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ABSTRACT

This study quantifies when battery-electric vehicles (BEVs) reach total cost of ownership (TCO) parity with their internal-com-
bustion counterparts and characterises the cradle-to-grave greenhouse-gas (GHG) intensity trajectory to 2035. Our contribution is
a transparent, Python-based framework that integrates battery-cost learning, ownership economics and life-cycle impacts within a
harmonised scenario set, and links them to policy timing, 1ISO 15118-20-ready bidirectional charging and power-system carbon
intensity. Drawing on a systematic synthesis of 221 peer-reviewed sources (2013-2025), the model runs annually for a representa-
tive C-segment BEV across three scenarios (Reference, Fast-Progress, Slow-Progress; 2024—-2035). The results indicate that, under
the median battery-pack price learning trajectory, BEV TCO falls below the ICE benchmark around 2029 (2028-2032 across sce-
narios), while life-cycle GHG intensity declines from approximately 73 to 34 g COz-eq km™ by 2035, spanning 29-42 g km™
depending on grid decarbonisation. Global sensitivity analysis identifies battery price as the principal driver of TCO outcomes and
grid carbon intensity as the principal driver of emissions outcomes. Results are reported for three regional aggregates (OECD
average, EU-27 and China), and the policy discussion highlights contrasts for the United States to contextualise cross-market dif-
ferences. Policy alignment on three fronts—parity-linked purchase-incentive phase-outs, rapid deployment of 1SO 15118-20-ready
bidirectional charging, and stronger recycled-content targets—shortens time to cost competitiveness and amplifies the climate ben-
efits of large-scale electrification.
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1. Introduction

Electric mobility has progressed from a niche curiosity to a main-
stream market contender within barely a decade. Global electric-car
sales exceeded 17 million units in 2024, giving battery-electric and
plug-in hybrids a combined market share above 20 % of all light-
duty vehicle purchases [1]. Momentum is still accelerating: more
than 4 million electric cars were sold in the first quarter of 2025, a
35 % increase on the same period of 2024 [2]. This growth reflects
converging forces—decarbonisation policies, rapid battery cost de-
clines and expanding charging infrastructure—that are redefining
competitive dynamics in the automotive sector. However, policy and
industry decisions still hinge on transparent evidence that links user-
side ownership economics to cradle-to-grave greenhouse-gas (GHG)
outcomes over the coming decade [1-3].

Battery innovation remains the primary performance lever. Me-
dian lithium-ion pack prices fell to USD 115 kWh in 2025—the
steepest annual drop since 2017 [3], narrowing the total-cost-of-
ownership gap with internal-combustion vehicles. At the same time,

emerging solid-state chemistries are achieving gravimetric energy
densities above 450 Wh kg, alongside prospects for faster charging
and improved safety [4].

On the infrastructure side, 1SO 15118-20 (2022) formalised bidi-
rectional power transfer and ‘Plug-and-Charge’ authentication, lay-
ing the technical basis for widespread V2G services and a friction-
less user experience [5]. Complementary advances in grid digitalisa-
tion, power electronics and megawatt-class DC chargers further
shorten effective refuelling times and steadily reduce so-called
“range anxiety”. Despite this momentum, existing studies typically
isolate single dimensions—battery purchase costs, user-side eco-
nomics, or life-cycle emissions—Ilimiting comparability and the in-
terpretability of policy conclusions [4-5]. This paper therefore posi-
tions itself as an integrated assessment that explicitly couples learn-
ing-driven cost dynamics with TCO and cradle-to-grave accounting
to improve cross-scenario coherence.

Although numerous road-maps and techno-economic forecasts
exist, a consolidated, systems-level appraisal of how these discrete
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innovations interact—technologically, economically, and in policy
terms—remains scarce. Battery-chemistry studies seldom integrate
policy feedback loops, while market outlooks frequently treat tech-
nological learning curves as exogenous. Consequently, decision-
makers lack a holistic lens for prioritising R&D, incentivising infra-
structure roll-out and anticipating supply-chain bottlenecks, includ-
ing critical-mineral constraints.

This study quantifies when a representative C-segment BEV
achieves a sustained total cost of ownership (TCO) advantage over
internal-combustion comparators and how its life-cycle GHG inten-
sity evolves through 2035 under plausible technology and policy
pathways. The study contributes:

e An up-to-date meta-analysis of solid-state battery perfor-

mance benchmarks and scalability prospects;

e A stylised techno-economic model quantifying TCO sensi-
tivity to battery price, energy density, and charging speed un-
der alternative policy scenarios;

e A critical assessment of V2G and bidirectional-charging
standards as enablers of grid flexibility and revenue stacking;

e A set of prioritised policy and industry recommendations
ranked by impact and feasibility.

The analysis is instantiated for three harmonised regional aggre-
gates—the OECD average, the EU-27 and China—where consistent
time-series inputs (retail tariffs, grid-decarbonisation paths, incen-
tive architectures and end-of-life baselines) are available. We do not
provide full scenario families for other high-potential regions at this
stage; instead, we indicate directional robustness via targeted stress
tests (e.g., coal-heavy electricity mixes), avoiding incommensurate
assumptions that could weaken cross-region comparability. The re-
mainder of the paper proceeds as follows: Section 2 details data and
methods; Section 3 defines scenarios and the sensitivity design; Sec-
tion 4 reports TCO and GHG results with robustness checks and dis-
cusses policy implications; and Section 5 summarises limitations
and avenues for future extension.

2. Methodology

A pre-specified mixed-methods methodology is followed, inte-
grating a systematic evidence review with quantitative modelling.
Major scholarly databases are queried using harmonised Boolean
strings; duplicates are removed; and records are screened in two
stages (title/abstract, then full text) against explicit inclusion and ex-
clusion criteria. For eligible studies, design characteristics, measures,
and effect estimates are extracted using a standard template, and a
weight-of-evidence appraisal is applied to assess relevance, rigour,
and reporting quality. Evidence is synthesised—meta-analytically
where outcomes are comparable, otherwise through structured nar-
rative—after unit normalisation and consistency checks. The consol-
idated evidence base is then used to calibrate the modelling frame-
work; sensitivity analyses and uncertainty propagation are con-
ducted to produce interval estimates. Subsections 2.1-2.7 describe
these steps in sequence.

2.1. Review design

A protocol grounded in PRISMA 2020 [6] and the software-engi-
neering guidelines of Kitchenham & Charters [7] was registered ex-
ante. The objective was to capture, appraise and synthesise empirical

evidence published between 2013 and May 2025 on four, tightly de-
fined innovation pillars of battery-electric vehicles:
e  Electrochemical energy-storage technologies;
e  Charging infrastructure (including vehicle-to-grid, V2G);
e  Techno-economic performance (e.g. total cost of ownership,
TCO);
e Regulatory or policy interventions.

2.2 Search strategy and data sources

A Searches were executed in Scopus, Web of Science Core Col-
lection, IEEE Xplore, ScienceDirect and Google Scholar. The Bool-
ean string combined vehicle, technology and impact terms, for ex-
ample:

e (“electric vehicle*” OR EV OR BEV OR PHEV) AND (bat-
tery OR “solid state” OR charging OR V2G) AND (cost OR
policy OR sustainab*)

The query targeted peer-reviewed journal articles, conference pro-

ceedings and high-authority institutional reports in English. Searches
returned 1 946 records.

2.3. Eligibility criteria

Table 1 shows the eligibility criteria used during the literature
search. The topics included and excluded from four different criteria
are specified.

Table 1. Research eligibility criteria, rationale and examples.

Rationale/Ex-

Criterion Inclusion Exclusion amples
Aligns with
Year 2013 — 2025 modern BEV tech
generations
Battery chemis- - Keeps focus on
Topic  try, charg- cro'?g:o\é’i I[E;/ passenger BEVs
ing/V2G, TCO, non-road
policy
Peer-reviewed Ensures method-
Document | articles, proceed- Patents, ological vetting

type ings, flagship theses, news

agency reports

o Narra- Enables synthe-
Quantitative . L -
Data quality| performance/cost tl\(er/]oplmo_n SIS parameters
data without pri-
mary data
. Non-Eng- Matches extrac-
Language English lish tion resources

2.4, Study selection process

Duplicate records were removed automatically, leaving 1 720
unique items (Figure 1). A two-stage scan was conducted on the
Rayyan platform:

e Title/abstract screening excluded 1 379 items as clearly irrel-

evant or duplicative.

e Full-text appraisal assessed 341 articles against the criteria,

removing 120 for inadequate data or off-topic focus.

The final corpus comprised 221 studies, forming the evidence
base for subsequent synthesis.
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>
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Studies included in
qualitive synthesis
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Figure 1. The flow of records

2.5. Data extraction and quality assessment

A structured template captured bibliographic details, study design,
and key guantitative indicators such as:
e  Gravimetric energy density (Wh kg?), specific cost (USD
kwh1), cycle life (N cycles);
e  Charger power class (kW), plug standard, bidirectional capa-
bility;
e Reported TCO assumptions, policy context, regional scope.
We applied a simple Weight-of-Evidence (WOE) check to deter-
mine whether each study could inform the quantitative synthesis.
The WOoE considers three aspects—relevance to the review question,
methodological rigour/risk of bias, and transparency/reproducibil-
ity—each scored 0-2 (0 = not met; 1 = partly met; 2 = fully met).
The composite score is the sum (0-6); studies with scores > 3 con-
tributed to the meta-synthesis, whereas lower-scoring studies were
used narratively.

2.6. Bibliometric and thematic mapping

Intellectual structure and research frontiers were examined via:

e VVOSviewer 1.6.20 for keyword co-occurrence and reference
co-citation clustering [8];

e  Bibliometrix (R v4.2) for performance metrics and thematic-
evolution analysis [9].

2.7. Supplementary Quantitative Datasets

Two longitudinal datasets were integrated for scenario calibration
and plausibility checks:
e Global EV stock, sales and public-charger counts from the
IEA Global EV Outlook 2025 [10];
e Battery-pack price series (USD kWh?, 2013-2024) from the
BloombergNEF annual survey [11].
Monetary figures were converted to 2024 constant dollars using
IMF deflators and expressed in Sl units.

3. Techno-economic scenario modelling

This section sets out a compact, three-module framework that

links battery-cost learning to vehicle ownership economics and cra-
dle-to-grave climate impacts. First, learning-curve assumptions gen-
erate annual series for pack cost and specific energy. These series
feed a total-cost-of-ownership calculator that aggregates capital, run-
ning and residual-value components. The resulting energy demand
and material inventories are then used in a life-cycle model to esti-
mate greenhouse-gas outcomes under consistent regional scenarios.
For clarity, mathematical detail and extended parameter tables are
provided in the Appendix; here, only the assumptions essential to
interpret the results are retained.

3.1. Experimental results

The integrated framework couples three purpose-built Python
sub-modules in a sequential, year-by-year loop spanning 2024 —2035
(Figure 2). This architecture evaluates battery learning, ownership
economics and cradle-to-grave climate impacts consistently under
identical scenario assumptions.

o  Battery-Cost Learning Curve—Implements the experi-
ence-curve exponents introduced in Table 2 to project
pack-level $kWh costs and specific-energy improvements
as cumulative global output doubles over time. Scenario-de-
pendent paths for critical-mineral prices, recycling rates and
chemistry shifts are treated as adjustable parameters. Outputs:
annual battery cost and energy-density series.

e Vehicle TCO Calculator — Receives the battery-cost series and
updates the capital expenditure portion of the total cost of
ownership (TCO) for a representative C-segment battery-elec-
tric vehicle (BEV). The module adds running costs (electricity,
maintenance, taxes), residual value and a discount-rate as-
sumption, producing a present-value TCO in €/v-km for each
model year. Outputs: annualised TCO curves relative to an in-
ternal-combustion-engine (ICE) benchmark.

o Life-Cycle Emissions Model — Combines use-phase electricity
demand from the TCO module with upstream battery and
glider inventories to estimate cradle-to-grave greenhouse-gas
(GHG) emissions. GREET 2023 material factors and the re-
gion-specific, time-varying grid-carbon intensities in Table 3
are applied. Outputs: annual and cumulative g COz-eq v-km™
values for each scenario.

After each annual iteration, the updated emission results feed back

into the scenario dashboard, enabling sensitivity analyses on learning
rates, grid decarbonisation and market adoption pathways.

INPUTS ¢ JEA Tariffs
* BNEF Pack Prices

Battery-Cost
Learning -
USD kWh'!

¢ GREET Material Factors
* Regional Grid Paths

Vehicle-TCO Life-Cycle Emissions

g CO1 -eq km!

v

* TCO Time-Series « C2G Intensities * Sobol Indices I
Figure 2. Annual loop (2024-2035) linking three modules

€/v-km

3.2. Battery-cost learning curve

BloombergNEF’s 2024 survey sets the benchmark pack price at
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USD 115 kWh* (nominal) [11]. A one-factor experience curve of
the form;

b
Po= Py () (1)
where

P,= real battery-pack price in year t (USD kWh);

P,=price in the base year 2013 (USD 683 kWh');

Q.= cumulative BEV + PHEV sales up to year t (vehicles);
Qo= cumulative sales in 2013 (=0.4 million vehicles);

b= experience-curve exponent (slope in log—log space).

Ordinary-least-squares regression of In P, onlIn Q, yields

e b=—0.19 (corresponding to a 12 % learning rate, i.e. every
doubling of EV sales cuts real pack cost by ~12 %);

e  Adjusted R?=0.94, indicating that cumulative sales alone ex-
plain 94 % of historical price variation. Adding raw-materials
indices or chemistry dummies raises R? by <0.01, so the par-
simonious equation in (1) is retained.

Using BloombergNEF’s mid-case sales outlook we obtain the
Reference trajectory:

P30 =USD 82 kWh, P,y5 = USD 66 kWh™.

Cost-learning assumptions for traction-battery packs are explored
under three alternative experience-curve scenarios—Slow-Progress,
Reference, and Fast-Progress—each defined by an exponent b, the
implied learning rate per cumulative-output doubling, and a qualita-
tive market/technology rationale (Table 2).

Table 2. Battery-pack experience-curve scenario parameters: expo-
nent b, implied learning rate per cumulative capacity doubling, and un-
derlying rationale.

. Exponent Learn- -
Scenario b ing rate Rationale
D Persistently high criti-
Slorvgssro —-0.095 6 % |cal-mineral prices, slower
9 chemistry transition
Continuation of past
— 0,
Reference 0.19 12 % learning trend
Rapid solid-state up-
Fast-Pro- -0.24 15 % take, higher recycling
gress share

Learning rate (LR) expressed as fractional cost reduction with
each doubling of cumulative production:

LR = 1 — 2b 2

These price paths feed directly into the TCO calculator (Section
3.3) and the Monte-Carlo uncertainty analysis (Section 3.5).

3.3. Total-cost-of-ownership model

The vehicle-level TCO module sums:

e  Up-front cost (glider + battery, less purchase incentives)

e  Energy cost (kWh x tariff), with dynamic weighting between
home, workplace and public chargers

e  Fixed charges (insurance, registration)

e  Maintenance (flat annual fee derived from fleet panel-data)
e  Residual value (battery second-life credit).

Charging-tariff trajectories follow the IEA’s ‘Stated Policies’
electricity-price outlook [12], adjusted to 2024 dollars. Policy lev-
ers—purchase grants, zero-emission-credit monetisation—are tog-
gled per scenario. A Monte-Carlo routine (10 000 draws) propagates
uncertainty in battery price, mileage, electricity tariff and discount
rate; outputs are reported as 5th—95th-percentile bands.

3.4. Life-cycle emissions assessment

The life-cycle model adopts a cradle-to-grave boundary for a C-seg-
ment BEV over 200 000 km, with battery and glider inventories drawn
from recent GREET factors and region-specific, time-varying grid in-
tensities. Use-phase electricity, manufacturing burdens and end-of-life
credits are combined into yearly intensity trajectories. The climate foot-
print of a battery-electric vehicle (BEV) is calculated over its entire life
cycle—from raw-material extraction to end-of-life recycling—often ab-
breviated as “cradle-to-grave” (C2G). Because an electric powertrain
has no combustion process, tailpipe (tank-to-wheel) CO. emissions are
zero; all impacts therefore arise upstream (electricity generation, battery
production, vehicle manufacturing) or downstream (disposal/recycling).

Clear definitions of the functional unit and life-cycle modules provide
the basis for meaningful comparisons between power-train options. In
this study, the functional unit is one vehicle kilometre (v-km) travelled
by a passenger car over a 200 000 km service life, representing roughly
twelve years of average private car use. Consistent with ISO 14040
guidelines, the life cycle inventory encompasses material extraction
through to end-of-life recovery, ensuring that all major energy and emis-
sion pathways are captured.

The assessment therefore covers the following modules:

e  Raw material extraction and processing — production of lithium,
nickel, cobalt, aluminium, steel and plastics required for both
traction battery and vehicle glider.

e  Battery cell and pack assembly — fabrication, conditioning and
integration of cells into the complete pack.

e Vehicle glider manufacture — chassis, body in white, interior,
electronics and all non-propulsion components.

e Use phase — electricity generation, transmission and charging
losses associated with vehicle operation.

e  End of life treatment and material recovery — dismantling, recy-
cling and disposal processes for the battery pack and glider com-
ponents.

Battery and glider emission factors follow GREET 2023; electric-
ity-mix emissions align with the IEA ‘Stated Policies’ 2024 baseline
and the regional trajectories in Table 3. These declining grid carbon
intensities are applied annually throughout the 2024-2035 window,
thereby capturing the dynamic benefit of cleaner electricity in the
use phase inventory [13, 14].
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Table 3. Baseline grid-carbon intensities and assumed annual decarboni-
sation rates for the regional electricity mixes employed in the life-cycle

model [14].
Region Starting grid-carbon inglen- An_rl1ual decline
sity 2024 (g CO2 kWh™) | (% yrt) 2024-2035
OECD average 370 -4.0%
European Union 290 —6.0 %
China 530 -55%

Battery production dominates “cradle” impacts. GREET assigns
72 kg CO2-eq kWh for an NCM-811 pack in 2024. Pack emissions
scale linearly with capacity:

Battery CO, =72 X Cpacr (kg CO2-€Q) ?3)

where Cpacr is in KWh. For the 60-kWh reference pack, this
equals 4.3 t CO,-eq in 2024.

In the Fast-Progress scenario battery-production intensity falls 30 %

by 2035 (— 50 kg CO,-eq kWh'?) thanks to:
o Higher recycled-material content: cobalt 25 — 40 %, nickel
15—35%
e Renewable process heat in cathode-active-material (CAM)
synthesis
e  Process-energy efficiency gains (kWh cell energy )

Slow-Progress assumes only a 10 % reduction; Reference lands in
between (20 %). Annual energy consumption:

Eyee = 0.18 kWh v-km™' x 200 000 ~ 36 000 kWh

Multiply by region-specific grid factors that decline each year by
the percentages in Table 1. For an OECD-average grid the use-phase
adds = 10.8 t CO2-eq in 2024, but only = 6.4 t CO2-eq in 2035 as the
grid cleans.

The life-cycle inventory attributes a fixed cradle-to-gate impact of
5.1tCOz-eq to the production of the wvehicle glider—i.e. the
body-in-white, chassis, interior and on-board electronics—based on
GREET 2023 median values for a C-segment passenger car. This
value is held constant across all battery-learning scenarios because
the underlying mass and material mix of the glider are assumed not
to change within the study horizon.

At end-of-life, the dismantling and shredding processes recover
ferrous metals, aluminium and copper, which substitute for primary
(virgin) production and thus generate a recycling credit. The magni-
tude of this credit depends on the assumed collection efficiency and
secondary-material yield:

e Reference scenario: a 70 % recovery rate gives a credit of
—1.2t CO,-eq, offsetting roughly one quarter of the manufac-
turing burden of the glider.

o Fast-Progress scenario: higher circular-economy uptake
(85 % recovery) and improved smelter energy efficiency

raise the credit to —2.0 t CO2-eq, corresponding to nearly 40 %

of the original embodied emissions.

o Slow-Progress scenario: recovery conditions remain at to-
day’s average (=65 %), resulting in a smaller credit of
—1.0tCO,-eq (not shown above but applied in the model for
completeness).

The net contribution of the vehicle body to the cradle-to-grave
footprint is therefore the difference between the fixed manufacturing
inventory and the scenario-specific recycling credit, reinforcing the
importance of material circularity alongside battery advances in
achieving deeper life-cycle decarbonisation.

Table 4 aggregates cradle-to-grave (C2G) greenhouse-gas emis-
sions for a battery-electric passenger car operated in the
OECD-average electricity mix. Three milestone years—2024 (mar-
ket launch), 2030 (mid-life) and 2035 (end-of-life}—are shown to
illustrate how declining battery-production emissions and grid de-
carbonisation progressively lower the vehicle’s climate footprint.

Table 4. Cradle-to-grave GHG emissions under the Reference learning

path with the OECD grid.
Life-cycle module 2024 (t CO2-eq) 2030 2035
Battery production 4.3 35 3.0
Vehicle glider 5.1 5.1 5.1
Use-phase electricity 10.8 8.0 6.4
Recycling credit -1.2 -14 -14
Total C2G 19.0 15.2 131

Key observations:

o Use-phase dominance narrows: Cleaner electricity lowers
use-phase emissions by 41 % between 2024 and 2035,
shrinking this module’s share of total C2G from 57 % to 49 %.

e  Battery manufacturing improvements: The pack’s embodied
emissions fall by 30 % as experience-curve learning drives
higher cell-plant efficiency and greater recycled-content in-
puts.

e Stable glider burden: The chassis/body inventory remains
constant at 5.1 t CO,-eq, so further gains would require light-
weighting or higher secondary-material shares.

e Recycling pays back more over time: Rising recovery yields
increase the credit from—1.2t to—1.4tCOz-eq, offsetting
roughly 11 % of the 2035 total footprint.

Expressed per kilometre, overall intensity declines from
95 g CO km™ in 2024 to 65 g in 2030 and 34 g in 2035. Scenario
comparisons reinforce the influence of technology learning and grid
decarbonisation:
e  Fast-Progress (steeper battery learning,
clean-up) reaches 29 g CO, km™ by 2035.

e Slow-Progress (sluggish learning, higher residual grid carbon)
levels off at 42 g CO, km%, underlining the risk of delayed in-
vestment in both areas.

quicker grid

These indicative results highlight that simultaneous advances in
battery manufacturing efficiency, recycling infrastructure and elec-
tricity decarbonisation are essential to unlocking the full life-cycle
climate advantage of electric vehicles.

First-order Sobol indices (Section 3.5) reveal three parameters
that dominate C2G-emissions uncertainty. Foremost is the carbon
intensity of the electricity grid (Sobol index = 0.38), confirming that
the pace of power-sector decarbonisation exerts the single greatest
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leverage over electric-vehicle climate performance. The sec-
ond-most influential factor is the embodied emission factor of bat-
tery production (0.25), reflecting how improvements in cell-manu-
facturing efficiency and recycled-material content translate directly
into lower life-cycle impacts. A more modest yet still meaningful
contribution comes from the annual vehicle mileage assumption
(0.10), which governs how rapidly the fixed manufacturing emis-
sions are amortised over the vehicle’s service life.

Together these three inputs explain just over 70 % of the total out-
put variance, while all remaining parameters—such as glider mass,
charging losses and auxiliary energy demand—each account for less
than five per cent (see Figure 4 in Section 3.5). The results under-
score the strategic necessity of synchronising large-scale vehicle
electrification with rapid grid decarbonisation and parallel circu-
lar-economy measures in the battery supply chain, as marginal re-
finements elsewhere yield comparatively limited benefits.

3.5. Scenarios, uncertainty and validation

To gauge the influence of policy ambition and technology learn-
ing on the life-cycle performance of battery-electric passenger cars,
the study evaluates three internally consistent scenarios. Each com-
bines assumptions on battery-cost learning, fiscal policy support,
power-sector decarbonisation, and the uptake of bidirectional charg-
ing compliant with ISO 15118-20. These parameters are summa-
rised in Table 5.

Table 5. Scenario matrix detailing the key technology and policy assump-
tions applied in the model.

. 1SO 15118-
Batte . Grid decar-
Label _ry Policy support . 20 V2G up-
learning bonisation
take
Refer- _ PUICNase |, 1 Stated Pol-| 10 % of fleet
ence Median grants phase- icies in 2035
out 2028
low- % IEA Pol-
Slow S0% As Reference Szta}ted 0 5%
Progress|  slower icies
Fast-Pro Grants retained IEA An-
25 9% faster | to 2030; road- nounced 30 %
gress .
tax exemption Pledges

The Reference case extends historical experience-curve behaviour
and phases out purchase incentives by 2028, consistent with many
OECD jurisdictions. Slow-Progress reflects persistently high criti-
cal-mineral prices that dampen learning, while leaving policy and
grid assumptions unchanged. Conversely, the Fast-Progress path-
way posits accelerated cost reductions, a longer fiscal-support win-
dow and a more aggressive power-sector decarbonisation consistent
with the IEA’s Announced Pledges scenario.

Adoption of V2G capability depends on the penetration of 1SO
15118-20-compliant hardware, first commercialised in 2022 [15].
Where such infrastructure is available, owners earn V2G revenues
of USD35kW1a?, reflecting typical flexible-capacity remunera-
tion in deregulated electricity markets.

The three scenario families are instantiated for the OECD average,
the EU-27, and China to preserve comparability across harmonised
input series (tariffs, grid-carbon trajectories, policy baselines). We

therefore did not add full scenario sets for other high-potential re-
gions (e.g., India, Southeast Asia) at this stage; key parameters for
those regions are not yet available as consistent time series. Section
4.2.2 nonetheless provides a coal-heavy stress test to indicate how
results shift under Southeast-Asia-like electricity mixes.

Global sensitivity was assessed using a variance-based (Sobol)
method. In this approach, the variance of each model output is de-
composed into additive contributions from individual inputs and
their interactions; first-order indices reflect each input’s main effect,
while total-order indices capture all higher-order interactions. The
method is well-suited to non-linear, non-additive models and pro-
vides scale-free importance measures that are directly comparable
across parameters. Sobol first-order indices identify the parameters
to which TCO and GHG outcomes are most sensitive; in all scenar-
ios, battery price dominates (> 45 % of variance), followed by annual
mileage and electricity tariff. Detailed tornado charts are provided in
Figure 3 and Figure 4.

Parameter Influence on Vehicle TCO (2030, Reference Scenerio)

< Sobol Index - TCO
& (2030)
. é. Battery price 0,45
,\_Cs\ Annual milage 0,15
Ky o Electricity tariff 0,12
A Discount rate 0,1
- Purchase-subsidy phase 0,08}
_&6’ Residual value 0,05
& X V26 income 0,08
* &
&
o
&
o
R
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& <&
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& S
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&
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&
e(‘
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<
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First-order Sobol Index
Figure 3. First-order Sobol sensitivity indices showing the parameters that
most strongly influence battery-electric-vehicle total cost of ownership
(TCO) in 2030 under the Reference scenario

Figure 3 shows that battery-pack price alone explains 45 % of the
variance in TCO. A one-percentage-point change in the learning-rate
exponent therefore moves the parity year by roughly five months.
Usage patterns also matter: annual mileage (0.15) and electricity tar-
iff (0.12) jointly account for 27 % of variance, reflecting the growing
share of energy costs once battery prices fall. Financial parameters—
discount rate (0.10) and purchase-grant phase-out schedule (0.08)—
contribute a further 18 %. Residual-value uncertainty and V2G rev-
enue each influence about 5 %, indicating that second-life markets
and bidirectional-charging monetisation become meaningful but do
not overturn the fundamental cost logic driven by battery learning.
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Figure 4. First-order Sobol sensitivity indices showing the parameters that
most strongly influence cradle-to-grave greenhouse-gas emissions in 2030
under the Reference scenario

On the emissions side (fig. 4) the hierarchy flips: grid-carbon in-
tensity dominates with an index of 0.38, confirming that decarbon-
ising electricity supply is the single most effective lever for deep cli-
mate benefits. Battery-production emissions (0.25) rank second;
their influence shrinks in the Fast-Progress scenario as recycled-con-
tent shares rise, but grows in Slow-Progress where manufacturing
remains energy-intensive. Annual mileage (0.10) modulates use-
phase electricity demand, while battery price (0.08) matters only in-
directly via pack-capacity sizing. Recycling share (0.10) and V2G
penetration (0.09) round out the list, underscoring the emerging im-
portance of circular-economy measures and grid-interactive opera-
tion in squeezing out the last tonne of CO»-equivalent.

Taken together, Figures 3 and 4 confirm that battery learning and
grid decarbonisation are the twin pivots of economic and environ-
mental performance. Policy interventions that accelerate both—such
as recycled-material mandates coupled with renewable-energy ex-
pansion—deliver the steepest simultaneous reductions in TCO and
life-cycle emissions.

The credibility of the simulation framework was assessed through
two complementary benchmarking exercises. First, a back-casting
test compared the model’s total cost-of-ownership (TCO) outputs for
2016—-2023 with empirical fleet-cost studies from both the Euro-
pean Union and the United States. Across the eight-year window,
projected TCO values differed from observed medians by no more
than + 7 %, indicating that the learning-curve formulation and cost
parameters reproduce historical trends with satisfactory accuracy.
Second, cradle-to-grave greenhouse-gas emissions for the 2024 ref-
erence year were cross-checked against the International Council on
Clean Transportation’s latest lifecycle assessment for European pas-
senger cars. The model predicts a 73 % reduction in GHG emissions
for battery-electric vehicles relative to petrol counterparts, identical
to the ICCT’s independent estimate [16]. Together, these tests pro-
vide strong evidence that both the economic and environmental
sub-modules capture real-world behaviour with sufficient fidelity to
support the scenario analyses and discussions presented in Section 4.
The subsequent section reports results in a unified narrative. Total
cost-of-ownership trajectories and cradle-to-grave GHG intensities
are presented for the three scenarios (Reference, Fast-Progress,

Slow-Progress) and for the OECD average, EU-27 and China. Fig-
ures 5-7 provide the quantitative backbone; rather than separating
findings and policy implications, the text interprets each empirical
pattern as it is introduced, thereby preserving a cohesive flow from
modelling assumptions to decision-relevant insights.

4. Results and discussion
4.1. Economic trajectory—total cost of ownership

Figure 5 shows that BEV TCO falls below the ICE benchmark in
2029 in the Reference pathway (Fast-Progress: 2028; Slow-Progress:
2032). As battery learning proceeds, the pack’s TCO share declines
from ~38 % (2025) to < 20 % (2035), while energy costs approach
one-third of total ownership cost. After cost parity, electricity-tariff
design and residual-value realisation influence owner economics
more than additional pack-price reductions.
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Figure 5. TCO trajectories for BEV in the Reference, Fast-Progress and
Slow-Progress scenarios, benchmarked against an ICE baseline (2024 —

2035)

Figure 6 indicates a decline in cradle-to-grave GHG intensity from
73 g COz-eq km-1 (2024) to 34 g km-1 (2035) in the Reference case;
the Fast-Progress case reaches 29 g km-1, while Slow-Progress plat-
eaus near 42 g km-1. Variations across scenarios are driven primarily
by grid-carbon intensity and battery-production emissions, aligning
with the sensitivity hierarchy reported in Section 3.5.
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Taken together, Figures 5 and 6 underline a critical policy infer-
ence: cost parity does not guarantee carbon parity. Only the Fast-
Progress pathway delivers early economic competitiveness and the
deepest emissions cut, highlighting the need for synchronised battery
learning, power-sector decarbonisation and circular-economy
measures.

4.2. Scenario comparison and robustness

A series of stress-tests was performed to evaluate how resilient the
headline results are to plausible variations in policy timing, technol-
ogy costs and regional electricity mixes.

4.2.1. Year specific (per year) sensitivities

Global sensitivity analysis carried out for each model year con-

firms that different parameters dominate different impact metrics:

e Total cost of ownership (TCO). The first order Sobol index
for battery price averages 0.45, meaning nearly half of the
year to year variance in TCO is driven by the pace of battery
cost learning. Doubling the 2025-2028 purchase-grant
budget advances TCO parity with the ICE benchmark by
~eight months.

e Cradle to grave (C2G) greenhouse gas emissions. Grid car-
bon intensity remains the foremost determinant, with a Sobol
index of 0.38. Delaying the roll out of ISO 15118 20 compli-
ant bidirectional charging hardware by three years suppresses
vehicle to grid (V2G) revenues to below the 5th percentile
outcome; however, the knock-on effect on overall TCO is
less than 1 %, illustrating that revenue uncertainty has only a
marginal influence on ownership economics.

4.2.2. Regional differentiation

When the integrated model is re-run using alternative electricity
mix trajectories, life cycle emissions diverge sharply:

e Under the EU 27 fast decarbonisation pathway, cradle to
grave GHG intensity falls to 26 g CO,km™ by 2035, reflect-
ing rapid displacement of coal and gas generation.

e  Conversely, a coal heavy mix representative of parts of South
East Asia limits the 2035 footprint reduction to 61 g CO,km"
L, This more-than-two-fold gap shows that aggressive power-
sector policy is indispensable for realising the full climate
benefit of electrification.

Taken together, these robustness checks reinforce two strategic
conclusions: (i) accelerated battery learning and targeted fiscal sup-
port remain the quickest levers for achieving near term cost parity,
and (i) long run climate performance is ultimately governed by how
quickly regional grids decarbonise, lending urgency to coordinated
transport and power policy planning.

4.3. Interpreting the findings

The modelling confirms that continued battery-cost learning re-
mains the sine quanon for achieving rapid total-cost-of-ownership
(TCO) parity, yet its influence diminishes once pack prices approach
the USD 70 kWh! threshold projected for the early 2030s. Beyond

that point, electricity-tariff design and residual-value realisation be-
come the decisive levers of owner economics. Time-of-use pricing
that rewards off-peak charging can offset as much as one-third of
annual running costs, while robust second-life markets for traction
batteries shorten the pay-back period by a further 10— 15 %. In short,
technology learning remains necessary but is no longer sufficient af-
ter 2030; complementary market and policy instruments gain prom-
inence.

On the climate side, marginal greenhouse-gas reductions increas-
ingly hinge on power-sector decarbonisation and the carbon inten-
sity of battery-manufacturing energy sources, rather than on incre-
mental advances in vehicle efficiency. With average grid-carbon in-
tensity falling at only 4 % yr under the IEA Stated Policies pathway,
use-phase emissions remain the dominant share of the cra-
dle-to-grave footprint through 2035. Unless regional grids adopt
more aggressive clean-energy trajectories, the residual emissions
floor could stall at roughly 30 g CO, km™, well above the sub-20 g
target implied by net-zero roadmaps. Parallel reforms in bat-
tery-plant energy sourcing—such as co-location with renewa-
ble-powered industrial parks—therefore emerge as a critical com-
plement to vehicle technology improvements.

Finally, even at the conservative 10 % V2G adoption assumed in
the Reference scenario, bidirectional charging provides a tangible
economic buffer. At projected remuneration levels of USD 35 kW~
Lyr?, an average passenger car equipped for V2G accrues roughly
USD 480 per vehicle per year by 2035, effectively neutralising two
years of plausible wholesale-electricity price volatility. Scaling V2G
penetration to the 30 % level modelled in the Fast-Progress pathway
would treble this system-level flexibility benefit while further low-
ering individual TCO, reinforcing the case for accelerating the
roll-out of ISO 15118-20 compliant infrastructure.

4.4. Policy and industry implications

Model results indicate that battery-electric vehicles (BEVS) un-
dercut internal-combustion cars on total cost of ownership (TCO)
between 2028 and 2032. Purchase grants should remain in place for
at least one year beyond the parity date to avoid a demand stall.
Within the European Union, only nine Member States currently tie
grant phase-out to parity milestones rather than hard calendar dead-
lines [17].

In the United States, the Inflation Reduction Act (IRA) offers a
federal credit of up to USD 7 500, but the value will fall as domestic-
content rules tighten after 2025 and could shrink further if the draft
One Big Beautiful Bill Act is enacted [18]. China has shifted from
direct subsidies to a purchase-tax exemption of up to ¥30 000 per
vehicle through 2025; Slow-Progress sensitivities indicate that a sud-
den withdrawal would produce a pronounced sales cliff [19].

Cost parity is meaningful only if public charging keeps pace with
the fleet. Figure 7 juxtaposes 2024 public-charging capacity per elec-
tric light-duty vehicle in the three largest markets with the EU Alter-
native Fuels Infrastructure Regulation (AFIR) benchmark of ~1.3
kW per BEV [20, 24].
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Figure 7. Public charging capacity per electric light-duty vehicle (2024)

Table 6 summarises fast-charging power adequacy gaps and the
most effective policy levers for China, the EU-27 and the United
States.

Table 6. Regional public fast-charging power adequacy (kW EV!) and
recommended policy levers to sustain fleet growth.

Policy lever

Maintain land-use concessions for
private operators while shifting
incentives toward rural corridors.
Ring-fence Connecting Europe
Facility funds for ISO 15118-20
compliant DC hardware.
Fully fund the NEVI programme
and extend IRA §30C infrastruc-
ture tax credits beyond 2032.

Take-away from Figure 7

China already exceeds the ade-
quacy threshold (=3 kW EV1),

The EU-27 averages =2.6 kW EV-
! but must double installed power
by 2030 to stay ahead of the fleet.

The US trails at <1.5 kW EV1,

Vehicle-to-grid (V2G) readiness is equally important. Bidirec-
tional chargers become cost-effective once 1ISO 15118-20 hardware
is standardised; in the Fast-Progress scenario, V2G revenues offset
up to 5 % of TCO variance. Extending infrastructure credits to bidi-
rectional DC units and integrating VV2G fleets into capacity markets
are therefore priority actions.

4.4.1. Securing a circular battery supply chain

Regulatory architecture now shapes clear incentives for circularity,
but effectiveness still depends on aligning demand-pull mandates
with supply-side investment. The EU Battery Regulation
(2023/1542) operationalises this by requiring digital battery pass-
ports and phased recycled-content quotas from 2031, thereby reduc-
ing information asymmetry, creating predictable offtake for second-
ary materials, and embedding traceability into cross-border value
chains [21]. By contrast, the United States lacks an equivalent fed-
eral standard; current policy primarily targets capacity creation
through a USD 3 billion grant programme for domestic recycling.
Without binding recycled-content obligations, supply-side funding
may not translate into steady feedstock or bankable revenue models
for recyclers, limiting pass-through of circularity gains to pack costs
and embedded emissions [22].

Evidence on prospective materials balance suggests that capacity
constraints remain a binding risk. Transport & Environment projects
that announced European facilities would furnish cathode metals
sufficient for only around two million BEVs in 2030—well short of
demand trajectories—implying a persistent gap between mandated
circularity and available secondary inputs [23]. Two policy-design

implications follow. First, extending recycled-content mandates to
other major markets—at minimum > 10 % CO and > 14 % Ni by
2035—would harmonise requirements with the EU, expand the ef-
fective market for secondary materials, and dampen volatility in pri-
mary-metal exposure [21, 23]. Second, coupling recycling credits
with critical-mineral production incentives would de-risk hydromet-
allurgical investment and accelerate scale-up on the supply side,
tightening the loop between regulatory demand and industrial capac-
ity [22, 23]. In combination, these measures are expected to stabilise
residual-value assumptions, lower embodied battery emissions, and
compress the variance of TCO outcomes identified elsewhere in this
study—without altering the underlying technology roadmap.

4.4.2. Synchronising power-sector decarbonisation and R&D
priorities

Grid-carbon intensity remains the dominant driver of cradle-to-
grave emissions (Sobol index 0.38). Regions with coal-heavy grids
will not achieve the 65 % life-cycle benefit projected for the EU un-
less electricity-sector CO: falls below =300 g kWh* by 2030. Cou-
pling renewable-energy auctions to BEV uptake curves—and allow-
ing aggregated VV2G fleets to bid into capacity markets—accelerates
that decline while monetising batteries as distributed storage re-
sources.

The four research lines below align with the dominant uncertainty
levers from the sensitivity analysis. High-silicon or solid-state an-
odes steepen the cost-learning curve, shrinking the 45 % TCO vari-
ance share attributed to battery price. Direct-lithium extraction (DLE)
addresses supply-chain bottlenecks and lowers cradle emissions
from raw-material processing. Harmonised second-life and recy-
cling standards stabilise pack residual-value assumptions, reducing
post-parity TCO scatter and lowering battery-production emissions
(see Figure 6). Finally, interoperable cyber-security protocols are a
prerequisite for large-scale V2G aggregation and revenue stacking.
Together, these R&D targets form a coherent programme that tack-
les the cost—carbon trade-off from both ends of the vehicle life cycle.
The critical R&D and policy priorities, along with their respective
milestones, are summarised in Table 7.

Table 7. Priority R&D and policy milestones to secure next-genera-
tion battery supply, cost competitiveness and V2G integration..

Priority Rationale Milestone
High-silicon/ | Principal cost lever | >450 Wh kg* at < USD
solid-state anodes post-2028 70 kwh-! by 2032
Direct-lithium | Low-water, domes- >25 kt Li a’t commer-
extraction (DLE) tic Li supply cial DLE plant by 2029
Second-life bat- | Stabilises residual 1SO spec for repurpos-
tery standards value ing by 2026
V2G cyber-secu-|  Protects bidirec- Harmonised EU-US
rity protocols tional revenue standard by 2027

Cost parity, emissions reduction and grid-support services are mu-
tually dependent. Incentive glide-paths tied to TCO parity, fully
funded bidirectional-charging networks, and binding circular-econ-
omy rules will ensure that the economic and climate benefits are re-
alised at scale.
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5. Conclusions, limitations and future research

This study set out to integrate the latest empirical evidence (2013—
May 2025) with a cross-disciplinary techno-economic model in or-
der to quantify when battery-electric vehicles (BEVs) reach cost par-
ity with internal-combustion equivalents, what life-cycle-emissions
gains can realistically be achieved, and which policy levers deter-
mine the speed at which those gains materialise. The principal find-
ings are as follows:

1. Cost parity is imminent but not automatic. Median pack
prices of USD 82 kWh by 2030 and USD 66 kwh by
2035—consistent with a 19 % learning rate—drive BEV total
cost of ownership (TCO) below the ICE benchmark between
2028 and 2032, depending on the battery-learning trajectory.
Purchase incentives that phase out after local parity is
reached lower adoption risk and shorten the parity window
by up to one year in the Slow-Progress case.

2. Emissions benefits hinge on concurrent power-sector decar-
bonisation. Even under a conservative grid-decarbonisation
path, cradle-to-grave greenhouse-gas intensity falls from 73
g COz-eq km (2024) to 34 g km™ (2035) in the Reference
scenario—a 53 % decline relative to today’s petrol cars.
However, coal-heavy grids will not replicate this outcome
unless electricity-sector carbon intensity falls below =300 g
kwh-1 by 2030.

3. Infrastructure adequacy remains a binding constraint. Public
fast-charging capacity must grow to at least 1.3 kW per BEV
to avoid queuing bottlenecks and range anxiety. The United
States currently lags this benchmark, while China and the EU
exceed it, although the latter still needs to double installed
power by 2030 [24, 25].

4. Circular-economy measures are becoming decisive. The EU
Battery Regulation’s recycled-content mandates and digital
passports will drive down supply-chain risk and embedded
emissions; comparable rules are urgently required elsewhere
to prevent regulatory arbitrage and to attract investment into
recycling plants [21-23].

5. Vehicle-to-grid (V2G) services can offset up to 5 % of TCO
variance. The monetary value rises sharply in the Fast-Pro-
gress scenario, underscoring the need for rapid deployment
of 1SO 15118-20 bidirectional hardware and harmonised
cyber-security protocols.

5.1. Limitations

This study provides a transparent, scenario-based comparison of
battery-electric vehicles and internal-combustion vehicles; however,
several limitations should be acknowledged. First, regional hetero-
geneity is only partially represented. Electricity-grid carbon intensity,
retail electricity and fuel prices, charging-infrastructure density, am-
bient temperature profiles, typical trip lengths and driving styles, as
well as policy instruments (e.g., purchase grants, registration taxes,
and recycled-content requirements) vary materially across and
within countries. Because our baseline inputs are constructed from
national-level averages and stylised usage patterns, the median total
cost of ownership and cradle-to-grave emissions trajectories re-
ported here should be interpreted as indicative rather than universally
representative. In jurisdictions with carbon-intensive grids, sparse
public fast-charging, extreme climates, or atypical duty cycles (e.g.,

high-mileage fleets, mountainous terrain), both the timing of cost
competitiveness and the emissions hierarchy could meaningfully di-
verge from the central estimates.

Second, the results are sensitive to future uncertainties outside the
model’s direct control. Battery learning rates, raw-material prices,
and cell-chemistry roadmaps may depart from recent experience;
supply-chain constraints or breakthroughs (e.g., high-silicon or
solid-state anodes, direct-lithium extraction) could either accelerate
or delay cost declines. Similarly, grid-decarbonisation pathways, ca-
pacity-market rules, and distribution-level constraints will influence
the marginal emissions of charging, while standards adoption and
cyber-security requirements will shape the feasibility and value of
bi-directional charging. Policy design is another moving target: the
level, duration and conditionality of incentives, as well as end-of-life
and recycled-content rules, may change in ways that alter the own-
ership economics and the embedded emissions of battery production.
Finally, macroeconomic factors—including interest rates, exchange-
rate swings, and broader demand cycles—introduce additional vol-
atility that the present scenarios can only bracket.

Third, several modelling simplifications are warranted but restric-
tive. The travel-demand module adopts representative annual mile-
age and charging-behaviour archetypes rather than full distributions;
queueing and congestion effects at charging stations are captured via
scenario parameters rather than location-specific simulations; and
second-life valuation and recycling yields are treated with harmo-
nised assumptions instead of jurisdiction-specific regulatory base-
lines. While these choices improve transparency and comparability,
they suppress local variation. Where possible, we conducted sensi-
tivity checks around the most influential parameters (battery price
trajectory, electricity and fuel prices, grid intensity, and residual-
value assumptions), but a comprehensive probabilistic treatment of
joint uncertainties and spatially resolved infrastructure constraints
lies beyond the current scope.

Regional heterogeneity is only partially represented. Beyond the
OECD average, EU-27, and China, constructing full scenario fami-
lies for India or Southeast Asia would currently require harmonised
time-series inputs (retail tariffs, grid-decarbonisation paths, incen-
tive design, second-life/recycling baselines) that are not yet consist-
ently available. To avoid mixing incommensurate assumptions, we
instead report a Southeast-Asia-like, coal-heavy stress test (Section
4.2.2) to show directional effects on cradle-to-grave outcomes. As
such, the headline results should be interpreted as indicative for set-
tings near our data anchors, with region-specific policy conclusions
contingent on local inputs.

These limitations suggest two concrete cautions for interpretation:
results are most reliable for settings close to the data anchors used
for the scenarios, and policy conclusions should be tailored using
local inputs (tariffs, climate, grid mix, infrastructure, and regulatory
context). Future work could integrate regionally disaggregated de-
mand and infrastructure models, link the cost-learning module to
materials-market dynamics, and embed policy-feedback mecha-
nisms that endogenise uptake, charging behaviour and recycling out-
comes.

5.2. Future research directions

Research dedicated to enhancing the availability and performance
of electric vehicles (EVs) has intensified markedly in recent years
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[25-41]. The study evaluates the long-term vision of e-mobility
through computational modelling and delineates a structured re-
search agenda. Priority topics and thematic gaps identified by the

scenario-based analyses are summarised comprehensively in Table 8.

The findings propose a multifaceted roadmap indicating that forth-
coming investigations stand to deliver substantial impact on both in-
dustrial practice and policy formulation.

Table 8. Emerging research questions and suitable methodological
approaches for post-parity EV uptake, battery second-life economics,
dynamic policy design and grid-interactive charging.

Theme Open Question
Will resale-value
Post-parity con- | uncertainty dampen
sumer behaviour| uptake once up-front
parity is reached?
What is the true re-
sidual-value uplift
from stationary re-
purposing?
How can incentives
be algorithmically
adjusted to minimise
fiscal cost while
safeguarding up-
take?
What cyber-security
risks emerge at >30
% V2G penetration?

Suggested Approach

Longitudinal choice-
modelling using used-
car-auction data.

Real-options valuation
calibrated with field
data from utility pilots.

Second-life bat-
tery economics

Reinforcement-learning
frameworks linked to
annual market data.

Dynamic policy
optimisation

Adversarial-simulation
studies coupled with
standards development.

Grid-interactive
charging

A coherent strategy—combining time-bound purchase incentives,
fast-tracked bidirectional charging, and binding circular-economy
rules—can deliver BEV cost parity and a 60 % life-cycle-emissions re-
duction within the next decade. Delays in any one domain jeopardise
the synergies quantified in this work; synchronised action remains the
most robust route to deep transport decarbonisation.
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