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Abstract- In this study, quadratic assignment problem, which is a hard combinatorial optimization problem, is examined to solve 
by a new approach. To reach the optimal results by using mathematical programming approaches cannot be possible even for 
some sorts of small and middle scaled problems in a reasonable time interval. Huge amounts of data are being progressed 
simultaneously by graphics processing units located on computers’ graphics card. Therefore, a parallel iterated local search 
algorithm has been proposed to solve the quadratic assignment problem by using graphics processing units’ simultaneously 
progressing property. This parallel algorithm and the sequential one on central processing units are tested and compared for test 
problems in literature. Indeed, it is observed that the parallel algorithm works averagely 6.31 times faster for Skorin problems 
and 11.93 times faster for Taillard problems faster than sequentially one. 
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1. Introduction 
Combinatorial optimization is a topic that consists of 

finding optimal solution from a finite set of alternative 
solutions (n!) that generally studied in applied mathematics 
and theoretical computer sciences. Quadratic assignment 
problem (QAP) is a type of combinatorial optimization 
problem that was introduced by Koopmans and Beckmen in 
1957 [1].  

As a real life problem QAP can be defined facility 
planning, circuit designing and assigning the air-crafts to the 
gates. If we investigate QAP as a facility planning problem, 
the objective is assigning n facilities to n candidate locations 
by minimizing a cost function.  The mathematical formulation 
of QAP can be as: 
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In this formulation, 𝑓() is the flow between two facilities and 
𝑑+,	is the distance between two candidates. Complexity study 
of this mathematical model is handled by Sahni and Gonzalez 
[2] in 1976. They showed that QAP is NP-Hard and even 
finding and ϵ approximate solution is extremely hard.  

With the reason of QAP is NP-Hard, working with exact 
methods such as mathematical programming is so difficult. 
For this reason, researchers are tended to study on meta-
heuristics. Although meta-heuristic algorithms do not 
guarantee to find optimal solution, they can converge to 
optimal solution much faster than exact methods. There are 
many studies in literature that subjected solving QAP with 
meta-heuristics. Simulated annealing is an iteration based 
meta-heuristic algorithm that developed by Kirkpatrick et al. 
[3]. Burkard and Rendl [4], Wilhelm and Ward [5] and Abreu 
et al. [6] used this algorithm for QAP in their studies. Ant 
colony optimization (ACO) is a population based meta-
heuristic algorithm. Stützle and Dorigo [7] and Dorigo et al. 
[8] implemented this algorithm for QAP. Another population 
based algorithm is genetic algorithm (GA) that published in 
QAP literature such as Kochhar et al. [9] and Drezner [10]. 
Glover [11], developed iteration based tabu search (TS) 
algorithm to solve problems that oriented to integer 
programming, in 1989. Main concentration of this algorithm 



INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET 
Erdener Özçetin et al., Vol.4, No.2, 2018 

	 124 

is to search neighbors with a method to escape local optima. 
Skorin [12], Taillard [13], Misevicius and Ostereika [14] 
proposed a TS algorithm for QAP. 

Introduction of CUDA by nVIDIA in 2006 can be 
considered as a turning point of using for computational 
sciences of Graphics Processing Units (GPUs) [15]. 
Thousands of applications have been proposed from different 
disciplines of science since that day.  As a reason of 
complexity of QAP and compatibility of meta-heuristics are 
lead researchers in this area to work on GPUs. The motivation 
of starting these studies is to accelerate the algorithms and to 
decrease the time of solutions, reasonably. On the other hand, 
there are only several studies that related to combinatorial 
optimization with meta-heuristics on GPUs. Tsutsui and 
Fujimoto [16] published a parallel GA on GPUs for QAP and 
they gained between 3-12 times speed-ups according to 
Central Processing Unit (CPU) implementation. In another 
study, same authors [17], applied a hybrid ACO algorithm. 
They focused on local search to parallelize that the most time 
consuming part of algorithm and they observed up to 24.6 
times speed-ups. Czapinski [18] proposed multi-start TS 
algorithm on GPUs to solve QAP. They gained up to 50 times 
speed-ups for symmetric instances. Again for symmetric 
instances, Ozcetin and Ozturk [19] handled averagely 17 times 
up to 51 times speed-ups with a hybrid evolutionary algorithm 
on GPUs. 
 
2. Iterated Local Search Algorithm 

Iterated local search algorithms (ILS) can be defined as a 
hybrid local search (LS) algorithms that improved with global 
search procedures. Basically, LS stop when a local optimum 
solution found. Two procedures are often used to continue 
searching from the solution found with LS. First one is 
perturbing the current local minimum. This is the simplest way 
to start the search from another starting point. Second one is 
modifying solution according to a mutation based procedure. 

In this study, a multi start ILS algorithm is developed for 
solving symmetric QAP instances efficiently. In the first phase 
of algorithm the instances is read to two matrices. D is the 
distance matrix of locations and F is the flow matrix of 
facilities. After that, objective function evaluation is 
calculated for each solution only once. Then, the algorithm 
starts to search. There are  .(.?0)

@
  alternative changes for each 

solution, so calculation of objective function for each iteration 
is a computationally expensive operation. For this reason, 
during the search objective function evaluation is not 
considered again.  Instead of objective function calculation a 
delta function is used like in equation 2.1. A solution is 
defined as a permutation. If we consider about changing 𝑎BC 
and 𝑏BC neighbors in permutation, π(a) and π(b) will be the 
values in permutation of 𝑎 and 𝑏, respectively  This candidate 
changing is done, if and only if 𝛿 value is lower than zero. 

𝛿 = (𝑑FB − 𝑑HB)(𝑓I H I B − 𝑓I F I B )											(2.1)		
.

B/0	FJB	HJB

 

 
Basically, the algorithm has two main operators. One of 

them is LS and the other one is mutation operator. Mutation 
operator is designed to escape the local optimum in a 
systematic procedure with the cross exchange of two elements 
in a solution. 

 
3. Parallelization of Algorithm 

Some parts of proposed ILS algorithm is available for 
parallelization. For p starting elements objective function 
evaluation is handled in a parallel fashion like in Figure 1. 

        s1                      s2                                       sm 

 

Fig  1. Parallelization of elements 

For CPU implementation, loops of an objective function 
evaluation are also a demanding issue for parallelization. It 
takes n2 steps for sequential version. This means that there are 
n2 multiplication of distance and flow and summation. In 
parallel version, a kernel is organized to carry out all these 
multiplications simultaneously.  

Another kernel is organized for parallel LS procedure. For 
p elements each neighborhood search is investigated in a 
parallel manner. Following figure is an example of 2nd and 4th 

neighbors changing.  

 

Let we think about four facilities will be assigned four 
candidate locations. In this problem T1, T2, T3, T4 are the 
elements of flow matrix between facilities F and Y1, Y2, Y3, 
Y4 are the elements of distance matrix between locations D.  

Think that we have 3 individual solutions with the 
permutations Π1, Π2, Π3, 1-2-3-4, 4-1-3-2 and 1-3-4-2, 
respectively. For third solution, assignment will be like this: 
T1à Y1, T3àY2, T4àY3 and T2àY4. According to this 
information, multiplications of objective function calculation 
will be like in Figure 3. 

  

Fig 2. An illustrative example for parallel local search 
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There are K(K?0)
@

= 6 multipcations for each element’s 
objective function calculation. Each multiplication 
corresponds to unique thread for GPU and is collected in the 
array of A. Objective function values is calculated by 
summarizing the A with parallel reduction via thrust library. 
 

For parallel local search same neighborhood search is 
handled like in Figure 4. Calculation of delta function is 
computed via a device kernel. First step of neighborhood 
search for this example, for first individual changing of 1-2 
orders in permutation, for second 4-1 and for third 1-3 handled 
simultaneously. Only second individual’s changing is done as 
a reason of delta value (-240). This procedure continues as the 
same.  

F, D matrices and permutations are allocated on GPU side 
with thrust vectors. For each iteration only solutions are 
copied.  Shared memory and constant memory cannot be used 
as a reason of capacity. For this reason, only device memory 
has been used for the implementation on GPUs  

 

 

  

 

 

 

 

4. Results 

A work station which have 6 cores CPU with 32 GB RAM 
and a GTX580 chipset GPU is used for comparisons. There 
are 1000 individual solutions for multi-start. In addition to 
this, probability of accepting worse solution in mutation 
operator is 0.4. Grid parameters are used for objective function 
evaluation n block in grid, n threads in a block and for parallel 
local search 125 blocks in grid, and 8 threads in a block (This 
numbers defined with preliminary studies). Number of 
iterations is not a stopping criterion for these implementations. 
Stopping criterion is done with gap of solution 

(MNO.PH).QF,?RS
RS

) (BK=best known solution).  

In tables 1, 2 GAP CPU and GAP GPU columns represent 
the average gap of ten iterations both on CPU and GPU. 
CPU(s) and GPU(s) columns represent solution times. In 
addition, HIT column represents number of hits to best known 
solution for ten iterations. Finally, speed factor is calculated 

with ( TUV W
XUV(W)

). 

Table 1. Skorin Test Problems 

Problem	 BK	 CPU(s)	 GPU(s)	
	GAP	
CPU	

GAP	GPU	 HIT		
Speed	
Up	

Sko42	 15812	 40.347	 2.843	 0.0001	 0	 9/10	 14.18x	

Sko49	 23386	 65.814	 10.179	 0.0005	 0.0006	 2/10	 6.46x	

Sko56	 34458	 66.211	 11.161	 0.0002	 0.0004	 1/10	 5.93x	

Sko64	 48498	 80.243	 18.647	 0.0001	 0.0003	 4/10	 4.30x	

Sko72	 66256	 104.15	 21.579	 0.0013	 0.0015	 0/10	 4.82x	

Sko81	 90998	 118.223	 24.813	 0.0013	 0.0014	 0/10	 4.76x	

Sko90	 115534	 152.651	 31.289	 0.0017	 0.0019	 0/10	 4.87x	

Sko100a	 152002	 190.581	 36.695	 0.0020	 0.0022	 0/10	 5.19x	

Avg.	 	 102.27	 19.65	 0.0009	 0.0009	 	 6.31x	

 

 

Fig 5. Skorin Speed-Ups 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

S d12 d13 d14 d23 d24 d34 d12 d13 d14 d23 d24 d34 d12 d13 d14 d23 d24 d34 

R f12 f13 f14 f23 f24 f34 f41 f43 f42 f13 f12 f32 f13 f14 f12 f34 f32 f42 

A s1.r1 s2.r2 s3.r3 s4.r4 s5.r5 s6.r6 s7.r7 s8.r8 s9.r9 
s10.r1

0 
s11.r1

1 
s12.r1

2 
s13.r1

3 
s14.r1

4 
s15.r1

5 
s16.r1

6 
s17.r1

7 
s18.r1

8 

Obj. 2(A1+ A2 +A3 +A4 +A5+A6) 2(A7+ A8 +A9 +A10 +A11+A12) 2(A13+ A14 +A15 +A16 +A17+A18) 

Fig 3. An illustrative example for parallel evaluations 

Individual Orders Facilities Delta 

Π1 

π1 π2 1-2 120 
π1 π3         1-3  
π1 π4 1-4  

π2 π3 2-3  

π2 π4 2-4  
π3 π4 3-4  

Π2 

π1 π2 4-1 -240 

π1 π3 4-3  

π1 π4 4-2  

π2 π3 1-3  
π2 π4 1-2  

π3 π4 3-2  

Π3 

π1 π2 1-3 180 
π1 π3 1-4  

π1 π4 1-2  

π2 π3 3-4  
π2 π4 3-2  

π3 π4 4-2  

Fig 4. Parallel neighborhood search 



INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET 
Erdener Özçetin et al., Vol.4, No.2, 2018 

	 126 

For comparisons all test instances are taken from QAPLIB 
(http://anjos.mgi.polymtl.ca/qaplib/) with best known 
solutions up to date.  Skorin and Taillard test problems are the 
well-known hardest test instances for QAP. 

Table 1 and Fig. 5 are the results for Skorin test problems. 
Average gap of these problems are 0.0009 both on CPU and 
GPU implementation. In addition, 6.31x speed-up gained for 
these problems. For Sko42 problem, execution time of CPU 
version is 40.347 seconds and GPU version is 2.843 seconds. 
The speed-up factor for this problem is 14.18x with the 9/10 
best known solution hit. Computational results of the proposed 
ILS for Taillard problems are shown in Table 2 and Figure 6 
According to this, average gap for these problems set are 
0.0063 on CPU and 0.0068 on GPU, respectively. If we have 
an eye on execution times, GPU implementation runs 11.93 
times faster than CPU implementation. Best speed-up 
observed with Tai30a problem with a 16.69x 
(CPU(s)/GPU(s)) factor. 

Table 2. Taillard Test Problems 

Prob. BK CPU(s) GPU(s)  GAP 
CPU 

GAP 
GPU HIT  Speed 

Up 

Tai20a 
 

703482 1.943 0.493 0 0 
10/1

0 3.93x 

Tai25a 
 

1167256 14.95 1.165 0 0 
10/1

0 12.83x 

Tai30a 
 

1818146 39.849 2.387 0.0003 0.0004 8/10 16.69x 

Tai35a 
 

2422002 116.682 10.472 0.0008 0.0008 7/10 11.14x 

Tai40a 
 

3139370 179.576 11.398 0.0004 0.0004 0/10 15.75x 

Tai50a 
 

4938796 277.076 18.202 0.0093 0.0091 0/10 15.38x 

Tai60a 
 

7208572 360.42 32.112 0.0117 0.0135 0/10 11.25x 

Tai80a 

 
1351545

0 453.78 44.188 0.0122 0.0121 0/10 10.29x 

Tai100a 

 
2105465

6 602.98 59.776 0.022 0.025 0/10 10.19x 

Avg.  227.47 20.02 0.0063 0.0068  11.93x 

 

 

Fig 6. Taillard Speed-Ups 

 

5. Conclusion 

Solving combinatorial optimization problems are extremely 
hard and computationally expensive. For many cases, it can be 
impossible to solve these problems optimally with exact 
methods. For these reasons, researchers tend to study with 
meta-heuristics. Even meta-heuristics converge to 
approximate solution much more reasonable time, it is still a 
handicap for large scale instances of combinatorial 
optimization problems. According to this motivation, we 
consider about a parallel implementation of ILS algorithm on 
GPUs. We observed on preliminary studies that our algorithm 
finds optimal solutions for Escherman and Nuggent problems 
for all runs in a few seconds. In our results, we prefer to show 
more difficult problems Skorin and Taillard test instances. Our 
algorithm converges to best known solution with small gaps. 
Averagely, 6.31x speed-up gained for Skorin test instances 
and 11.93x speed-up gained for Taillard test instances. For 
future studies, GPU implementation of algorithm is available 
for development. For much more speed-up memory 
operations can be improved. Finally, this algorithm is also 
available for other combinatorial optimization problems.         
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