE provides a percentage difference 

between the predicted and actual values for each test dataset 

which demonstrates the model's performance on individual 

samples. MAPE provides an assessment of the overall 

predictive power of the models by presenting the average 

error rate calculated across all test samples. Using these two 

together metrics allows for comparison of both sample-by-

sample deviations and overall performance.  

 

APE = |
𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

| 𝑥100% 1 

MAPE =
100%

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖

|

𝑛

𝑖=1

 2 

 

Mean Squared Error (MSE) and the coefficient of 

determination (R²) were employed by using the equations 3 

and 4 as standard regression metrics, providing 

complementary insights into the absolute error magnitude 

and the proportion of variance explained by the models. The 

combined use of APE, MAPE, MSE, and R² ensures a 

comprehensive evaluation of model accuracy and 

generalization capability. 

 

MSE =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)

2 

𝑛

𝑖=1

 3 

R2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2 𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2 𝑛
𝑖=1

 4 

3 Results and discussion 

3.1 Wear behavior 

The results of the wear tests were evaluated based on the 

analysis of average mass loss, specific wear rate, friction 

coefficient, and scanning electron microscopy (SEM) images 

of the worn surfaces. The tests were performed under two 

loads (7.5 N and 15 N) and over two sliding distances (150 

m and 300 m). Figure 2 presents the average mass loss of 

GFRP composites containing Al2O3 powder in various 

proportions (1-5%), tested under four distinct wear 

conditions. Neat samples exhibited the highest wear values, 

specifically observing a mass loss of approximately 13.8 mg 

under a load of 15 N and a distance of 300 m. In contrast, the 

mass loss in the sample obtained with 3% Al2O3 added under 

the same test conditions decreased to approximately 6.8 mg, 

indicating an improvement of over 50%. Similarly, at a load 

of 7.5 N and 150 m, the mass loss of the neat sample was 

approximately 5.1 mg, whereas this value decreased to 1.6 

mg in the composite with 3% Al2O3, corresponding to a 

reduction of about 69%. 
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Figure 2. Average mass loss of the samples 

 

A similar decrease in wear loss was observed when the 

Al2O3 content was increased to 1% and 2%, but this 

improvement was more limited compared to the 3% Al2O3 

content. For example, while the loss in the neat sample at 15 

N and 150 m was 8.2 mg, this value decreased to 4.7 mg in 

the 2% Al2O3 sample, representing an approximately 43% 

improvement. In contrast, increasing the Al2O3 content to 4% 

and 5% resulted in a significant decrease in wear resistance. 

Notably, the composites with 5% Al2O3 exhibited wear 

performance similar to or even worse than the neat sample 

under certain conditions. This suggests microstructural 

problems such as the inhomogeneous dispersion of high 

powder content within the matrix, increased particle 

agglomeration, and the formation of localized weakness 

zones. 

Overall, the composite with 3% Al2O3 additive exhibited 

optimal performance across all tested conditions, reducing 

mass loss by 40% to 70% compared to the neat composite. 

This significant reduction in wear rate reveals the load-

carrying capacity of the Al2O3 particles within the composite 

structure and their ability to prevent microwear, while clearly 

demonstrating that increasing the Al2O3 content (≥ 4%) can 

negatively impact wear performance. The findings of this 

study are consistent with similar studied in the literature. 

Optimum nanoparticle addition, particularly in the 2–5% 

range, significantly improves the tribological properties of 

epoxy-based composites, but higher addition rates cause 

performance degradation due to particle agglomeration [16, 

17].  

Figure 3 shows the specific wear rates of the composites. 

The general trend indicates that the addition of Al2O3 

significantly reduces the specific wear rate. The specific 

wear rate of the neat composite is highest, approximately 

260x10-6 mm3/Nm at a load of 7.5 N and a distance of 150 

m. In contrast, the 3% Al2O3sample under the same 

conditions exhibits a specific wear rate of approximately 

80x10-6 mm3/Nm, which corresponds to a reduction of 

approximately 69%. Wear rates of all composites varied with 

applied load and sliding distance. For example, the specific 

wear rate for the neat composite at 15 N and 300 m was 

approximately 160x10-6 mm3/Nm, which decreased to 

110x10-6 mm3/Nm for the composite with 3% Al2O3. 

Similarly, the specific wear rates for the composites 

containing 1% and 2% Al2O3 decreased compared to the neat 

composite. Specifically, with the 2% Al2O3 addition, the 

specific wear rate at 15 N and 300 m was approximately 

90x10-6 mm3/Nm, corresponding to an improvement of about 

44% compared to the neat sample. However, at additive 

ratios of 4% and 5%, a similar trend in specific wear rates is 

observed as in the mass loss results. In particular, the 

composite containing 5% Al2O3 exhibited a specific wear 

rate of approximately 170x10-6 mm3/Nm under the 15 N and 

300 m condition, corresponding to about 55% lower wear 

resistance than the composite with 3% Al2O3. This finding 

suggests that high additive ratios negatively affect specific 

wear resistance by causing particle agglomeration and 

matrix-phase weakening in the microstructure. 

 

 

Figure 3. Specific wear rates of the samples 

 

SEM images of the worn surfaces of the neat composite 

and the composite containing 3% Al2O3 are presented in 

Figure 4. The neat sample exhibited relatively large worn 

surface (~1504 µm), prominent plucked fiber regions, and 

widespread wear debris, indicating poor fiber–matrix 

interfacial bonding and mechanical separation. 

 

 

Figure 4. SEM images of worn surfaces 
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In contrast, the worn surface in the 3% Al2O3-reinforced 

composite is significantly smaller (~441 µm), the wear 

surface becomes smoother, and only isolated adhesion pits 

are observed. This microstructural improvement is directly 

related to the minimal mass loss and low specific wear rate 

observed at the 3% Al2O3 containing composite. The Al2O3 

particles act as a protective barrier on the surface, inhibiting 

fiber-matrix separation and microcrack propagation. 

Figure 5 illustrates the variation in the coefficient of 

friction (µ) of the composite materials as a function of the 

applied load and the sliding distance. Under all test 

conditions, the coefficient of friction exhibits a characteristic 

increase at the beginning of the test (the first ~10–30 m) and 

then reaches a relatively stable regime. 

 

 

Figure 5. The COF of the samples 

 

Increasing the applied load resulted in a significant rise 

in the coefficient of friction (COF); while COF remained 

nearly constant at approximately 0.65 under a 7.5 N load, it 

increased to 0.75-0.80 at a 15 N load. This increase indicates 

that microscopic deformations and plastic yielding at the 

contact surface intensified. As the sliding distance increased 

to 300 m, the fluctuations in the COF decreased, and the 

system entered a more stable regime, indicating that the 

surface had reached tribological equilibrium and the 

influence of wear debris had diminished. Thus, although 

higher loads increased friction, extended sliding distances 

contributed to friction stabilization. 

3.2 Comparative analysis of data-driven predictive 

modeling approaches 

In this study, an artificial neural network (ANN) model 

was implemented to evaluate the predictive capability of the 

proposed approach, and its training behavior is presented in 

detail. Figure 6 visually presents the training process and 

prediction performance of the ANN model. 

The loss plot of the ANN model shows that both training 

and validation errors are decreasing steadily, and the model 

is able to learn without overfitting. In the prediction 

performance plot, the predictions are generally distributed 

close to the perfect fit line; this shows that the model works 

with high accuracy on the training data and achieves a strong 

fit, especially in the middle value range. Although there are 

small deviations in the extreme values, the overall prediction 

performance is satisfactory. 

In addition to ANN, different machine learning models 

were also used for comparison purposes in this study and 

their results were analyzed comparatively. In this context, 

Decision Tree Regressor (DTR), Random Forest Regressor 

(RFR), K-nearest Neighbor Regressor (KNNR), Support 

Vector Regressor (SVR), XGBoost Regressor (XGBR), 

Ridge Regressor (RR) and Lasso Regressor (LR) were used, 

but due to the weak results obtained in the preliminary 

studies, Lasso was removed from the analysis. The scatter 

plot graphics of the training data presented in Figure 7 show 

the degree to which the values predicted by each model 

overlap with the actual values. 

 

 

Figure 6. The loss and prediction performance of the 

ANN model 

 

The RFR and XGBR models exhibited strong learning 

performance based on the perfect fit line. The RR model also 

shows a fairly balanced distribution, providing high fit 

especially in the middle range. Although Support SVR and 

DTR models have caught the general trend, some deviations 

are noticeable. The weakest distribution is observed in the 

KNNR model; especially in the middle and high value 

ranges, the points move away from the perfect fit line, 

indicating overly simplistic generalization. In general, RFR, 

XGBR and RR models gave the most successful results on 

the training data.  
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Figure 7. The training performance of predictive models 

 

Figure 7 indicates that the RFR and RR models stand out 

with their estimation curves being close to the actual values, 

especially the RFR model shows high generalization success 

in the medium and high index range. The RR model provided 

stable and low-deviation results in linear data. Although the 

XGBR model caught the general trend, it increased the error 

rate with significant deviations in high range samples.  DTR 

produced successful predictions at most points, but sudden 

deviations were observed in extreme values. SVR follows 

the general trend but is particularly indecisive in high range 

values. The KNNR model is the model that deviates the most 

from the actual values and has experienced a significant loss 

of accuracy, especially in the medium and large value range. 

This analysis reveals that the RFR and RR models have 

strong generalization ability on this data set, while KNNR 

and SVR are sensitive to parameters and require strong 

parameter optimization. 

Table 2 compares the predicted values obtained from 

different machine learning models for each test data set with 

the actual values and calculates the absolute percentage error 

(APE). This provides a detailed overview of the predictive 

performance of the models based on the input parameters. 

The APE values calculated for each test dataset reveal the 

sensitivity of the models to experimental conditions. 

Especially under low load (7.5 N) and short sliding distance 

(150 m), the actual wear values are quite small, and although 

the error rates are limited in absolute terms, the APE 

percentage increases. This suggests that small wear values 

are more sensitive to the normalized error percentage. The 

Table 2 results reveal that the ANN and RFR models can 

maintain APE values below 10% in most scenarios, whereas 

SVR and some tree-based methods can produce deviations 

in the range of 40–100% under certain conditions. 

Furthermore, it was observed that model predictions differed 

with increasing Al2O3 addition ratio; ANN and RFR were 

more stable at low addition levels (1–2%), while some 

models' generalization ability decreased at higher addition 

levels. These findings highlight the relative importance of 

input variables on wear behavior and suggest that model 

accuracy should be carefully evaluated, especially with 

small-scale experimental data. 

Figure 8 presents a comparison of the mean absolute 

percentage error (MAPE) values calculated across all test 

data. This display allows us to compare the overall predictive 

success of each model across the entire dataset and to 

visualize the performance differences between models. 

 

 

Figure 8. MAPE of the predictive models 

 

The MAPE values presented in Figure 8 demonstrate that 

the lowest error rate was achieved with the RFR model at 

17.62%, indicating that the combination of ensemble-based 

random sampling and multiple decision trees improves 

generalization ability in noisy and limited-dimensional 

datasets. RR provided a similarly low error rate of 18.46%, 

while the ANN model demonstrated acceptable accuracy at 

19.92%. In contrast, SVR model reached the highest error 

rate of 24.12%, suggesting that nonlinear kernel-based 

methods fail to achieve optimal parameter fitting on the 

current dataset. KNNR, DTR, and XGBR showed moderate 

performance with error rates in the range of 20–21%. The 

general trend indicates that ensemble methods and 

regularization-based linear models provide more reliable 

results, while the ANN maintains reasonable error levels 

despite different parameter combinations. These evaluations 

clearly reveal that both the size and distribution of the data 

set and the parametric structure of the model should be taken 

into account in model selection. 

Mean Squared Error (MSE) and Coefficient of 

Determination (R2) values obtained by different regression 

algorithms on test data with non-optimized parameters are 

shown in Figure 9. 
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Figure 9. Obtained MSE and 𝑅2 values for the predictive 

models 

 

Initial findings from the evaluation of non-optimized 

models have shown that especially RFR and ANN models 

can provide high accuracy even with default 

hyperparameters. While RFR model stands out with 1.28 

MSE and 0.88 R² score, ANN showed a similarly satisfactory 

performance with 1.41 MSE and 0.87 R² value. Similarly, 

RR also provided high initial accuracy with 1.11 MSE and 

0.890 R² score when trained with default inputs for solver. In 

this context, it has been seen that algorithms with relatively 

low parametric sensitivity and robust behavior even under 

default configurations can be the first choice for small data 

sets or rapid prototyping processes. However, the fact that 

some models (especially SVR and KNNR) show very low 

performance with default settings emphasizes the 

importance of hyperparameter tuning. 

The SVR and KNNR models in the graph showed 

significantly lower performance compared to other methods. 

In particular, KNNR draws attention with a relatively high 

MSE value of 4.43 compared to other models, while only 

showing a poor performance to explain the data variance 

with an R² score of 0.59. Similarly, the SVR model exhibited 

a low overall fit with a MSE of 3.82 and an R² value of 0.64. 

This can be attributed to the fact that both models have high 

parameter sensitivity and the accuracy level decreases 

dramatically with unoptimized parameters. Inappropriate 

selection of kernel, C and epsilon values in SVR; 

inappropriate adjustment of the k-neighborhood number and 

distance metric in KNNR may have directly affected the 

model success.  

Grid search method was used to optimize 

hyperparameters in all predictive models. The graph 

presented in Figure 10 shows the MSE and R² values 

obtained after determining the optimal hyperparameters of 

each model with the grid search method. 

After hyperparameter optimization, the best performance 

was achieved with the Artificial Neural Network (ANN) 

model. The final architecture consisted of a first hidden layer 

with 32 neurons using the tanh activation function and a 

second hidden layer with 32 neurons using the ReLU 

activation function. The network was trained with the Adam 

optimization algorithm and a learning rate of 0.001. 

 

 

Figure 10. Obtained MSE and 𝑅2 values for the predictive 

models after hyperparameter optimization 

 

This configuration yielded the lowest MSE (0.90) and the 

highest R² (0.92). The Random Forest Regressor (RFR), with 

unlimited depth, log2-based feature selection, and optimized 

sample split values, achieved an MSE of 0.93 and an R² of 

0.91, confirming the strong generalization ability of the 

ensemble approach. For Ridge regression, the optimal 

structure was obtained with a regularization parameter α = 

0.1 and solver = saga, resulting in an MSE of 1.00 and an R² 

of 0.90. In contrast, SVR, optimized with parameters C = 0.1, 

ε = 0.1, polynomial kernel (degree = 3), and γ = scale, 

produced an MSE of 3.19 with limited predictive capacity. 

Similarly, the K-Nearest Neighbors Regressor (KNNR), 

with algorithm selection, leaf size = 40, and Minkowski 

distance metric (p = 2), achieved an MSE of 2.87 and an R² 

of 0.74. 

These results demonstrate that ANN and RFR models 

stand out with their high accuracy and generalization 

capacity, Ridge regression provides a competitive 

performance with simpler structure, while SVR and KNNR 

exhibit relatively lower accuracy depending on the data 

structure and parameter sensitivity. Similar findings have 

been reported in the literature, where nanofiller-reinforced 

composites combined with advanced ML models such as 

RFR, gradient boosting, and deep neural networks have 

demonstrated high predictive accuracy with R² values 

frequently above 0.90 [18-20]. 

On the other hand, the effect of optimization is much 

more striking for SVR and KNNR models. The SVR model, 

which has a default MSE value of 3.82, has achieved a 59% 

reduction in error by reaching 1.58 MSE in its optimized 

state and has increased the R² score from 0.64 to 0.85. 

Similarly, the KNNR model has shown a significant increase 

in accuracy by increasing from 4.43 MSE and 0.59 R² to 2.86 

MSE and 0.73 R². These results clearly show that the 

parameter sensitivity of such models is very high and that 

they are unlikely to produce meaningful results unless they 

are optimized. 

When evaluated specifically for DTR, an interesting 

finding is that the model did not provide a significant 

increase in R² score despite optimization. While the MSE 

value slightly decreased from 1.90 to 1.85, the R² score 

increased from 0.82 to 0.88. This limited improvement may 

be due to the over-learning nature of decision trees and 
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indicates that such models may have low generalization 

capacity, especially in limited sample sizes. 

As a result, the analysis performed showed the positive 

effect of parameter optimization on model success in all 

models. However, the magnitude of this effect varies 

depending on the model and is more pronounced in 

algorithms with high parametric sensitivity such as SVR and 

KNNR. Systematic and careful implementation of 

hyperparameter search processes not only increases the 

generalization ability of the model but can also reduce the 

error by more than half in some cases. 

4 Conclusions  

In this study, Al2O3 microparticle reinforcement was 

applied at different ratios (1-5 wt.%) to improve the wear 

behavior of glass fiber-reinforced epoxy composites, and the 

tribological performance of the resulting composites was 

investigated. Furthermore, the obtained experimental data 

were analyzed using an artificial neural network and various 

machine learning algorithms to estimate specific wear rates. 

• The addition of Al2O3 particles enhanced the tribological 

performance of glass fiber-reinforced epoxy composites. 

Notably, the composite with 3 wt.% Al2O3 exhibited the 

lowest specific wear rate, achieving a 69% reduction in 

mass loss and an approximate 70% decrease in specific 

wear rate compared to the neat composite. 

• At 4 - 5 wt.% Al2O3 content, particle agglomeration led 

to microstructural deterioration, which in turn resulted in 

reduced wear resistance. 

• As part of the data-driven modeling, Artificial Neural 

Network (ANN), Random Forest Regressor (RFR), 

Ridge Regressor, Support Vector Regressor (SVR), and 

other regression algorithms were evaluated, and 

hyperparameter optimization was performed using the 

GridSearch method. The optimized ANN model 

achieved the highest accuracy with an MSE of 0.90 and 

an R2 of 0.92, while the RFR model demonstrated strong 

generalization ability with an R2 score of 0.91. 

• The analyses showed that the wear resistance of Al2O3 

doped glass fiber composites can be successfully 

predicted using machine learning models. Sample-based 

APE values indicate that prediction errors increase, 

particularly under low-load and short-distance 

conditions, but that ANN and RFR generally provide 

more stable results. In terms of the average error metric 

MAPE, the RFR model had the lowest error rate of 

17.62%, followed by RR at 18.46% and ANN at 19.92%. 

In contrast, the SVR model had the highest error rate of 

24.12%. These findings demonstrate that the RFR and 

RR models, in particular, offer more reliable methods for 

predicting the wear behavior of doped composites. 

• Models such as SVR and KNNR achieved error 

reductions of 59% and 35%, respectively, after 

optimization. These results demonstrate that properly 

configured AI models offer an effective alternative for 

tribological property prediction. 
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