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ABSTRACT 
 
This study quantifies when battery-electric vehicles (BEVs) reach total cost of ownership (TCO) parity with their internal-com-

bustion counterparts and characterises the cradle-to-grave greenhouse-gas (GHG) intensity trajectory to 2035. Our contribution is 

a transparent, Python-based framework that integrates battery-cost learning, ownership economics and life-cycle impacts within a 

harmonised scenario set, and links them to policy timing, ISO 15118-20-ready bidirectional charging and power-system carbon 

intensity. Drawing on a systematic synthesis of 221 peer-reviewed sources (2013–2025), the model runs annually for a representa-

tive C-segment BEV across three scenarios (Reference, Fast-Progress, Slow-Progress; 2024–2035). The results indicate that, under 

the median battery-pack price learning trajectory, BEV TCO falls below the ICE benchmark around 2029 (2028–2032 across sce-

narios), while life-cycle GHG intensity declines from approximately 73 to 34 g CO2-eq km-1 by 2035, spanning 29–42 g km-1 

depending on grid decarbonisation. Global sensitivity analysis identifies battery price as the principal driver of TCO outcomes and 

grid carbon intensity as the principal driver of emissions outcomes. Results are reported for three regional aggregates (OECD 

average, EU-27 and China), and the policy discussion highlights contrasts for the United States to contextualise cross-market dif-

ferences. Policy alignment on three fronts—parity-linked purchase-incentive phase-outs, rapid deployment of ISO 15118-20-ready 

bidirectional charging, and stronger recycled-content targets—shortens time to cost competitiveness and amplifies the climate ben-

efits of large-scale electrification. 
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1. Introduction 

Electric mobility has progressed from a niche curiosity to a main-

stream market contender within barely a decade. Global electric-car 

sales exceeded 17 million units in 2024, giving battery-electric and 

plug-in hybrids a combined market share above 20 % of all light-

duty vehicle purchases [1]. Momentum is still accelerating: more 

than 4 million electric cars were sold in the first quarter of 2025, a 

35 % increase on the same period of 2024 [2]. This growth reflects 

converging forces—decarbonisation policies, rapid battery cost de-

clines and expanding charging infrastructure—that are redefining 

competitive dynamics in the automotive sector. However, policy and 

industry decisions still hinge on transparent evidence that links user-

side ownership economics to cradle-to-grave greenhouse-gas (GHG) 

outcomes over the coming decade [1-3].  

Battery innovation remains the primary performance lever. Me-

dian lithium-ion pack prices fell to USD 115 kWh-1 in 2025—the 

steepest annual drop since 2017 [3], narrowing the total-cost-of-

ownership gap with internal-combustion vehicles. At the same time, 

emerging solid-state chemistries are achieving gravimetric energy 

densities above 450 Wh kg-1, alongside prospects for faster charging 

and improved safety [4]. 

On the infrastructure side, ISO 15118-20 (2022) formalised bidi-

rectional power transfer and ‘Plug-and-Charge’ authentication, lay-

ing the technical basis for widespread V2G services and a friction-

less user experience [5]. Complementary advances in grid digitalisa-

tion, power electronics and megawatt-class DC chargers further 

shorten effective refuelling times and steadily reduce so-called 

“range anxiety”. Despite this momentum, existing studies typically 

isolate single dimensions—battery purchase costs, user-side eco-

nomics, or life-cycle emissions—limiting comparability and the in-

terpretability of policy conclusions [4–5]. This paper therefore posi-

tions itself as an integrated assessment that explicitly couples learn-

ing-driven cost dynamics with TCO and cradle-to-grave accounting 

to improve cross-scenario coherence. 

Although numerous road-maps and techno-economic forecasts 

exist, a consolidated, systems-level appraisal of how these discrete 
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innovations interact—technologically, economically, and in policy 

terms—remains scarce. Battery-chemistry studies seldom integrate 

policy feedback loops, while market outlooks frequently treat tech-

nological learning curves as exogenous. Consequently, decision-

makers lack a holistic lens for prioritising R&D, incentivising infra-

structure roll-out and anticipating supply-chain bottlenecks, includ-

ing critical-mineral constraints. 

This study quantifies when a representative C-segment BEV 

achieves a sustained total cost of ownership (TCO) advantage over 

internal-combustion comparators and how its life-cycle GHG inten-

sity evolves through 2035 under plausible technology and policy 

pathways. The study contributes: 

 An up-to-date meta-analysis of solid-state battery perfor-

mance benchmarks and scalability prospects; 

 A stylised techno-economic model quantifying TCO sensi-

tivity to battery price, energy density, and charging speed un-

der alternative policy scenarios; 

 A critical assessment of V2G and bidirectional-charging 

standards as enablers of grid flexibility and revenue stacking; 

 A set of prioritised policy and industry recommendations 

ranked by impact and feasibility. 

The analysis is instantiated for three harmonised regional aggre-

gates—the OECD average, the EU-27 and China—where consistent 

time-series inputs (retail tariffs, grid-decarbonisation paths, incen-

tive architectures and end-of-life baselines) are available. We do not 

provide full scenario families for other high-potential regions at this 

stage; instead, we indicate directional robustness via targeted stress 

tests (e.g., coal-heavy electricity mixes), avoiding incommensurate 

assumptions that could weaken cross-region comparability. The re-

mainder of the paper proceeds as follows: Section 2 details data and 

methods; Section 3 defines scenarios and the sensitivity design; Sec-

tion 4 reports TCO and GHG results with robustness checks and dis-

cusses policy implications; and Section 5 summarises limitations 

and avenues for future extension. 

 
2. Methodology 

A pre-specified mixed-methods methodology is followed, inte-

grating a systematic evidence review with quantitative modelling. 

Major scholarly databases are queried using harmonised Boolean 

strings; duplicates are removed; and records are screened in two 

stages (title/abstract, then full text) against explicit inclusion and ex-

clusion criteria. For eligible studies, design characteristics, measures, 

and effect estimates are extracted using a standard template, and a 

weight-of-evidence appraisal is applied to assess relevance, rigour, 

and reporting quality. Evidence is synthesised—meta-analytically 

where outcomes are comparable, otherwise through structured nar-

rative—after unit normalisation and consistency checks. The consol-

idated evidence base is then used to calibrate the modelling frame-

work; sensitivity analyses and uncertainty propagation are con-

ducted to produce interval estimates. Subsections 2.1–2.7 describe 

these steps in sequence. 

 

2.1. Review design 

A protocol grounded in PRISMA 2020 [6] and the software-engi-

neering guidelines of Kitchenham & Charters [7] was registered ex-

ante. The objective was to capture, appraise and synthesise empirical 

evidence published between 2013 and May 2025 on four, tightly de-

fined innovation pillars of battery-electric vehicles: 

 Electrochemical energy-storage technologies; 

 Charging infrastructure (including vehicle-to-grid, V2G); 

 Techno-economic performance (e.g. total cost of ownership, 

TCO); 

 Regulatory or policy interventions. 

 

2.2 Search strategy and data sources 

A Searches were executed in Scopus, Web of Science Core Col-

lection, IEEE Xplore, ScienceDirect and Google Scholar. The Bool-

ean string combined vehicle, technology and impact terms, for ex-

ample: 

 (“electric vehicle*” OR EV OR BEV OR PHEV) AND (bat-

tery OR “solid state” OR charging OR V2G) AND (cost OR 

policy OR sustainab*) 

The query targeted peer-reviewed journal articles, conference pro-

ceedings and high-authority institutional reports in English. Searches 

returned 1 946 records. 

 

2.3. Eligibility criteria 

Table 1 shows the eligibility criteria used during the literature 

search. The topics included and excluded from four different criteria 

are specified. 

 
Table 1. Research eligibility criteria, rationale and examples. 

 

Criterion Inclusion Exclusion 
Rationale/Ex-

amples 

Year 2013 – 2025 --- 
Aligns with 

modern BEV tech 
generations 

Topic 

Battery chemis-
try, charg-

ing/V2G, TCO, 
policy 

FCV, mi-
cromobility, 

non-road 

Keeps focus on 
passenger BEVs 

Document 
type 

Peer-reviewed 
articles, proceed-

ings, flagship 
agency reports 

Patents, 
theses, news 

Ensures method-
ological vetting 

Data quality 
Quantitative 

performance/cost 
data 

Narra-
tive/opinion 
without pri-
mary data 

Enables synthe-
sis parameters 

Language English 
Non-Eng-

lish 
Matches extrac-
tion resources 

 

2.4. Study selection process 

Duplicate records were removed automatically, leaving 1 720 

unique items (Figure 1). A two-stage scan was conducted on the 

Rayyan platform: 

 Title/abstract screening excluded 1 379 items as clearly irrel-

evant or duplicative. 

 Full-text appraisal assessed 341 articles against the criteria, 

removing 120 for inadequate data or off-topic focus. 

The final corpus comprised 221 studies, forming the evidence 

base for subsequent synthesis. 
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Figure 1. The flow of records 

 

2.5. Data extraction and quality assessment 

A structured template captured bibliographic details, study design, 

and key quantitative indicators such as: 

 Gravimetric energy density (Wh kg-1), specific cost (USD 

kWh-1), cycle life (N cycles); 

 Charger power class (kW), plug standard, bidirectional capa-

bility; 

 Reported TCO assumptions, policy context, regional scope. 

We applied a simple Weight-of-Evidence (WoE) check to deter-

mine whether each study could inform the quantitative synthesis. 

The WoE considers three aspects—relevance to the review question, 

methodological rigour/risk of bias, and transparency/reproducibil-

ity—each scored 0–2 (0 = not met; 1 = partly met; 2 = fully met). 

The composite score is the sum (0–6); studies with scores ≥ 3 con-

tributed to the meta-synthesis, whereas lower-scoring studies were 

used narratively. 

 

2.6. Bibliometric and thematic mapping 

Intellectual structure and research frontiers were examined via: 

 VOSviewer 1.6.20 for keyword co-occurrence and reference 

co-citation clustering [8]; 

 Bibliometrix (R v4.2) for performance metrics and thematic-

evolution analysis [9]. 

 

2.7. Supplementary Quantitative Datasets 

Two longitudinal datasets were integrated for scenario calibration 

and plausibility checks: 

 Global EV stock, sales and public-charger counts from the 

IEA Global EV Outlook 2025 [10]; 

 Battery-pack price series (USD kWh-1, 2013-2024) from the 

BloombergNEF annual survey [11]. 

Monetary figures were converted to 2024 constant dollars using 

IMF deflators and expressed in SI units. 

 

3. Techno-economic scenario modelling 

This section sets out a compact, three-module framework that 

links battery-cost learning to vehicle ownership economics and cra-

dle-to-grave climate impacts. First, learning-curve assumptions gen-

erate annual series for pack cost and specific energy. These series 

feed a total-cost-of-ownership calculator that aggregates capital, run-

ning and residual-value components. The resulting energy demand 

and material inventories are then used in a life-cycle model to esti-

mate greenhouse-gas outcomes under consistent regional scenarios. 

For clarity, mathematical detail and extended parameter tables are 

provided in the Appendix; here, only the assumptions essential to 

interpret the results are retained. 

 

3.1. Experimental results 

The integrated framework couples three purpose‑built Python 

sub‑modules in a sequential, year‑by‑year loop spanning 2024 – 2035 

(Figure 2). This architecture evaluates battery learning, ownership 

economics and cradle-to-grave climate impacts consistently under 

identical scenario assumptions. 

 Battery‑Cost Learning Curve– Implements the experi-

ence‑curve exponents introduced in Table 2 to project 

pack‑level $ kWh-1 costs and specific‑energy improvements 

as cumulative global output doubles over time. Scenario-de-

pendent paths for critical-mineral prices, recycling rates and 

chemistry shifts are treated as adjustable parameters. Outputs: 

annual battery cost and energy‑density series. 

 Vehicle TCO Calculator – Receives the battery‑cost series and 

updates the capital expenditure portion of the total cost of 

ownership (TCO) for a representative C‑segment battery‑elec-

tric vehicle (BEV). The module adds running costs (electricity, 

maintenance, taxes), residual value and a discount‑rate as-

sumption, producing a present‑value TCO in €/v‑km for each 

model year. Outputs: annualised TCO curves relative to an in-

ternal‑combustion‑engine (ICE) benchmark. 

 Life‑Cycle Emissions Model – Combines use‑phase electricity 

demand from the TCO module with upstream battery and 

glider inventories to estimate cradle‑to‑grave greenhouse‑gas 

(GHG) emissions. GREET 2023 material factors and the re-

gion‑specific, time‑varying grid‑carbon intensities in Table 3 

are applied. Outputs: annual and cumulative g CO2‑eq v‑km-1 

values for each scenario. 

After each annual iteration, the updated emission results feed back 

into the scenario dashboard, enabling sensitivity analyses on learning 

rates, grid decarbonisation and market adoption pathways. 

 

 
Figure 2. Annual loop (2024–2035) linking three modules 

 

3.2. Battery-cost learning curve 

BloombergNEF’s 2024 survey sets the benchmark pack price at 
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USD 115 kWh-1 (nominal) [11]. A one-factor experience curve of 

the form; 

 

𝑃𝑡 = 𝑃0 (
𝑄𝑡

𝑄0
)

𝑏

 

  (1) 

 

where 

𝑃𝑡= real battery-pack price in year t (USD kWh-1); 

𝑃0= price in the base year 2013 (USD 683 kWh-1); 

𝑄𝑡= cumulative BEV + PHEV sales up to year t (vehicles); 

𝑄0= cumulative sales in 2013 (≈0.4 million vehicles); 

𝑏= experience-curve exponent (slope in log–log space). 

 

Ordinary-least-squares regression of ln 𝑃𝑡 on ln 𝑄𝑡  yields  

 𝑏= −0.19 (corresponding to a 12 % learning rate, i.e. every 

doubling of EV sales cuts real pack cost by ~12 %); 

 Adjusted R2 = 0.94, indicating that cumulative sales alone ex-

plain 94 % of historical price variation. Adding raw-materials 

indices or chemistry dummies raises R2 by <0.01, so the par-

simonious equation in (1) is retained. 

 Using BloombergNEF’s mid-case sales outlook we obtain the 

Reference trajectory: 

 

𝑃2030 ≈ USD 82 kWh-1, 𝑃2035 ≈ USD 66 kWh-1. 

 

Cost-learning assumptions for traction-battery packs are explored 

under three alternative experience-curve scenarios—Slow-Progress, 

Reference, and Fast-Progress—each defined by an exponent b, the 

implied learning rate per cumulative-output doubling, and a qualita-

tive market/technology rationale (Table 2). 

 
Table 2. Battery-pack experience-curve scenario parameters: expo-

nent b, implied learning rate per cumulative capacity doubling, and un-
derlying rationale. 

 

Scenario 
Exponent 

𝑏  
Learn-

ing rate 
Rationale 

Slow-Pro-
gress 

−0.095 6 % 
Persistently high criti-

cal-mineral prices, slower 
chemistry transition 

Reference −0.19 12 % 
Continuation of past 

learning trend 

Fast-Pro-
gress 

−0.24 15 % 
Rapid solid-state up-

take, higher recycling 
share 

 

Learning rate (LR) expressed as fractional cost reduction with 

each doubling of cumulative production:  

 

LR =  1 − 2𝑏        (2)

          

These price paths feed directly into the TCO calculator (Section 

3.3) and the Monte-Carlo uncertainty analysis (Section 3.5). 

 

3.3. Total-cost-of-ownership model 

The vehicle-level TCO module sums: 

 Up-front cost (glider + battery, less purchase incentives) 

 Energy cost (kWh × tariff), with dynamic weighting between 

home, workplace and public chargers 

 Fixed charges (insurance, registration) 

 Maintenance (flat annual fee derived from fleet panel-data) 

 Residual value (battery second-life credit). 

 

Charging-tariff trajectories follow the IEA’s ‘Stated Policies’ 

electricity-price outlook [12], adjusted to 2024 dollars. Policy lev-

ers—purchase grants, zero-emission-credit monetisation—are tog-

gled per scenario. A Monte-Carlo routine (10 000 draws) propagates 

uncertainty in battery price, mileage, electricity tariff and discount 

rate; outputs are reported as 5th–95th-percentile bands. 

 

3.4. Life-cycle emissions assessment 

The life-cycle model adopts a cradle-to-grave boundary for a C-seg-

ment BEV over 200 000 km, with battery and glider inventories drawn 

from recent GREET factors and region-specific, time-varying grid in-

tensities. Use-phase electricity, manufacturing burdens and end-of-life 

credits are combined into yearly intensity trajectories. The climate foot-

print of a battery-electric vehicle (BEV) is calculated over its entire life 

cycle—from raw-material extraction to end-of-life recycling—often ab-

breviated as “cradle-to-grave” (C2G). Because an electric powertrain 

has no combustion process, tailpipe (tank-to-wheel) CO₂ emissions are 

zero; all impacts therefore arise upstream (electricity generation, battery 

production, vehicle manufacturing) or downstream (disposal/recycling). 

Clear definitions of the functional unit and life-cycle modules provide 

the basis for meaningful comparisons between power-train options. In 

this study, the functional unit is one vehicle kilometre (v-km) travelled 

by a passenger car over a 200 000 km service life, representing roughly 

twelve years of average private car use. Consistent with ISO 14040 

guidelines, the life cycle inventory encompasses material extraction 

through to end-of-life recovery, ensuring that all major energy and emis-

sion pathways are captured. 

The assessment therefore covers the following modules: 

 Raw material extraction and processing – production of lithium, 

nickel, cobalt, aluminium, steel and plastics required for both 

traction battery and vehicle glider. 

 Battery cell and pack assembly – fabrication, conditioning and 

integration of cells into the complete pack. 

 Vehicle glider manufacture – chassis, body in white, interior, 

electronics and all non-propulsion components. 

 Use phase – electricity generation, transmission and charging 

losses associated with vehicle operation. 

 End of life treatment and material recovery – dismantling, recy-

cling and disposal processes for the battery pack and glider com-

ponents. 

 

Battery and glider emission factors follow GREET 2023; electric-

ity-mix emissions align with the IEA ‘Stated Policies’ 2024 baseline 

and the regional trajectories in Table 3. These declining grid carbon 

intensities are applied annually throughout the 2024–2035 window, 

thereby capturing the dynamic benefit of cleaner electricity in the 

use phase inventory [13, 14]. 
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Table 3. Baseline grid‑carbon intensities and assumed annual decarboni-

sation rates for the regional electricity mixes employed in the life‑cycle 

model [14]. 
 

Region 
Starting grid-carbon inten-

sity 2024 (g CO2 kWh-1) 
Annual decline 

(% yr-1) 2024-2035 

OECD average 370 −4.0 % 

European Union 290 −6.0 % 

China 530 −5.5 % 

 

Battery production dominates “cradle” impacts. GREET assigns 

72 kg CO₂-eq kWh-1 for an NCM-811 pack in 2024. Pack emissions 

scale linearly with capacity: 

 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑂2 = 72 × 𝐶𝑝𝑎𝑐𝑘 (kg CO2-eq)         (3) 

 

where 𝐶𝑝𝑎𝑐𝑘  is in kWh. For the 60-kWh reference pack, this 

equals 4.3 t CO2-eq in 2024. 

In the Fast-Progress scenario battery-production intensity falls 30 % 

by 2035 (→ 50 kg CO2-eq kWh-1) thanks to: 

 Higher recycled-material content: cobalt 25 → 40 %, nickel 

15 → 35 % 

 Renewable process heat in cathode-active-material (CAM) 

synthesis 

 Process-energy efficiency gains (kWh cell energy⁻¹) 

 

Slow-Progress assumes only a 10 % reduction; Reference lands in 

between (20 %). Annual energy consumption: 

 

𝐸𝑢𝑠𝑒 = 0.18 𝑘𝑊ℎ v-km
−1 × 200 000 ≈ 36 000 𝑘𝑊ℎ 

 

Multiply by region-specific grid factors that decline each year by 

the percentages in Table 1. For an OECD-average grid the use-phase 

adds ≈ 10.8 t CO2-eq in 2024, but only ≈ 6.4 t CO2-eq in 2035 as the 

grid cleans. 

The life‑cycle inventory attributes a fixed cradle‑to‑gate impact of 

5.1 t CO2‑eq to the production of the vehicle glider—i.e. the 

body‑in‑white, chassis, interior and on‑board electronics—based on 

GREET 2023 median values for a C‑segment passenger car. This 

value is held constant across all battery‑learning scenarios because 

the underlying mass and material mix of the glider are assumed not 

to change within the study horizon. 

At end‑of‑life, the dismantling and shredding processes recover 

ferrous metals, aluminium and copper, which substitute for primary 

(virgin) production and thus generate a recycling credit. The magni-

tude of this credit depends on the assumed collection efficiency and 

secondary‑material yield: 

 Reference scenario: a 70 % recovery rate gives a credit of 

−1.2 t CO2‑eq, offsetting roughly one quarter of the manufac-

turing burden of the glider. 

 Fast‑Progress scenario: higher circular‑economy uptake 

(85 % recovery) and improved smelter energy efficiency 

raise the credit to −2.0 t CO2‑eq, corresponding to nearly 40 % 

of the original embodied emissions. 

 Slow‑Progress scenario: recovery conditions remain at to-

day’s average (≈ 65 %), resulting in a smaller credit of 

−1.0 t CO2‑eq (not shown above but applied in the model for 

completeness). 

 

The net contribution of the vehicle body to the cradle‑to‑grave 

footprint is therefore the difference between the fixed manufacturing 

inventory and the scenario‑specific recycling credit, reinforcing the 

importance of material circularity alongside battery advances in 

achieving deeper life‑cycle decarbonisation. 

Table 4 aggregates cradle‑to‑grave (C2G) greenhouse‑gas emis-

sions for a battery‑electric passenger car operated in the 

OECD‑average electricity mix. Three milestone years—2024 (mar-

ket launch), 2030 (mid‑life) and 2035 (end‑of‑life)—are shown to 

illustrate how declining battery‑production emissions and grid de-

carbonisation progressively lower the vehicle’s climate footprint. 

 
Table 4. Cradle‑to‑grave GHG emissions under the Reference learning 

path with the OECD grid. 
 

Life-cycle module 2024 (t CO2-eq) 2030 2035 

Battery production 4.3 3.5 3.0 

Vehicle glider 5.1 5.1 5.1 

Use-phase electricity 10.8 8.0 6.4 

Recycling credit –1.2 –1.4 –1.4 

Total C2G 19.0 15.2 13.1 

 

Key observations: 

 Use‑phase dominance narrows: Cleaner electricity lowers 

use‑phase emissions by 41 % between 2024 and 2035, 

shrinking this module’s share of total C2G from 57 % to 49 %. 

 Battery manufacturing improvements: The pack’s embodied 

emissions fall by 30 % as experience‑curve learning drives 

higher cell‑plant efficiency and greater recycled‑content in-

puts. 

 Stable glider burden: The chassis/body inventory remains 

constant at 5.1 t CO2‑eq, so further gains would require light-

weighting or higher secondary‑material shares. 

 Recycling pays back more over time: Rising recovery yields 

increase the credit from −1.2 t to −1.4 t CO2‑eq, offsetting 

roughly 11 % of the 2035 total footprint. 

 

Expressed per kilometre, overall intensity declines from 

95 g CO2 km-1 in 2024 to 65 g in 2030 and 34 g in 2035. Scenario 

comparisons reinforce the influence of technology learning and grid 

decarbonisation: 

 Fast‑Progress (steeper battery learning, quicker grid 

clean‑up) reaches 29 g CO2 km-1 by 2035. 

 Slow‑Progress (sluggish learning, higher residual grid carbon) 

levels off at 42 g CO2 km-1, underlining the risk of delayed in-

vestment in both areas. 

 

These indicative results highlight that simultaneous advances in 

battery manufacturing efficiency, recycling infrastructure and elec-

tricity decarbonisation are essential to unlocking the full life‑cycle 

climate advantage of electric vehicles. 

First-order Sobol indices (Section 3.5) reveal three parameters 

that dominate C2G-emissions uncertainty. Foremost is the carbon 

intensity of the electricity grid (Sobol index = 0.38), confirming that 

the pace of power‑sector decarbonisation exerts the single greatest 
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leverage over electric‑vehicle climate performance. The sec-

ond‑most influential factor is the embodied emission factor of bat-

tery production (0.25), reflecting how improvements in cell‑manu-

facturing efficiency and recycled‑material content translate directly 

into lower life‑cycle impacts. A more modest yet still meaningful 

contribution comes from the annual vehicle mileage assumption 

(0.10), which governs how rapidly the fixed manufacturing emis-

sions are amortised over the vehicle’s service life. 

Together these three inputs explain just over 70 % of the total out-

put variance, while all remaining parameters—such as glider mass, 

charging losses and auxiliary energy demand—each account for less 

than five per cent (see Figure 4 in Section 3.5). The results under-

score the strategic necessity of synchronising large‑scale vehicle 

electrification with rapid grid decarbonisation and parallel circu-

lar‑economy measures in the battery supply chain, as marginal re-

finements elsewhere yield comparatively limited benefits. 

 

3.5. Scenarios, uncertainty and validation 

To gauge the influence of policy ambition and technology learn-

ing on the life‑cycle performance of battery‑electric passenger cars, 

the study evaluates three internally consistent scenarios. Each com-

bines assumptions on battery‑cost learning, fiscal policy support, 

power‑sector decarbonisation, and the uptake of bidirectional charg-

ing compliant with ISO 15118‑20. These parameters are summa-

rised in Table 5. 

 
Table 5. Scenario matrix detailing the key technology and policy assump-

tions applied in the model. 
 

Label 
Battery 

learning 
Policy support 

Grid decar-

bonisation 

ISO 15118-

20 V2G up-

take 

Refer-

ence 
Median 

Purchase 

grants phase-

out 2028 

IEA Stated Pol-

icies 

10 % of fleet 

in 2035 

Slow-

Progress 

50 % 

slower 
As Reference 

IEA Stated Pol-

icies 
5 % 

Fast-Pro-

gress 
25 % faster 

Grants retained 

to 2030; road-

tax exemption 

IEA An-

nounced 

Pledges 

30 % 

 

The Reference case extends historical experience-curve behaviour 

and phases out purchase incentives by 2028, consistent with many 

OECD jurisdictions. Slow‑Progress reflects persistently high criti-

cal‑mineral prices that dampen learning, while leaving policy and 

grid assumptions unchanged. Conversely, the Fast‑Progress path-

way posits accelerated cost reductions, a longer fiscal‑support win-

dow and a more aggressive power‑sector decarbonisation consistent 

with the IEA’s Announced Pledges scenario. 

Adoption of V2G capability depends on the penetration of ISO 

15118-20-compliant hardware, first commercialised in 2022 [15]. 

Where such infrastructure is available, owners earn V2G revenues 

of USD 35 kW-1 a-1, reflecting typical flexible‑capacity remunera-

tion in deregulated electricity markets. 

The three scenario families are instantiated for the OECD average, 

the EU-27, and China to preserve comparability across harmonised 

input series (tariffs, grid-carbon trajectories, policy baselines). We 

therefore did not add full scenario sets for other high-potential re-

gions (e.g., India, Southeast Asia) at this stage; key parameters for 

those regions are not yet available as consistent time series. Section 

4.2.2 nonetheless provides a coal-heavy stress test to indicate how 

results shift under Southeast-Asia-like electricity mixes. 

Global sensitivity was assessed using a variance-based (Sobol) 

method. In this approach, the variance of each model output is de-

composed into additive contributions from individual inputs and 

their interactions; first-order indices reflect each input’s main effect, 

while total-order indices capture all higher-order interactions. The 

method is well-suited to non-linear, non-additive models and pro-

vides scale-free importance measures that are directly comparable 

across parameters. Sobol first-order indices identify the parameters 

to which TCO and GHG outcomes are most sensitive; in all scenar-

ios, battery price dominates (> 45 % of variance), followed by annual 

mileage and electricity tariff. Detailed tornado charts are provided in 

Figure 3 and Figure 4. 

 

 
Figure 3. First-order Sobol sensitivity indices showing the parameters that 

most strongly influence battery-electric-vehicle total cost of ownership 

(TCO) in 2030 under the Reference scenario 

 

Figure 3 shows that battery-pack price alone explains 45 % of the 

variance in TCO. A one-percentage-point change in the learning-rate 

exponent therefore moves the parity year by roughly five months. 

Usage patterns also matter: annual mileage (0.15) and electricity tar-

iff (0.12) jointly account for 27 % of variance, reflecting the growing 

share of energy costs once battery prices fall. Financial parameters—

discount rate (0.10) and purchase-grant phase-out schedule (0.08)—

contribute a further 18 %. Residual-value uncertainty and V2G rev-

enue each influence about 5 %, indicating that second-life markets 

and bidirectional-charging monetisation become meaningful but do 

not overturn the fundamental cost logic driven by battery learning. 
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Figure 4. First-order Sobol sensitivity indices showing the parameters that 

most strongly influence cradle-to-grave greenhouse-gas emissions in 2030 

under the Reference scenario 

 

On the emissions side (fig. 4) the hierarchy flips: grid-carbon in-

tensity dominates with an index of 0.38, confirming that decarbon-

ising electricity supply is the single most effective lever for deep cli-

mate benefits. Battery-production emissions (0.25) rank second; 

their influence shrinks in the Fast-Progress scenario as recycled-con-

tent shares rise, but grows in Slow-Progress where manufacturing 

remains energy-intensive. Annual mileage (0.10) modulates use-

phase electricity demand, while battery price (0.08) matters only in-

directly via pack-capacity sizing. Recycling share (0.10) and V2G 

penetration (0.09) round out the list, underscoring the emerging im-

portance of circular-economy measures and grid-interactive opera-

tion in squeezing out the last tonne of CO2-equivalent. 

Taken together, Figures 3 and 4 confirm that battery learning and 

grid decarbonisation are the twin pivots of economic and environ-

mental performance. Policy interventions that accelerate both—such 

as recycled-material mandates coupled with renewable-energy ex-

pansion—deliver the steepest simultaneous reductions in TCO and 

life-cycle emissions. 

The credibility of the simulation framework was assessed through 

two complementary benchmarking exercises. First, a back‑casting 

test compared the model’s total cost‑of‑ownership (TCO) outputs for 

2016 – 2023 with empirical fleet‑cost studies from both the Euro-

pean Union and the United States. Across the eight‑year window, 

projected TCO values differed from observed medians by no more 

than ± 7 %, indicating that the learning‑curve formulation and cost 

parameters reproduce historical trends with satisfactory accuracy. 

Second, cradle‑to‑grave greenhouse‑gas emissions for the 2024 ref-

erence year were cross‑checked against the International Council on 

Clean Transportation’s latest lifecycle assessment for European pas-

senger cars. The model predicts a 73 % reduction in GHG emissions 

for battery‑electric vehicles relative to petrol counterparts, identical 

to the ICCT’s independent estimate [16]. Together, these tests pro-

vide strong evidence that both the economic and environmental 

sub‑modules capture real‑world behaviour with sufficient fidelity to 

support the scenario analyses and discussions presented in Section 4. 

The subsequent section reports results in a unified narrative. Total 

cost-of-ownership trajectories and cradle-to-grave GHG intensities 

are presented for the three scenarios (Reference, Fast-Progress, 

Slow-Progress) and for the OECD average, EU-27 and China. Fig-

ures 5–7 provide the quantitative backbone; rather than separating 

findings and policy implications, the text interprets each empirical 

pattern as it is introduced, thereby preserving a cohesive flow from 

modelling assumptions to decision-relevant insights. 
 

4. Results and discussion 

4.1. Economic trajectory—total cost of ownership 

Figure 5 shows that BEV TCO falls below the ICE benchmark in 

2029 in the Reference pathway (Fast-Progress: 2028; Slow-Progress: 

2032). As battery learning proceeds, the pack’s TCO share declines 

from ~38 % (2025) to < 20 % (2035), while energy costs approach 

one-third of total ownership cost. After cost parity, electricity-tariff 

design and residual-value realisation influence owner economics 

more than additional pack-price reductions. 
 

 
Figure 5. TCO trajectories for BEV in the Reference, Fast-Progress and 

Slow-Progress scenarios, benchmarked against an ICE baseline (2024 – 

2035) 

 

Figure 6 indicates a decline in cradle-to-grave GHG intensity from 

73 g CO₂-eq km-1 (2024) to 34 g km-1 (2035) in the Reference case; 

the Fast-Progress case reaches 29 g km-1, while Slow-Progress plat-

eaus near 42 g km-1. Variations across scenarios are driven primarily 

by grid-carbon intensity and battery-production emissions, aligning 

with the sensitivity hierarchy reported in Section 3.5. 
 

 
Figure 6. Cradle-to-grave GHG-intensity trajectories for BEVs in the Ref-

erence, Fast-Progress and Slow-Progress scenarios (2024 -35) 
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Taken together, Figures 5 and 6 underline a critical policy infer-

ence: cost parity does not guarantee carbon parity. Only the Fast-

Progress pathway delivers early economic competitiveness and the 

deepest emissions cut, highlighting the need for synchronised battery 

learning, power-sector decarbonisation and circular-economy 

measures. 

 

4.2. Scenario comparison and robustness 

A series of stress‑tests was performed to evaluate how resilient the 

headline results are to plausible variations in policy timing, technol-

ogy costs and regional electricity mixes. 

 

4.2.1. Year specific (per year) sensitivities 

Global sensitivity analysis carried out for each model year con-

firms that different parameters dominate different impact metrics: 

 Total cost of ownership (TCO). The first order Sobol index 

for battery price averages 0.45, meaning nearly half of the 

year to year variance in TCO is driven by the pace of battery 

cost learning. Doubling the 2025–2028 purchase-grant 

budget advances TCO parity with the ICE benchmark by 

~eight months. 

 Cradle to grave (C2G) greenhouse gas emissions. Grid car-

bon intensity remains the foremost determinant, with a Sobol 

index of 0.38. Delaying the roll out of ISO 15118 20 compli-

ant bidirectional charging hardware by three years suppresses 

vehicle to grid (V2G) revenues to below the 5th percentile 

outcome; however, the knock-on effect on overall TCO is 

less than 1 %, illustrating that revenue uncertainty has only a 

marginal influence on ownership economics. 

 

4.2.2. Regional differentiation 

When the integrated model is re-run using alternative electricity 

mix trajectories, life cycle emissions diverge sharply: 

 Under the EU 27 fast decarbonisation pathway, cradle to 

grave GHG intensity falls to 26 g CO2 km-1 by 2035, reflect-

ing rapid displacement of coal and gas generation. 

 Conversely, a coal heavy mix representative of parts of South 

East Asia limits the 2035 footprint reduction to 61 g CO2 km-

1. This more-than-two-fold gap shows that aggressive power-

sector policy is indispensable for realising the full climate 

benefit of electrification. 

 

Taken together, these robustness checks reinforce two strategic 

conclusions: (i) accelerated battery learning and targeted fiscal sup-

port remain the quickest levers for achieving near term cost parity, 

and (ii) long run climate performance is ultimately governed by how 

quickly regional grids decarbonise, lending urgency to coordinated 

transport and power policy planning. 

 

4.3. Interpreting the findings 

The modelling confirms that continued battery‑cost learning re-

mains the sine qua non for achieving rapid total‑cost‑of‑ownership 

(TCO) parity, yet its influence diminishes once pack prices approach 

the USD 70 kWh-1 threshold projected for the early 2030s. Beyond 

that point, electricity‑tariff design and residual‑value realisation be-

come the decisive levers of owner economics. Time‑of‑use pricing 

that rewards off‑peak charging can offset as much as one‑third of 

annual running costs, while robust second‑life markets for traction 

batteries shorten the pay‑back period by a further 10 – 15 %. In short, 

technology learning remains necessary but is no longer sufficient af-

ter 2030; complementary market and policy instruments gain prom-

inence. 

On the climate side, marginal greenhouse‑gas reductions increas-

ingly hinge on power‑sector decarbonisation and the carbon inten-

sity of battery‑manufacturing energy sources, rather than on incre-

mental advances in vehicle efficiency. With average grid‑carbon in-

tensity falling at only 4 % yr-1 under the IEA Stated Policies pathway, 

use‑phase emissions remain the dominant share of the cra-

dle‑to‑grave footprint through 2035. Unless regional grids adopt 

more aggressive clean‑energy trajectories, the residual emissions 

floor could stall at roughly 30 g CO2 km-1, well above the sub‑20 g 

target implied by net‑zero roadmaps. Parallel reforms in bat-

tery‑plant energy sourcing—such as co‑location with renewa-

ble‑powered industrial parks—therefore emerge as a critical com-

plement to vehicle technology improvements. 

Finally, even at the conservative 10 % V2G adoption assumed in 

the Reference scenario, bidirectional charging provides a tangible 

economic buffer. At projected remuneration levels of USD 35 kW-

1 yr-1, an average passenger car equipped for V2G accrues roughly 

USD 480 per vehicle per year by 2035, effectively neutralising two 

years of plausible wholesale‑electricity price volatility. Scaling V2G 

penetration to the 30 % level modelled in the Fast‑Progress pathway 

would treble this system‑level flexibility benefit while further low-

ering individual TCO, reinforcing the case for accelerating the 

roll‑out of ISO 15118‑20 compliant infrastructure. 

 

4.4. Policy and industry implications 

Model results indicate that battery-electric vehicles (BEVs) un-

dercut internal-combustion cars on total cost of ownership (TCO) 

between 2028 and 2032. Purchase grants should remain in place for 

at least one year beyond the parity date to avoid a demand stall. 

Within the European Union, only nine Member States currently tie 

grant phase-out to parity milestones rather than hard calendar dead-

lines [17]. 

In the United States, the Inflation Reduction Act (IRA) offers a 

federal credit of up to USD 7 500, but the value will fall as domestic-

content rules tighten after 2025 and could shrink further if the draft 

One Big Beautiful Bill Act is enacted [18]. China has shifted from 

direct subsidies to a purchase-tax exemption of up to ¥30 000 per 

vehicle through 2025; Slow-Progress sensitivities indicate that a sud-

den withdrawal would produce a pronounced sales cliff [19]. 

Cost parity is meaningful only if public charging keeps pace with 

the fleet. Figure 7 juxtaposes 2024 public-charging capacity per elec-

tric light-duty vehicle in the three largest markets with the EU Alter-

native Fuels Infrastructure Regulation (AFIR) benchmark of ≈1.3 

kW per BEV [20, 24]. 
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Figure 7. Public charging capacity per electric light-duty vehicle (2024) 

 

Table 6 summarises fast-charging power adequacy gaps and the 

most effective policy levers for China, the EU-27 and the United 

States. 

 

Table 6. Regional public fast‑charging power adequacy (kW EV-1) and 

recommended policy levers to sustain fleet growth. 
 

Take-away from Figure 7 Policy lever 

China already exceeds the ade-
quacy threshold (≈3 kW EV-1). 

Maintain land-use concessions for 
private operators while shifting 

incentives toward rural corridors. 
The EU-27 averages ≈2.6 kW EV-

1 but must double installed power 
by 2030 to stay ahead of the fleet. 

Ring-fence Connecting Europe 
Facility funds for ISO 15118-20 

compliant DC hardware. 

The US trails at <1.5 kW EV-1. 
Fully fund the NEVI programme 
and extend IRA §30C infrastruc-

ture tax credits beyond 2032. 

 

Vehicle-to-grid (V2G) readiness is equally important. Bidirec-

tional chargers become cost-effective once ISO 15118-20 hardware 

is standardised; in the Fast-Progress scenario, V2G revenues offset 

up to 5 % of TCO variance. Extending infrastructure credits to bidi-

rectional DC units and integrating V2G fleets into capacity markets 

are therefore priority actions. 

 

4.4.1. Securing a circular battery supply chain 

Regulatory architecture now shapes clear incentives for circularity, 

but effectiveness still depends on aligning demand-pull mandates 

with supply-side investment. The EU Battery Regulation 

(2023/1542) operationalises this by requiring digital battery pass-

ports and phased recycled-content quotas from 2031, thereby reduc-

ing information asymmetry, creating predictable offtake for second-

ary materials, and embedding traceability into cross-border value 

chains [21]. By contrast, the United States lacks an equivalent fed-

eral standard; current policy primarily targets capacity creation 

through a USD 3 billion grant programme for domestic recycling. 

Without binding recycled-content obligations, supply-side funding 

may not translate into steady feedstock or bankable revenue models 

for recyclers, limiting pass-through of circularity gains to pack costs 

and embedded emissions [22]. 

Evidence on prospective materials balance suggests that capacity 

constraints remain a binding risk. Transport & Environment projects 

that announced European facilities would furnish cathode metals 

sufficient for only around two million BEVs in 2030—well short of 

demand trajectories—implying a persistent gap between mandated 

circularity and available secondary inputs [23]. Two policy-design 

implications follow. First, extending recycled-content mandates to 

other major markets—at minimum ≥ 10 % CO and ≥ 14 % Ni by 

2035—would harmonise requirements with the EU, expand the ef-

fective market for secondary materials, and dampen volatility in pri-

mary-metal exposure [21, 23]. Second, coupling recycling credits 

with critical-mineral production incentives would de-risk hydromet-

allurgical investment and accelerate scale-up on the supply side, 

tightening the loop between regulatory demand and industrial capac-

ity [22, 23]. In combination, these measures are expected to stabilise 

residual-value assumptions, lower embodied battery emissions, and 

compress the variance of TCO outcomes identified elsewhere in this 

study—without altering the underlying technology roadmap. 

 

4.4.2. Synchronising power-sector decarbonisation and R&D 

priorities 

Grid-carbon intensity remains the dominant driver of cradle-to-

grave emissions (Sobol index 0.38). Regions with coal-heavy grids 

will not achieve the 65 % life-cycle benefit projected for the EU un-

less electricity-sector CO₂ falls below ≈300 g kWh-1 by 2030. Cou-

pling renewable-energy auctions to BEV uptake curves—and allow-

ing aggregated V2G fleets to bid into capacity markets—accelerates 

that decline while monetising batteries as distributed storage re-

sources. 

The four research lines below align with the dominant uncertainty 

levers from the sensitivity analysis. High-silicon or solid-state an-

odes steepen the cost-learning curve, shrinking the 45 % TCO vari-

ance share attributed to battery price. Direct-lithium extraction (DLE) 

addresses supply-chain bottlenecks and lowers cradle emissions 

from raw-material processing. Harmonised second-life and recy-

cling standards stabilise pack residual-value assumptions, reducing 

post-parity TCO scatter and lowering battery-production emissions 

(see Figure 6). Finally, interoperable cyber-security protocols are a 

prerequisite for large-scale V2G aggregation and revenue stacking. 

Together, these R&D targets form a coherent programme that tack-

les the cost–carbon trade-off from both ends of the vehicle life cycle. 

The critical R&D and policy priorities, along with their respective 

milestones, are summarised in Table 7. 

 
Table 7. Priority R&D and policy milestones to secure next‑genera-
tion battery supply, cost competitiveness and V2G integration.. 

 
Priority Rationale Milestone 

High-silicon / 
solid-state anodes 

Principal cost lever 
post-2028 

≥450 Wh kg-1 at < USD 
70 kWh-1 by 2032 

Direct-lithium 
extraction (DLE) 

Low-water, domes-
tic Li supply 

≥25 kt Li a-1 commer-
cial DLE plant by 2029 

Second-life bat-
tery standards 

Stabilises residual 
value 

ISO spec for repurpos-
ing by 2026 

V2G cyber-secu-
rity protocols 

Protects bidirec-
tional revenue 

Harmonised EU–US 
standard by 2027 

 

Cost parity, emissions reduction and grid-support services are mu-

tually dependent. Incentive glide-paths tied to TCO parity, fully 

funded bidirectional-charging networks, and binding circular-econ-

omy rules will ensure that the economic and climate benefits are re-

alised at scale. 
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5. Conclusions, limitations and future research 

This study set out to integrate the latest empirical evidence (2013–

May 2025) with a cross-disciplinary techno-economic model in or-

der to quantify when battery-electric vehicles (BEVs) reach cost par-

ity with internal-combustion equivalents, what life-cycle-emissions 

gains can realistically be achieved, and which policy levers deter-

mine the speed at which those gains materialise. The principal find-

ings are as follows: 

1. Cost parity is imminent but not automatic. Median pack 

prices of USD 82 kWh-1 by 2030 and USD 66 kWh-1 by 

2035—consistent with a 19 % learning rate—drive BEV total 

cost of ownership (TCO) below the ICE benchmark between 

2028 and 2032, depending on the battery-learning trajectory. 

Purchase incentives that phase out after local parity is 

reached lower adoption risk and shorten the parity window 

by up to one year in the Slow-Progress case. 

2. Emissions benefits hinge on concurrent power-sector decar-

bonisation. Even under a conservative grid-decarbonisation 

path, cradle-to-grave greenhouse-gas intensity falls from 73 

g CO2-eq km-1 (2024) to 34 g km-1 (2035) in the Reference 

scenario—a 53 % decline relative to today’s petrol cars. 

However, coal-heavy grids will not replicate this outcome 

unless electricity-sector carbon intensity falls below ≈300 g 

kWh-1 by 2030. 

3. Infrastructure adequacy remains a binding constraint. Public 

fast-charging capacity must grow to at least 1.3 kW per BEV 

to avoid queuing bottlenecks and range anxiety. The United 

States currently lags this benchmark, while China and the EU 

exceed it, although the latter still needs to double installed 

power by 2030 [24, 25]. 

4. Circular-economy measures are becoming decisive. The EU 

Battery Regulation’s recycled-content mandates and digital 

passports will drive down supply-chain risk and embedded 

emissions; comparable rules are urgently required elsewhere 

to prevent regulatory arbitrage and to attract investment into 

recycling plants [21-23]. 

5. Vehicle-to-grid (V2G) services can offset up to 5 % of TCO 

variance. The monetary value rises sharply in the Fast-Pro-

gress scenario, underscoring the need for rapid deployment 

of ISO 15118-20 bidirectional hardware and harmonised 

cyber-security protocols. 

 

5.1. Limitations 

This study provides a transparent, scenario-based comparison of 

battery-electric vehicles and internal-combustion vehicles; however, 

several limitations should be acknowledged. First, regional hetero-

geneity is only partially represented. Electricity-grid carbon intensity, 

retail electricity and fuel prices, charging-infrastructure density, am-

bient temperature profiles, typical trip lengths and driving styles, as 

well as policy instruments (e.g., purchase grants, registration taxes, 

and recycled-content requirements) vary materially across and 

within countries. Because our baseline inputs are constructed from 

national-level averages and stylised usage patterns, the median total 

cost of ownership and cradle-to-grave emissions trajectories re-

ported here should be interpreted as indicative rather than universally 

representative. In jurisdictions with carbon-intensive grids, sparse 

public fast-charging, extreme climates, or atypical duty cycles (e.g., 

high-mileage fleets, mountainous terrain), both the timing of cost 

competitiveness and the emissions hierarchy could meaningfully di-

verge from the central estimates. 

Second, the results are sensitive to future uncertainties outside the 

model’s direct control. Battery learning rates, raw-material prices, 

and cell-chemistry roadmaps may depart from recent experience; 

supply-chain constraints or breakthroughs (e.g., high-silicon or 

solid-state anodes, direct-lithium extraction) could either accelerate 

or delay cost declines. Similarly, grid-decarbonisation pathways, ca-

pacity-market rules, and distribution-level constraints will influence 

the marginal emissions of charging, while standards adoption and 

cyber-security requirements will shape the feasibility and value of 

bi-directional charging. Policy design is another moving target: the 

level, duration and conditionality of incentives, as well as end-of-life 

and recycled-content rules, may change in ways that alter the own-

ership economics and the embedded emissions of battery production. 

Finally, macroeconomic factors—including interest rates, exchange-

rate swings, and broader demand cycles—introduce additional vol-

atility that the present scenarios can only bracket. 

Third, several modelling simplifications are warranted but restric-

tive. The travel-demand module adopts representative annual mile-

age and charging-behaviour archetypes rather than full distributions; 

queueing and congestion effects at charging stations are captured via 

scenario parameters rather than location-specific simulations; and 

second-life valuation and recycling yields are treated with harmo-

nised assumptions instead of jurisdiction-specific regulatory base-

lines. While these choices improve transparency and comparability, 

they suppress local variation. Where possible, we conducted sensi-

tivity checks around the most influential parameters (battery price 

trajectory, electricity and fuel prices, grid intensity, and residual-

value assumptions), but a comprehensive probabilistic treatment of 

joint uncertainties and spatially resolved infrastructure constraints 

lies beyond the current scope. 

Regional heterogeneity is only partially represented. Beyond the 

OECD average, EU-27, and China, constructing full scenario fami-

lies for India or Southeast Asia would currently require harmonised 

time-series inputs (retail tariffs, grid-decarbonisation paths, incen-

tive design, second-life/recycling baselines) that are not yet consist-

ently available. To avoid mixing incommensurate assumptions, we 

instead report a Southeast-Asia-like, coal-heavy stress test (Section 

4.2.2) to show directional effects on cradle-to-grave outcomes. As 

such, the headline results should be interpreted as indicative for set-

tings near our data anchors, with region-specific policy conclusions 

contingent on local inputs. 

These limitations suggest two concrete cautions for interpretation: 

results are most reliable for settings close to the data anchors used 

for the scenarios, and policy conclusions should be tailored using 

local inputs (tariffs, climate, grid mix, infrastructure, and regulatory 

context). Future work could integrate regionally disaggregated de-

mand and infrastructure models, link the cost-learning module to 

materials-market dynamics, and embed policy-feedback mecha-

nisms that endogenise uptake, charging behaviour and recycling out-

comes. 

 

5.2. Future research directions 

Research dedicated to enhancing the availability and performance 

of electric vehicles (EVs) has intensified markedly in recent years 
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[25-41]. The study evaluates the long-term vision of e-mobility 

through computational modelling and delineates a structured re-

search agenda. Priority topics and thematic gaps identified by the 

scenario‑based analyses are summarised comprehensively in Table 8. 

The findings propose a multifaceted roadmap indicating that forth-

coming investigations stand to deliver substantial impact on both in-

dustrial practice and policy formulation. 

 
Table 8. Emerging research questions and suitable methodological 

approaches for post‑parity EV uptake, battery second‑life economics, 
dynamic policy design and grid‑interactive charging. 

 

Theme Open Question Suggested Approach 

Post-parity con-
sumer behaviour 

Will resale-value 
uncertainty dampen 
uptake once up-front 

parity is reached? 

Longitudinal choice-
modelling using used-

car-auction data. 

Second-life bat-
tery economics 

What is the true re-
sidual-value uplift 
from stationary re-

purposing? 

Real-options valuation 
calibrated with field 

data from utility pilots. 

Dynamic policy 
optimisation 

How can incentives 
be algorithmically 

adjusted to minimise 
fiscal cost while 
safeguarding up-

take? 

Reinforcement-learning 
frameworks linked to 
annual market data. 

Grid-interactive 
charging 

What cyber-security 
risks emerge at ≥30 
% V2G penetration? 

Adversarial-simulation 
studies coupled with 

standards development. 

 

A coherent strategy—combining time-bound purchase incentives, 

fast-tracked bidirectional charging, and binding circular-economy 

rules—can deliver BEV cost parity and a 60 % life-cycle-emissions re-

duction within the next decade. Delays in any one domain jeopardise 

the synergies quantified in this work; synchronised action remains the 

most robust route to deep transport decarbonisation. 
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