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Abstract: In various branches of modern engineering, including nuclear power engineering and rocket and
space technology, structural elements in various forms are widely used. During operation, they can be subjected
to both force and non-mechanical loads (thermal, radiation). During operation, they are subjected to radiation
loads. Thus, neutron fluxes, penetrating deep into the material, radically change its mechanical properties.
Moreover, when irradiated for several years and at high temperatures, as is the case in nuclear reactors, creep
deformations become significant, and irradiation and temperature affect the creep of materials differently.
Therefore, in those areas of technology where neutron radiation and high temperatures are present, when
designing structures, it is necessary to take into account the effect of radiation and temperature on the
mechanical properties of the material. The task is further complicated when taking into account geometric
nonlinearity.It is practically impossible to obtain an exact solution to such problems, therefore the development
of approximate methods is of particular importance. In nonlinear problems, one of the effective approximate
methods of solution is the variational method. To solve long-term stability problems by the variational method,
it is necessary to develop these methods to be able to take into account geometric nonlinearity and changes in
mechanical characteristics. This means that it is necessary to construct a functional that would take into account
changes in the mechanical characteristics of the body, taking into account creep deformation and geometric
nonlinearity. The article proposes a functional for studying the stability of structural materials (the stress-strain
state (SSS) of a body) under neutron irradiation, taking into account geometric nonlinearity and creep
deformations. It is proven that the Euler equations of the functional take the form of an equation describing the
stress-strain state of a thin shell under irradiation, taking into account geometric nonlinearity and creep
deformations.
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Introduction

The development of nuclear energy, rocket, and space technology requires a particularly careful approach to the
issues of strength and stability of structures under the influence of radiation. The study of the effects of neutron
radiation on the strength and stability of structures is of particular importance. Neutron streams, penetrating
deep into the material, sharply alter its mechanical properties. Moreover, when radiation exposure continues for
several years and the temperature is high, as is the case in nuclear reactors, creep deformations become
significant, with radiation and temperature affecting the creep of materials differently.

Radiation-induced changes in the mechanical properties and swelling of structural materials can significantly
affect the performance of active zone elements, and these factors should be considered when determining the
kinetics of stressed and deformed states (Likhachev & Pupko, 1975). Therefore, many issues related to the
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calculation of the stress-strain state and the determination of performance considering the specifics of the
structures require further development and improvement. In particular, it is necessary to develop mathematical
methods for solving systems of equations that describe the kinetics of the stress-strain state of structures. A
more detailed study of the patterns of deformation and swelling processes of dividing and structural materials is
needed (Likhachev & Pupko, 1975). In connection with the widespread use of nuclear energy for peaceful
purposes, many scientists began to address the issues of the impact of radiation on the mechanical properties of
materials.

The first observations of measurements of elastic properties as a result of irradiation were made for graphite
(Wassilew C. et al., 1987). It was found that irradiation of graphite in a reactor leads to the formation of a
harder and more brittle material. The Young's modulus increases by approximately three times after irradiation
with a dose. The first theoretical calculations were carried out for metals by Denis (1952).

Detailed calculations, taking into account the relaxation of the nearest neighboring atoms, led to the following
conclusions: the presence of a small fraction of implanted atoms and vacancies results in a significant increase
in the elastic modulus of copper—by 5-7% per 1% of implanted atoms. It was established that in the case of
vacancies alone, the reduction in the modulus occurs mainly due to the influence of the entire mass of the
material. Consequently, the increase in the elastic modulus is primarily associated with the presence of
implanted atoms. A considerable increase in the modulus was experimentally observed by Thompson and
Holmes (1956) in copper monocrystals after irradiation in a reactor. In the book by Glesston and Edlund (1954),
the following formula is derived, which shows the law by which the intensity of radiation decreases with depth
in the material:

J, =Je ™ or J(z) = Jyexp(—puz)

where o -is the microscopic cross-section, No -is the macroscopic cross-section, N is the number of nuclei in
lsm® of the irradiated material, M = const - is the macroscopic cross-section, [/1] =1/cm, J,- is the irradiation
intensity on the surface, J,- is at a depth from the surface. The value of o - depends on the energy of the
bombarding neutron. The macroscopic cross-section is defined as:

#H=N-cor u=Ny-—-0,

NS

where N, = 6,02-10% -is Avogadro's number, p -is the density of the irradiated material, 4 -is the atomic

weight of the material.

Many works are devoted to studying the effect of irradiation on the radiation creep of structural materials and
fuel elements (Gulgazli& Efendiev, 2017; Gorokhovet al., 2020; Breslavsky & Tatarinova, 2023; Onimus et al.,
2020). In the book by Likhachev and Pupko (1975) the creep strain rate for an irradiated body is presented in the
following form:

3.5
= 4L
2 ‘¢

u

where -, is the stress deviator components, o, - is the stress intensity, F, = F, (o-u,T, D) is determined from

experience, ¢/ -is the creep deformation rate, 7- is the temperature, D- is the radiation dose.

Formulation of the Variational Principle
Basic Ratios

Let a body of volume ¥ be irradiated by an intense flux of neutrons: on part S, of the surface, surface forces
are specified, and on the remaining part S, of the surface, displacements are specified. Then the equilibrium
equation, taking into account geometric nonlinearity, the relationship between the rates of the components of
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deformations and stresses, and the boundary conditions in the Cartesian coordinate system have the following
form (Volmir,1972; Amenzade, 1976; Aliyev et, al., 2024):

o (e +800)], =0, )
éyzé§+él§’+g’;+g’;, )

e 1T. . . 1 ov . Ov .
& =E[O-U —v(30'é'ij —O'U)]—E{(Sé'”o-—ai,(ﬁT+EDH_

_é[aij — V(3G§l-j -0 )][Z—?:T+ %DJ 5

éb =[F,6, + FT+FpD] s,

.
20,

v o(aTl)

& =—r T8, + Lss,

3 y

3)

=¢; +&f +&; +¢&; are the strain tensor components, &;; -

where o ; -are the stress tensor components, & i i

i
and 55 - are, respectively, the elastic and plastic strain components, 8,; -are the creep strain components, 6‘1-; -
are the volume strain components that arise due to temperature and irradiation, E(D,T) - is Young's modulus,
v(D,T) - is Poisson's ratio, S - are the stress deviator components, & - is the coefficient of thermal expansion,

N, ; -are the components of the surface force vector, u, - are the displacements on the surface S,, a J; -are the

u’

/3 . . 1 . .
Kronecker symbols, o, = ESijSij -are the intensities of shear stresses, o = Eaﬁ - is the hydrostatic pressure,

F_(o,,T,D), F;(o0,,T,D),Fy(o,,T,D) do not depend on the type of stress state and are determined from
experience under uniaxial tension as follows (Likhachev & Pupko, 1975):

F =ZL[L_LJ,
o,\E, E

do, . . . .
where E,(c,,T,D)= —9 s the tangent modulus, o, and g, are the stress and strain under uniaxial tension,
€9
respectively,

3 | dE
Fp = +—Z 5 |,
"0, (ﬂ E? dT j

dey . . .
where fp(o,,T,D)= d_T(”) is the coefficient of temperature compliance, F), = ZL v, y(o,
o

R

d
T,D) = 20 is the
» dD

coefficient of radiation compliance, F.(c,,T,D) - is determined from experience, S(7,D) - is the swelling

function, n, - are the components of the normal to the surface of the body. The dot over the values means
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differentiation with respect to time, and the comma means covariant differentiations. The summation from 1 to 3
is performed over repeating indices.

Functional of the Variational Principle

The proposed functionality for this task is as follows:

. 1. ) . 1 ov . Ov -
J= I{G 5 + Gy”a/”al —O'U-|:E(G{/~ —v(30'5ij —GU))—E(?)GE” -0y a—TT+a—DDj—
1 OF . OF - 1. : : 3.5,
—?(aij ~v(305, —aij-))-(a—TT+a—DDj+[5Fgau +FTT+EDDjSU. > Fot
‘9(6“; ) s, + S5 ”dV— [N + [ i W, s @)

S,

o u

Proof
Let us prove that the Euler equations of the proposed functional (4) give the system (1), (2) and (3). Let us

calculate the first variation of the functional (4). Let us assume that only the speeds of displacements and
stresses vary.

&/:Ha Oy + ;06 + Oy iy {ZlE(d,j—v(wag—dy))—
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1
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J.Néu ds + j(u —u)éN ds . (5)
S

o' u

Here we took into account V; =0-on S, and &iz; =0 on S,. We transform the integrand. It is known that

1
& :E(Mi’j +u; +ualuaj)

then
1(. . )
& :5 U +u +”al“a/ gy ).
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N VP . .
0y = o B+ 8+, Gy + 00 )=

= %(&"‘i,j + ua,i&’.‘a,j)"’_ %(5“/1 + ua,_/‘&’.la,i) (6)

In (6) taking into account dit; ; = 6,0, ; and dit;; = 5,di, ; , we then obtain:

ly,j +%(5aj tu, )5’)01,1' (7

Taking into account (7), we transform the first term (5) as follows:

Si; = %(56,,. tu,

C;0e;dV =\ 0;\Op +ty; JoU, ;dV =
J ogazyar [ o5t y
J'[aya g, Wiy |, AV J'[a,,5 g, )}, Gitgdv )

When obtaining (8), we took into account the symmetry of the tensor oy; . Applying the Gauss-Ostrogradsky

theorem, from (8) we obtain:

ja S5, dV = ja S+l )&an_,dS—I[a'i,(amwa,,.)lj%dr/, )
S,+S, 14

where 7 - are the components of the normal to the surface S.

We transform the third term in (5) as follows:
J.O'Uua,&ajdV IUU .0l g ] dv jalj Ol ] ou,dV =
= [oytiasiandas - oy}, i av (10)
Ss+S, Vv

Let us transform the following terms into (5):

j {i(@'y‘ ~v{365, =6, o5, + ﬁ(&i‘/ V(30,06 - 35, ))J”}JV )

- IE(GJ ~v36s, -5, ))&;JJV . (11)

v
In obtaining (11) we used the following equalities:
600,;6; =30660, 0,060, =30660,

and also took into account that o; is a symmetric tensor.
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o urij

J.(;FaauSyéb' +F,6,5,06 ]dV:IF 6,866, dV (12)
Vv
When receiving (12) we used the fact that
1 1 3 ' L
5F60u5;00; = zF‘{ EsaﬁsaﬁJ 5, +8(8, +63, )=

=3 Fo = SapSapS;Sy

1.3
—F, 2 8,58,58;665; =0,
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u

Thus, for the first variation, taking into account the transformations (8), (10) (11), (12) we obtain:

& = I Oy +5m)” N]&udS+ J.[(g _‘9 _gp lc U)éb'l/]y’V

j[oy | dit,dv - .[u—u)fsNds

Equating &/ to zero and using the fundamental lemma of the calculus of variations, we obtain (Elsholts,1969):

[O-U(ua,i +5ai)].’j =0 s (13)
éyzé;+é,§’+é;+é;, (14)

o-,»j(ua’i+5m-)nj]' =I;Va na S, 15)

Ha S,

Integrating (13), (14), (15) over time and taking into account that there was no irradiation at the initial moment
of time, we obtain the complete system (1), (2), (3). Thus, we have shown that the stationary state of the
proposed functional is achieved on functions describing the stress-strain state of a deformable solid under
irradiation, taking into account geometric nonlinearity and creep deformation.

Long-Term Stability of the Rod
Statement of the Problem

A prismatic rod of constant thickness 2/ is rigidly fixed at the ends and is irradiated with a neutron flux so that
the irradiation intensity is constant along the lateral surface. It is assumed that the rod is thin, i.e. y=h/l <<1
(2! is the length of the rod), temperature 7 =const, Poisson's coefficient v =const. We assume that the
irradiation is one-sided.
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Let us take a right-hand Cartesian coordinate system Oxyz so that the x-axis is directed along the rod axis and
passes through the center of gravity of the cross-section, and the y- and z-axes are directed along the principal
axes of inertia of the cross-section (Figure 1).

X
! E A

/

y

Fig_ure 1. Figure 2.

We make the following assumptions: 1) The points of the middle surface do not move along the x-axis, and the
geometric nonlinearity exists only in the normal direction z; 2) The Kirchhoff-Love hypothesis is satisfied, i.e.,
&y =&,, =&, =0, where the z-coordinate is directed along the normal; 3) The points of the beam do not move

along the y-axis, and the other quantities do not depend on y. Then, the components of the strain tensor of the
middle surface and the components of its bending are expressed through the components of the displacement
vector on the middle surface as follows:

2 2
1(ow ow
= —|=|; O0=——, 16
¢ 2[6xj or? (16)

where w(x,#) - displacement of the mid-layer point in the direction of the z-axis; &(x,?),8(x,t) - accordingly,

deformation and change of curvature on the mid-surface of the rod, ¢ - time.

In solving this problem, following theoretical and experimental work, we assume that under irradiation, Young's
modulus increases monotonically depending on the irradiation dose D, but is limited from above, and therefore
Young's modulus £ (D) is selected in the form (Cybulskise, 1971; Murray,1972; Onimus et al., 2020) (Fig. 2).

D —kh
kD +Jz, or E(D)=EO~kD+Joe 7y

E\D)=FE
(D) 0 D+ Jrz, D+ Jye ™z,

(17)
where E, - is the Young's modulus of the unirradiated material, k = const>1-is a dimensionless quantity,
7y =const=1, 7,-is a measure of time.

It is assumed that the dose of irradiation D depends linearly on ¢ (Glesson & Edlund, 1954; Onimus et al., 2020),
ie.,

D = Jt = Jyexp (—,uz)t
Expression (17) for unilateral irradiation can be rewritten as:

ke’ -t+1,
E(z,t):E0~ﬂZ—.
e -t+71,

In nuclear reactors, neutrons are fast, i.e., they have an energy of U >1 Mew. Based on the above and

considering that the rod is thin, we can conclude that sz <<1. Therefore, when expanding in a series EG.D)
Z’

. . . . . t
by uz we take only the linear terms and introduce the dimensionless time 7 = —, we get:
To
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11 r+1_,ur(k—1)_z
E(z,t) Ey|kr+1 (kr+1)?

In the linear stressed state, i.e., the stress components
Ojp =013 =093 =0y =033,=0,01, =0
and the components of the deviator and the intensity of shear stresses, respectively, have the form:

o 3

2
S1,=83=8,;=0,8,==-0,5,=83=—7,0,=,/=85,5; =0
12 =913 =923 =3 22 =933 3 5 Vi
Thus, based on the above, the equation of state for this problem has the form:
E=F+F+E, (18)

where & is the deformation component at an arbitrary point of the rod; £°-is the elastic deformation

component, & ¢ -is the creep deformation component, and £ -is the volumetric deformation component.

According to the work (Amenzade,197Gulgazli, 2012), the rates of the elastic deformation component, creep
deformation, and volumetric deformation are:

where S is the volumetric swelling caused only by irradiation and determined empirically, and the function
F,. =F_(o;,D) is defined empirically.

Then, the equation of state (18) will be presented in the following form (Likhachev & Pupko, 1975; Gulgazli, &
Efendiev, 2017):

é:{f} FF 41 (19)
E 3

Following theoretical and experimental works, the dependence of S and F, on D can be approximated as
follows (Cybulskise, 1971; Murray,1972; Onimus et al., 2020):

S=KD, F,=O(T,D)-o,

where B and K are empirical constants, U - is the average neutron energy in reactors with fast neutrons, and the
function (D) has the following form: Q = BUJje #").

In equation (19), the first term expresses the rate of elastic deformation, the second - the rate of creep
deformation, and the third - the rate of volumetric swelling in the corresponding direction.

Then, the variational equation for this problem has the form (4):
J'[55§+§55+5@5——[——16—E-D+ SJ&?—(FC + J&*; v=0. (20)

(o2
) & oax |\2E E?éD 3 2F

Based on the known relationships of the components of the finite deformation tensor in a layer of the rod,
removed at a distance z from the central layer, we have the form (Volmir,1972):
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£=£+z0 21)
The component of the stress tensor at an arbitrary point of the rod has the form (Volmir,1972):

1 3z
:EN(x 1) + % — M (x,1) (22)

where

h h
N(x,f) = j G(xz,t)dz;  M(x,0)= I 26(x, 28)dz . 23)
—h —h

Considering that the origin is at the central layer of the rod, the expression for S and F, in reactors with fast
neutrons has the form:

S=KD, F,= {1 N(x,f) + 3h M(x, t)} (24)
for one-sided irradiation:

S = K]Oef"(hfz) , Q= BUJOe_”(h_Z) ;

Considering (21) and (22) in (20), we get:

| N 3M s +ez)+(g+kz)5N 32]‘34 +(£+3ZA34)8W56W
|20 "2 2h 2n ) \2h on’ Jax© ax

N 3zM § 5N 3zM Fc,§N+3ZM dv=0.
2hE 2WE 3 2h 2h3 2h  2K3

Assuming that the rod's size in the y-axis direction is equal to one, and by expanding the integral over z in (25),
we get:

(25)

[ [ ]

I (Noe 40156 + v + 6ovt + 205 D - Moo, 3Mp g | - 3J:’p1 .\

; X Ox 4h°E, 4n* E, 4h°E, 26)
7 26

9Mp2

o 52} M — QNN — 0, MON — ©, N — €, MM Jdx = 0.
0

h hoT 3
po:_[ T+1 _,uz'(k—12)_z z: 7+1 2 Plz_[z' t+1  ur(k 12)'2 ZZ&_;M(I kz);
JLkT+1 (kr+1) kt+1 kTl (k1 3 (kr+1)

7 = ——-

h 3
pzzj‘zz{rﬂ prk=1 |20 w4l

kr+1  (kr+1)* | 3 kr+l’
8 1 A 1 1 1
S, = J‘—SdZI—K]o(l—e_ZM); .[_3 zdz = O{h——+hez"h +—e2”}'];
7h6h 6hu 2.2h 203 1 P P
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h h

Q, = J'ngdz =£2J°(1—e‘2/’h); Q= f 3Z4de = 3Bl§J° (1+e‘2ﬂh PRV —i];
J 4h 4n*u o 4h 4h*u Hh Hh
h 2 -
9z 9BUJ, B} 2 2 2 2
2= -[4h69d22 4’ O{l_e M T R rer MJ'
° 7 H H

By the condition, the rod is rigidly fixed at both ends, i.e., the boundary conditions can be written as:

ow
ety =05 — =gy =0. (27)

w(x,T) =

Based on the boundary conditions (27) and physical considerations, for bending W(x,7), we accept the

following approximation:
W) = p(e)cos” 72 (28)

where ¢(7) is the unknown function of time.

Then the components of the strain rate tensor of the middle surface have the following form:

27° 2
) 2. 7° 2
9:{_;—;‘/} :%gb(r)cos%. (30)

Based on the equation of state (19) for the force and moments, we obtain the following approximations:

N(x,7) = N,(7) + N, (7)sin % + N3(r)cos% , (1)

M(x,7) = M,(z) + M, (z)sin’ % + M, (r)cos% . (32)

By substituting the accepted approximations for the components of deformations, forces, and moments (29),
(30), (31), and (32) into (26), and expanding the integrals over x, and equating the coefficients of the variations

of oo, éYVl,éY\'lz,éY%,éY\}[ I,W 2,67\}[ 5 to zero, we obtain a system of differential equations. When obtaining the
system of differential equations, we introduced the following dimensionless quantities:

5=0 N =D i =M o123,
I IE, I’E,
po=ll Q@ =lUMEQ,, (j=012) ; 5 =8, S,=15, y=t.7=uh
j_h-i+]’ j = 0%%> (J_:a)a 1 =PI 2 T2 y—h,,u—,u.

For the obtained system of differential equations, the initial conditions are taken in the following form:

Nl=0,N2=O,N3=0,M1=0,M2=0,M3=O,a=(50 at 7=0.
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The resulting system was solved on a computer using the fourth-order Runge-Kutta method. In this case,
Poisson’s ratios were taken as v =0,5, and it was assumed that Young's modulus does not depend on radiation

dose, i.e., E=E,=const, and for radiation creep, experimental data obtained in reactors with fast neutrons

were used. In this case, we have:

- = —  BUJ,E, AN
Bo=25=0.P =21 §==Kppli-e): 5,205 @y =220 1 27); G, =0:
3 3u 2yu
0. - 2BUJoEy |_g2A_2_2 ,2m, 2 2 -] é:_i(l_eagﬁjﬂjyﬂﬂr]. 8,-0.
2u T o ’ 3BUE, ’

The results obtained are shown in Figures 3-5. In the numerical solution of this problem, we used experimental
data obtained for SW 316 steels.

S, 107

Kp

40

h—
I

3(

T

20 \

10 o~

\

=

0

20 40 60 80 100 120 E
Figure 3. The dependence of the critical volumetric swelling on the relative thickness for a rod.

5-10°
?, =107
“““““““““ ?, =5.107
8t e ?, =107
3.7
3,6 3
h " 3 P 10~

Figure 4. The dependence of S = S() at different values of the initial bend @y (SW 316).
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Sy, 107

37 1T

3,6

0 5107 107 P

Figure 5. §Kp = §Kl, (@) for a straight rod made of steel SW 316 and for y =30

The diagrams show that the critical volumetric swelling S, and, accordingly, the critical time ¢, decrease with

an increase in the initial deflection and relative thickness y .

Results and Discussion

In those areas of technology where neutron radiation and high temperatures are present, it is necessary to take
into account the effect of radiation and temperature on the mechanical properties of the material when designing
structures. The problem is further complicated when geometric nonlinearity is taken into account. A
functionality for solving such problems using the variational method is proposed.

The advantages of the proposed functional (4) are that:

1. A functionality has been developed for studying the stress-strain state of a structure subjected to neutron
irradiation. This functionality takes into account geometric nonlinearity, creep, and changes in the
mechanical properties of the material depending on the irradiation dose.

2. It has been proven that the Euler equations obtained on the basis of this functional are equations describing
the stress-strain state (SSS) of structural elements. Using this functional, it is possible to analyze the
behavior of structures subjected to neutron irradiation.

3. In practical application of this functional, we obtain not a system of nonlinear algebraic equations, as is the
case when the stresses and strains themselves change independently, but a system of nonlinear ordinary
differential equations.

4. The Euler equation of this functional, which gives us the equilibrium equation, explicitly includes creep and
plastic deformation components, and it is taken into account that all components depend on the temperature
and radiation dose. The temperature and radiation dose themselves depend on time. Therefore, using this
functional, it is possible to study the behavior of structural materials both under the influence of radiation
and temperature, and separately.

5. The proposed functional was used to study the long-term stability of rods. In the numerical solution of this
problem, experimental data obtained for SW316 steels were used.

The results are shown in Figures 3-5.

Thus, using this functional, it is possible to study the stress-strain state of three-dimensional structural elements
under the influence of radiation and temperature, both jointly and separately.
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