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Abstract: In various branches of modern engineering, including nuclear power engineering and rocket and 

space technology, structural elements in various forms are widely used. During operation, they can be subjected 

to both force and non-mechanical loads (thermal, radiation). During operation, they are subjected to radiation 

loads. Thus, neutron fluxes, penetrating deep into the material, radically change its mechanical properties. 

Moreover, when irradiated for several years and at high temperatures, as is the case in nuclear reactors, creep 

deformations become significant, and irradiation and temperature affect the creep of materials differently. 

Therefore, in those areas of technology where neutron radiation and high temperatures are present, when 

designing structures, it is necessary to take into account the effect of radiation and temperature on the 

mechanical properties of the material. The task is further complicated when taking into account geometric 

nonlinearity.It is practically impossible to obtain an exact solution to such problems, therefore the development 

of approximate methods is of particular importance. In nonlinear problems, one of the effective approximate 

methods of solution is the variational method. To solve long-term stability problems by the variational method, 

it is necessary to develop these methods to be able to take into account geometric nonlinearity and changes in 

mechanical characteristics. This means that it is necessary to construct a functional that would take into account 

changes in the mechanical characteristics of the body, taking into account creep deformation and geometric 

nonlinearity.The article proposes a functional for studying the stability of structural materials (the stress-strain 

state (SSS) of a body) under neutron irradiation, taking into account geometric nonlinearity and creep 

deformations. It is proven that the Euler equations of the functional take the form of an equation describing the 

stress-strain state of a thin shell under irradiation, taking into account geometric nonlinearity and creep 

deformations. 
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Introduction 
 

The development of nuclear energy, rocket, and space technology requires a particularly careful approach to the 

issues of strength and stability of structures under the influence of radiation. The study of the effects of neutron 

radiation on the strength and stability of structures is of particular importance. Neutron streams, penetrating 

deep into the material, sharply alter its mechanical properties. Moreover, when radiation exposure continues for 

several years and the temperature is high, as is the case in nuclear reactors, creep deformations become 

significant, with radiation and temperature affecting the creep of materials differently. 

 

Radiation-induced changes in the mechanical properties and swelling of structural materials can significantly 

affect the performance of active zone elements, and these factors should be considered when determining the 

kinetics of stressed and deformed states (Likhachev & Pupko, 1975). Therefore, many issues related to the 

http://www.isres.org/


International Conference on Basic Sciences, Engineering and Technology (ICBASET), May 01-04, 2025, Trabzon/Türkiye 

152 

 

calculation of the stress-strain state and the determination of performance considering the specifics of the 

structures require further development and improvement. In particular, it is necessary to develop mathematical 

methods for solving systems of equations that describe the kinetics of the stress-strain state of structures. A 

more detailed study of the patterns of deformation and swelling processes of dividing and structural materials is 

needed (Likhachev & Pupko, 1975). In connection with the widespread use of nuclear energy for peaceful 

purposes, many scientists began to address the issues of the impact of radiation on the mechanical properties of 

materials. 

 

The first observations of measurements of elastic properties as a result of irradiation were made for graphite 

(Wassilew C.   et al., 1987). It was found that irradiation of graphite in a reactor leads to the formation of a 

harder and more brittle material. The Young's modulus increases by approximately three times after irradiation 

with a dose. The first theoretical calculations were carried out for metals by Denis (1952). 

 

Detailed calculations, taking into account the relaxation of the nearest neighboring atoms, led to the following 

conclusions: the presence of a small fraction of implanted atoms and vacancies results in a significant increase 

in the elastic modulus of copper—by 5–7% per 1% of implanted atoms. It was established that in the case of 

vacancies alone, the reduction in the modulus occurs mainly due to the influence of the entire mass of the 

material. Consequently, the increase in the elastic modulus is primarily associated with the presence of 

implanted atoms. A considerable increase in the modulus was experimentally observed by Thompson and 

Holmes (1956) in copper monocrystals after irradiation in a reactor. In the book by Glesston and Edlund (1954), 

the following formula is derived, which shows the law by which the intensity of radiation decreases with depth 

in the material: 

 
zN

z eJJ −= 0  or  ( ) ( )zJzJ −= exp0  

 

where  -is the microscopic cross-section,  N -is the macroscopic cross-section, N is the number of nuclei in  
31sm  of the irradiated material, const= - is the macroscopic cross-section,   см/1= , 0J - is the irradiation 

intensity on the surface, zJ - is at a depth from the surface. The value of   - depends on the energy of the 

bombarding neutron. The macroscopic cross-section is defined as:  

 

 = N  or  


 =
A

N0 , 

 

where  23
0 1002,6 =N  -is Avogadro's number,   -is the density of the irradiated material, A -is the atomic 

weight of the material.  

 

Many works are devoted to studying the effect of irradiation on the radiation creep of structural materials and 

fuel elements (Gulgazli& Efendiev, 2017; Gorokhovet al., 2020; Breslavsky & Tatarinova, 2023; Onimus et al., 

2020). In the book by Likhachev and Pupko (1975) the creep strain rate for an irradiated body is presented in the 

following form: 
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where  - ijS  is the stress deviator components, 
u - is the stress intensity, ( )DTFF ucc ,,=  is determined from 

experience,  c
ij -is the creep deformation rate, T- is the temperature, D- is the radiation dose. 

 

 

Formulation of the Variational Principle  
 

Basic Ratios 

 

Let a body of volume V be irradiated by an intense flux of neutrons: on part  S  of the surface, surface forces 

are specified, and on the remaining part uS  of the surface, displacements are specified. Then the equilibrium 

equation, taking into account geometric nonlinearity, the relationship between the rates of the components of 
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deformations and stresses, and the boundary conditions in the Cartesian coordinate system have the following 

form (Volmir,1972; Amenzade, 1976; Aliyev et, al., 2024): 
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where  ij -are the stress tensor components,  
v
ij

c
ij

p
ij

e
ijij   +++=  are the strain tensor components,  

e
ij -

and 
p
ij - are, respectively, the elastic and plastic strain components,  

c
ij -are the creep strain components, 

v
ij - 

are the volume strain components that arise due to temperature and irradiation, ),( TDE - is Young's modulus, 

),( TD - is Poisson's ratio, ijS - are the stress deviator components,  - is the coefficient of thermal expansion,  

iN -are the components of the surface force vector, iu - are the displacements on the surface uS ,  a ij -are the 

Kronecker symbols, ijiju SS
2

3
= -are the intensities of shear stresses, ii

3

1
= - is the hydrostatic pressure, 

),,(,),,(),,,( DTFDTFDTF uDuTu   do not depend on the type of stress state and are determined from 

experience under uniaxial tension as follows (Likhachev & Pupko, 1975): 
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where   
0

0),,(




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d
DTE uk =  is the tangent modulus, 0  and 0  are the stress and strain under uniaxial tension, 

respectively, 
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where 
dT

d
DTu

0),,(


 =  is the coefficient of temperature compliance, 
 u

DF
2

3
= ,  ),,( DTu

dD

d 0= is the 

coefficient of radiation compliance, ),,( DTF uc  - is determined from experience, ),( DTS - is the swelling 

function, n - are the components of the normal to the surface of the body. The dot over the values means 
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differentiation with respect to time, and the comma means covariant differentiations. The summation from 1 to 3 

is performed over repeating indices. 

 

 

Functional of the Variational Principle 

 

The proposed functionality for this task is as follows: 
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Proof 

 

Let us prove that the Euler equations of the proposed functional (4) give the system (1), (2) and (3). Let us 

calculate the first variation of the functional (4). Let us assume that only the speeds of displacements and 

stresses vary. 
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Here we took into account 0=iN


 - on S  and 0=iu
  on uS .  We transform the integrand. It is known that 
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Taking into account (7), we transform the first term (5) as follows: 
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When obtaining (8), we took into account the symmetry of the tensor ij . Applying the Gauss-Ostrogradsky 

theorem, from (8) we obtain: 
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where jn - are the components of the normal to the surface S. 

 

We transform the third term in (5) as follows: 
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Let us transform the following terms into (5): 
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In obtaining (11) we used the following equalities: 
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and also took into account that  ij  is a symmetric tensor. 
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Thus, for the first variation, taking into account the transformations (8), (10) (11), (12) we obtain:  
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Equating J  to zero and using the fundamental lemma of the calculus of variations, we obtain (Elsholts,1969): 
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Integrating (13), (14), (15) over time and taking into account that there was no irradiation at the initial moment 

of time, we obtain the complete system (1), (2), (3). Thus, we have shown that the stationary state of the 

proposed functional is achieved on functions describing the stress-strain state of a deformable solid under 

irradiation, taking into account geometric nonlinearity and creep deformation. 

 

 

Long-Term Stability of the Rod 

 

Statement of the Problem 

 

A prismatic rod of constant thickness 2h is rigidly fixed at the ends and is irradiated with a neutron flux so that  

the irradiation intensity is constant along the lateral surface. It is assumed that the rod is thin, i.e. 1/ = lh  

(2l is the length of the rod), temperature constT = , Poisson's coefficient const= . We assume that the 

irradiation is one-sided. 
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Let us take a right-hand Cartesian coordinate system Охуz so that the x-axis is directed along the rod axis and 

passes through the center of gravity of the cross-section, and the y- and z-axes are directed along the principal 

axes of inertia of the cross-section (Figure 1).  

 

 
                                        Figure 1.                                                                 Figure 2. 

 

We make the following assumptions: 1) The points of the middle surface do not move along the x-axis, and the 

geometric nonlinearity exists only in the normal direction z; 2) The Kirchhoff-Love hypothesis is satisfied, i.e., 

0=== zzyzxz  , where the z-coordinate is directed along the normal; 3) The points of the beam do not move 

along the y-axis, and the other quantities do not depend on y. Then, the components of the strain tensor of the 

middle surface and the components of its bending are expressed through the components of the displacement 

vector on the middle surface as follows:  
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where ),( txw  - displacement of the mid-layer point in the direction of the z-axis; ),(),,( txtx   - accordingly, 

deformation and change of curvature on the mid-surface of the rod, t - time. 

 

In solving this problem, following theoretical and experimental work, we assume that under irradiation, Young's 

modulus increases monotonically depending on the irradiation dose D, but is limited from above, and therefore 

Young's modulus E (D) is selected in the form (Cybulskise, 1971; Murray,1972; Onimus et al., 2020) (Fig. 2). 
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where 0E  -  is the Young's modulus of the unirradiated material, 1= constk -is a dimensionless quantity, 

10 == const ,  0 -is a measure of time.  

 

It is assumed that the dose of irradiation D depends linearly on t (Glesson & Edlund, 1954; Onimus et al., 2020), 

i.e.,  

 

( ) tzJtJD −== exp0 . 

 

Expression (17) for unilateral irradiation can be rewritten as:  
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In nuclear reactors, neutrons are fast, i.e., they have an energy of 1U  Mew. Based on the above and 

considering that the rod is thin, we can conclude that 1z . Therefore, when expanding in a series  
),(

1

tzE
 

by z  we take only the linear terms and introduce the dimensionless time 
0


t

= , we get: 
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In the linear stressed state, i.e., the stress components  

 

 ====== 113322231312 ,0  

 

 and the components of the deviator and the intensity of shear stresses, respectively, have the form: 
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,
3

,
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,0 332211231312  

 

Thus, based on the above, the equation of state for this problem has the form: 

 
vce   ~~~~ ++= ,      (18) 

 

where ~  is the deformation component at an arbitrary point of the rod; e~ -is the elastic deformation 

component, 
c~ -is the creep deformation component, and v~ -is the volumetric deformation component.   

 

According to the work (Amenzade,197Gulgazli, 2012), the rates of the elastic deformation component, creep 

deformation, and volumetric deformation are: 
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3

1~ = , 

 

where S is the volumetric swelling caused only by irradiation and determined empirically, and the function 

),( DFF icc =  is defined empirically. 

 

Then, the equation of state (18) will be presented in the following form (Likhachev & Pupko, 1975; Gulgazli, & 

Efendiev, 2017): 
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
       (19) 

 

Following theoretical and experimental works, the dependence of S and cF  on D can be approximated as 

follows (Cybulskise, 1971; Murray,1972; Onimus et al., 2020): 

 

uc DTFKDS == ),(,  

 

where B and K are empirical constants, U - is the average neutron energy in reactors with fast neutrons, and the 

function )(D   has the following form: )(
0

zheJUB −−=  . 

 

In equation (19), the first term expresses the rate of elastic deformation, the second - the rate of creep 

deformation, and the third - the rate of volumetric swelling in the corresponding direction. 

 

Then, the variational equation for this problem has the form (4): 
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Based on the known relationships of the components of the finite deformation tensor in a layer of the rod, 

removed at a distance z from the central layer, we have the form (Volmir,1972): 
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 z+= ~~
        (21) 

 

The component of the stress tensor at an arbitrary point of the rod has the form (Volmir,1972): 
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where 
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Considering that the origin is at the central layer of the rod, the expression for S and cF  in reactors with fast 

neutrons has the form: 
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for one-sided irradiation: 
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Considering (21) and (22) in (20), we get: 
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  (25) 

 

Assuming that the rod's size in the y-axis direction is equal to one, and by expanding the integral over z in (25), 

we get: 
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By the condition, the rod is rigidly fixed at both ends, i.e., the boundary conditions can be written as: 
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Based on the boundary conditions (27) and physical considerations, for bending ),( xw , we accept the 

following approximation: 
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where )(  is the unknown function of time. 

 

Then the components of the strain rate tensor of the middle surface have the following form: 
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Based on the equation of state (19) for the force and moments, we obtain the following approximations: 
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By substituting the accepted approximations for the components of deformations, forces, and moments (29), 

(30), (31), and (32) into (26), and expanding the integrals over x, and equating the coefficients of the variations 

of  321321 ,,,,,, MMMNNN    to zero, we obtain a system of differential equations. When obtaining the 

system of differential equations, we introduced the following dimensionless quantities: 
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For the obtained system of differential equations, the initial conditions are taken in the following form: 

 

0321321 ,0,0,0,0,0,0  ======= MMMNNN   at   0= . 
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The resulting system was solved on a computer using the fourth-order Runge-Kutta method. In this case, 

Poisson’s ratios were taken as 5,0= , and it was assumed that Young's modulus does not depend on radiation 

dose, i.e., constEE == 0 , and for radiation creep, experimental data obtained in reactors with fast neutrons 

were used. In this case, we have: 
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The results obtained are shown in Figures 3-5. In the numerical solution of this problem, we used experimental 

data obtained for SW 316 steels. 

 

 
Figure 3. The dependence of the critical volumetric swelling on the relative thickness for a rod. 

 

 
Figure 4. The dependence of )(SS =  at different values of the initial bend 0  (SW 316). 
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Figure 5. )( 0кркр SS =  for a straight rod made of steel SW 316 and for 30=  

 

The diagrams show that the critical volumetric swelling kpS and, accordingly, the critical time kpt  decrease with 

an increase in the initial deflection and relative thickness  . 

 

 

Results and Discussion 
 

In those areas of technology where neutron radiation and high temperatures are present, it is necessary to take 

into account the effect of radiation and temperature on the mechanical properties of the material when designing 

structures. The problem is further complicated when geometric nonlinearity is taken into account. A 

functionality for solving such problems using the variational method is proposed. 

 

The advantages of the proposed functional (4) are that: 

 

1.  A functionality has been developed for studying the stress-strain state of a structure subjected to neutron 

irradiation. This functionality takes into account geometric nonlinearity, creep, and changes in the 

mechanical properties of the material depending on the irradiation dose. 

2.  It has been proven that the Euler equations obtained on the basis of this functional are equations describing 

the stress-strain state (SSS) of structural elements. Using this functional, it is possible to analyze the 

behavior of structures subjected to neutron irradiation. 

3.  In practical application of this functional, we obtain not a system of nonlinear algebraic equations, as is the 

case when the stresses and strains themselves change independently, but a system of nonlinear ordinary 

differential equations. 

4.  The Euler equation of this functional, which gives us the equilibrium equation, explicitly includes creep and 

plastic deformation components, and it is taken into account that all components depend on the temperature 

and radiation dose. The temperature and radiation dose themselves depend on time. Therefore, using this 

functional, it is possible to study the behavior of structural materials both under the influence of radiation 

and temperature, and separately. 

5.  The proposed functional was used to study the long-term stability of rods. In the numerical solution of this 

problem, experimental data obtained for SW316 steels were used. 

 

The results are shown in Figures 3-5. 

 

Thus, using this functional, it is possible to study the stress-strain state of three-dimensional structural elements 

under the influence of radiation and temperature, both jointly and separately. 
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