
INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Erdener Özçetin et al., Vol.4, No.2, 2018

	 123

A Parallel Iterated Local Search Algorithm on GPUs
for Quadratic Assignment Problem

Erdener Ozcetin*, Gurkan Ozturk**

* Industrial Engineering Department, Hitit University Engineering Faculty, Corum, Turkey

** Industrial Engineering Department, Eskisehir Technical University Engineering Faculty, Eskisehir, Turkey

(erdenerozcetin@hitit.edu.tr, gurkan.o@anadolu.edu.tr)

‡	Corresponding Author; Erdener Ozcetin, Industrial Engineering Department, Hitit University Engineering Faculty,

Corum, Turkey , Tel: +90 364 227 4533,

Fax: +90 364 227 4535, erdenerozcetin@hitit.edu.tr

Received: 25.10.2018 Accepted: 21.06.2018

Abstract- In this study, quadratic assignment problem, which is a hard combinatorial optimization problem, is examined to solve
by a new approach. To reach the optimal results by using mathematical programming approaches cannot be possible even for
some sorts of small and middle scaled problems in a reasonable time interval. Huge amounts of data are being progressed
simultaneously by graphics processing units located on computers’ graphics card. Therefore, a parallel iterated local search
algorithm has been proposed to solve the quadratic assignment problem by using graphics processing units’ simultaneously
progressing property. This parallel algorithm and the sequential one on central processing units are tested and compared for test
problems in literature. Indeed, it is observed that the parallel algorithm works averagely 6.31 times faster for Skorin problems
and 11.93 times faster for Taillard problems faster than sequentially one.

Keywords Quadratic assignment problem (QAP), local search algorithms, graphics processing units (GPU), CUDA.

1. Introduction
Combinatorial optimization is a topic that consists of

finding optimal solution from a finite set of alternative
solutions (n!) that generally studied in applied mathematics
and theoretical computer sciences. Quadratic assignment
problem (QAP) is a type of combinatorial optimization
problem that was introduced by Koopmans and Beckmen in
1957 [1].

As a real life problem QAP can be defined facility
planning, circuit designing and assigning the air-crafts to the
gates. If we investigate QAP as a facility planning problem,
the objective is assigning n facilities to n candidate locations
by minimizing a cost function. The mathematical formulation
of QAP can be as:

																						minz = 𝑓()𝑑+,𝑥(+𝑥),

.

,/0

.

+/0

.

)/0

.

(/0

															(1.1)

																																				 𝑥() = 1									𝑗 = 1, 𝑛																						 1.2
.

(/0

																																				 𝑥() = 1									𝑖 = 1, 𝑛																						 1.3
.

)/0

																																								𝑥()		ϵ		 0,1 	1 ≤ 𝑖, 𝑗 ≤ 𝑛																		(1.4)

In this formulation, 𝑓() is the flow between two facilities and
𝑑+,	is the distance between two candidates. Complexity study
of this mathematical model is handled by Sahni and Gonzalez
[2] in 1976. They showed that QAP is NP-Hard and even
finding and ϵ approximate solution is extremely hard.

With the reason of QAP is NP-Hard, working with exact
methods such as mathematical programming is so difficult.
For this reason, researchers are tended to study on meta-
heuristics. Although meta-heuristic algorithms do not
guarantee to find optimal solution, they can converge to
optimal solution much faster than exact methods. There are
many studies in literature that subjected solving QAP with
meta-heuristics. Simulated annealing is an iteration based
meta-heuristic algorithm that developed by Kirkpatrick et al.
[3]. Burkard and Rendl [4], Wilhelm and Ward [5] and Abreu
et al. [6] used this algorithm for QAP in their studies. Ant
colony optimization (ACO) is a population based meta-
heuristic algorithm. Stützle and Dorigo [7] and Dorigo et al.
[8] implemented this algorithm for QAP. Another population
based algorithm is genetic algorithm (GA) that published in
QAP literature such as Kochhar et al. [9] and Drezner [10].
Glover [11], developed iteration based tabu search (TS)
algorithm to solve problems that oriented to integer
programming, in 1989. Main concentration of this algorithm

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Erdener Özçetin et al., Vol.4, No.2, 2018

	 124

is to search neighbors with a method to escape local optima.
Skorin [12], Taillard [13], Misevicius and Ostereika [14]
proposed a TS algorithm for QAP.

Introduction of CUDA by nVIDIA in 2006 can be
considered as a turning point of using for computational
sciences of Graphics Processing Units (GPUs) [15].
Thousands of applications have been proposed from different
disciplines of science since that day. As a reason of
complexity of QAP and compatibility of meta-heuristics are
lead researchers in this area to work on GPUs. The motivation
of starting these studies is to accelerate the algorithms and to
decrease the time of solutions, reasonably. On the other hand,
there are only several studies that related to combinatorial
optimization with meta-heuristics on GPUs. Tsutsui and
Fujimoto [16] published a parallel GA on GPUs for QAP and
they gained between 3-12 times speed-ups according to
Central Processing Unit (CPU) implementation. In another
study, same authors [17], applied a hybrid ACO algorithm.
They focused on local search to parallelize that the most time
consuming part of algorithm and they observed up to 24.6
times speed-ups. Czapinski [18] proposed multi-start TS
algorithm on GPUs to solve QAP. They gained up to 50 times
speed-ups for symmetric instances. Again for symmetric
instances, Ozcetin and Ozturk [19] handled averagely 17 times
up to 51 times speed-ups with a hybrid evolutionary algorithm
on GPUs.

2. Iterated Local Search Algorithm

Iterated local search algorithms (ILS) can be defined as a
hybrid local search (LS) algorithms that improved with global
search procedures. Basically, LS stop when a local optimum
solution found. Two procedures are often used to continue
searching from the solution found with LS. First one is
perturbing the current local minimum. This is the simplest way
to start the search from another starting point. Second one is
modifying solution according to a mutation based procedure.

In this study, a multi start ILS algorithm is developed for
solving symmetric QAP instances efficiently. In the first phase
of algorithm the instances is read to two matrices. D is the
distance matrix of locations and F is the flow matrix of
facilities. After that, objective function evaluation is
calculated for each solution only once. Then, the algorithm
starts to search. There are .(.?0)

@
 alternative changes for each

solution, so calculation of objective function for each iteration
is a computationally expensive operation. For this reason,
during the search objective function evaluation is not
considered again. Instead of objective function calculation a
delta function is used like in equation 2.1. A solution is
defined as a permutation. If we consider about changing 𝑎BC
and 𝑏BC neighbors in permutation, π(a) and π(b) will be the
values in permutation of 𝑎 and 𝑏, respectively This candidate
changing is done, if and only if 𝛿 value is lower than zero.

𝛿 = (𝑑FB − 𝑑HB)(𝑓I H I B − 𝑓I F I B)											(2.1)		
.

B/0	FJB	HJB

Basically, the algorithm has two main operators. One of

them is LS and the other one is mutation operator. Mutation
operator is designed to escape the local optimum in a
systematic procedure with the cross exchange of two elements
in a solution.

3. Parallelization of Algorithm

Some parts of proposed ILS algorithm is available for
parallelization. For p starting elements objective function
evaluation is handled in a parallel fashion like in Figure 1.

 s1 s2 sm

Fig 1. Parallelization of elements

For CPU implementation, loops of an objective function
evaluation are also a demanding issue for parallelization. It
takes n2 steps for sequential version. This means that there are
n2 multiplication of distance and flow and summation. In
parallel version, a kernel is organized to carry out all these
multiplications simultaneously.

Another kernel is organized for parallel LS procedure. For
p elements each neighborhood search is investigated in a
parallel manner. Following figure is an example of 2nd and 4th

neighbors changing.

Let we think about four facilities will be assigned four
candidate locations. In this problem T1, T2, T3, T4 are the
elements of flow matrix between facilities F and Y1, Y2, Y3,
Y4 are the elements of distance matrix between locations D.

Think that we have 3 individual solutions with the
permutations Π1, Π2, Π3, 1-2-3-4, 4-1-3-2 and 1-3-4-2,
respectively. For third solution, assignment will be like this:
T1à Y1, T3àY2, T4àY3 and T2àY4. According to this
information, multiplications of objective function calculation
will be like in Figure 3.

Fig 2. An illustrative example for parallel local search

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Erdener Özçetin et al., Vol.4, No.2, 2018

	 125

There are K(K?0)
@

= 6 multipcations for each element’s
objective function calculation. Each multiplication
corresponds to unique thread for GPU and is collected in the
array of A. Objective function values is calculated by
summarizing the A with parallel reduction via thrust library.

For parallel local search same neighborhood search is
handled like in Figure 4. Calculation of delta function is
computed via a device kernel. First step of neighborhood
search for this example, for first individual changing of 1-2
orders in permutation, for second 4-1 and for third 1-3 handled
simultaneously. Only second individual’s changing is done as
a reason of delta value (-240). This procedure continues as the
same.

F, D matrices and permutations are allocated on GPU side
with thrust vectors. For each iteration only solutions are
copied. Shared memory and constant memory cannot be used
as a reason of capacity. For this reason, only device memory
has been used for the implementation on GPUs

4. Results

A work station which have 6 cores CPU with 32 GB RAM
and a GTX580 chipset GPU is used for comparisons. There
are 1000 individual solutions for multi-start. In addition to
this, probability of accepting worse solution in mutation
operator is 0.4. Grid parameters are used for objective function
evaluation n block in grid, n threads in a block and for parallel
local search 125 blocks in grid, and 8 threads in a block (This
numbers defined with preliminary studies). Number of
iterations is not a stopping criterion for these implementations.
Stopping criterion is done with gap of solution

(MNO.PH).QF,?RS
RS

) (BK=best known solution).

In tables 1, 2 GAP CPU and GAP GPU columns represent
the average gap of ten iterations both on CPU and GPU.
CPU(s) and GPU(s) columns represent solution times. In
addition, HIT column represents number of hits to best known
solution for ten iterations. Finally, speed factor is calculated

with (TUV W
XUV(W)

).

Table 1. Skorin Test Problems

Problem	 BK	 CPU(s)	 GPU(s)	
	GAP	
CPU	

GAP	GPU	 HIT		
Speed	
Up	

Sko42	 15812	 40.347	 2.843	 0.0001	 0	 9/10	 14.18x	

Sko49	 23386	 65.814	 10.179	 0.0005	 0.0006	 2/10	 6.46x	

Sko56	 34458	 66.211	 11.161	 0.0002	 0.0004	 1/10	 5.93x	

Sko64	 48498	 80.243	 18.647	 0.0001	 0.0003	 4/10	 4.30x	

Sko72	 66256	 104.15	 21.579	 0.0013	 0.0015	 0/10	 4.82x	

Sko81	 90998	 118.223	 24.813	 0.0013	 0.0014	 0/10	 4.76x	

Sko90	 115534	 152.651	 31.289	 0.0017	 0.0019	 0/10	 4.87x	

Sko100a	 152002	 190.581	 36.695	 0.0020	 0.0022	 0/10	 5.19x	

Avg.	 	 102.27	 19.65	 0.0009	 0.0009	 	 6.31x	

Fig 5. Skorin Speed-Ups

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

S d12 d13 d14 d23 d24 d34 d12 d13 d14 d23 d24 d34 d12 d13 d14 d23 d24 d34

R f12 f13 f14 f23 f24 f34 f41 f43 f42 f13 f12 f32 f13 f14 f12 f34 f32 f42

A s1.r1 s2.r2 s3.r3 s4.r4 s5.r5 s6.r6 s7.r7 s8.r8 s9.r9
s10.r1

0
s11.r1

1
s12.r1

2
s13.r1

3
s14.r1

4
s15.r1

5
s16.r1

6
s17.r1

7
s18.r1

8

Obj. 2(A1+ A2 +A3 +A4 +A5+A6) 2(A7+ A8 +A9 +A10 +A11+A12) 2(A13+ A14 +A15 +A16 +A17+A18)

Fig 3. An illustrative example for parallel evaluations

Individual Orders Facilities Delta

Π1

π1 π2 1-2 120
π1 π3 1-3
π1 π4 1-4

π2 π3 2-3

π2 π4 2-4
π3 π4 3-4

Π2

π1 π2 4-1 -240

π1 π3 4-3

π1 π4 4-2

π2 π3 1-3
π2 π4 1-2

π3 π4 3-2

Π3

π1 π2 1-3 180
π1 π3 1-4

π1 π4 1-2

π2 π3 3-4
π2 π4 3-2

π3 π4 4-2

Fig 4. Parallel neighborhood search

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Erdener Özçetin et al., Vol.4, No.2, 2018

	 126

For comparisons all test instances are taken from QAPLIB
(http://anjos.mgi.polymtl.ca/qaplib/) with best known
solutions up to date. Skorin and Taillard test problems are the
well-known hardest test instances for QAP.

Table 1 and Fig. 5 are the results for Skorin test problems.
Average gap of these problems are 0.0009 both on CPU and
GPU implementation. In addition, 6.31x speed-up gained for
these problems. For Sko42 problem, execution time of CPU
version is 40.347 seconds and GPU version is 2.843 seconds.
The speed-up factor for this problem is 14.18x with the 9/10
best known solution hit. Computational results of the proposed
ILS for Taillard problems are shown in Table 2 and Figure 6
According to this, average gap for these problems set are
0.0063 on CPU and 0.0068 on GPU, respectively. If we have
an eye on execution times, GPU implementation runs 11.93
times faster than CPU implementation. Best speed-up
observed with Tai30a problem with a 16.69x
(CPU(s)/GPU(s)) factor.

Table 2. Taillard Test Problems

Prob. BK CPU(s) GPU(s) GAP
CPU

GAP
GPU HIT Speed

Up

Tai20a

703482 1.943 0.493 0 0
10/1

0 3.93x

Tai25a

1167256 14.95 1.165 0 0
10/1

0 12.83x

Tai30a

1818146 39.849 2.387 0.0003 0.0004 8/10 16.69x

Tai35a

2422002 116.682 10.472 0.0008 0.0008 7/10 11.14x

Tai40a

3139370 179.576 11.398 0.0004 0.0004 0/10 15.75x

Tai50a

4938796 277.076 18.202 0.0093 0.0091 0/10 15.38x

Tai60a

7208572 360.42 32.112 0.0117 0.0135 0/10 11.25x

Tai80a

1351545

0 453.78 44.188 0.0122 0.0121 0/10 10.29x

Tai100a

2105465

6 602.98 59.776 0.022 0.025 0/10 10.19x

Avg. 227.47 20.02 0.0063 0.0068 11.93x

Fig 6. Taillard Speed-Ups

5. Conclusion

Solving combinatorial optimization problems are extremely
hard and computationally expensive. For many cases, it can be
impossible to solve these problems optimally with exact
methods. For these reasons, researchers tend to study with
meta-heuristics. Even meta-heuristics converge to
approximate solution much more reasonable time, it is still a
handicap for large scale instances of combinatorial
optimization problems. According to this motivation, we
consider about a parallel implementation of ILS algorithm on
GPUs. We observed on preliminary studies that our algorithm
finds optimal solutions for Escherman and Nuggent problems
for all runs in a few seconds. In our results, we prefer to show
more difficult problems Skorin and Taillard test instances. Our
algorithm converges to best known solution with small gaps.
Averagely, 6.31x speed-up gained for Skorin test instances
and 11.93x speed-up gained for Taillard test instances. For
future studies, GPU implementation of algorithm is available
for development. For much more speed-up memory
operations can be improved. Finally, this algorithm is also
available for other combinatorial optimization problems.

REFERENCES

[1] T. C. Koopmans ve M. J. Beckmann, “Assignment
problems and the location of economic activities,”
Econometrica, vol. 25, pp. 53-76, 1957.

[2] S. Sahni ve T. Gonzalez, “P-complete approximation
problems,” Journal of the Association of Computing
Machinery, vol. 23, pp. 555-565, 1976.

[3] S. Kirkpatrick, C. Gelat ve M. Vecchi, “Optimization
by Simulated Annealing,” Science, vol. 220, pp. 671-
680, 1983.

[4] R. Burkard ve F. Rendl, “A thermodynamically
motivated simulation procedure for combinatorial
optimization problems,” European Journal of
Operational Research, vol. 17, pp. 169-174, 1984.

[5] M. Wilhelm ve T. Ward, “Solving quadratic assignment
problems by 'simulated annealing',” IIE Transactions,
vol. 19, pp. 107-119, 1987.

[6] N. Abreu, T. Querido ve P. Boaventura-Netto, “A
simulated annealing for the quadratic assignment
problem,” Rairo-Operations Research, vol. 33, pp. 249-
273, 1999.

[7] T. Stützle ve M. Dorigo, “ACO Algorithms for the
Quadratic Assignment Problem,” New Ideas in
Optimization,McGraw-Hill, 1999.

[8] M. Dorigo, V. Maniezzo ve A. Colorni, “The Ant
System: Optimization by a colony of cooperating
agents,” IEEE Transactions on Systems, vol. 26, pp. 1-
13, 1996.

[9] J. Kochhar, B. Foster ve S. Heragu, “A genetic
algorithm for the unequal area facility layout problem,”
Computers & Operations Research, vol. 25, pp. 583-
594, 1998.

INTERNATIONAL JOURNAL of ENGINEERING TECHNOLOGIES-IJET
Erdener Özçetin et al., Vol.4, No.2, 2018

	 127

[10] Z. Drezner, “A New Genetic Algorithm for the
Quadratic Assignment Problem,” Informs Journal on
Computing, vol. 15, pp. 320-330, 2003.

[11] F. Glover, “Tabu Search - Part I,” ORSA Journal on
Computing, vol. 1, pp. 190-206, 1989.

[12] J. Skorin-Kapov, “Tabu Search Applied to the
Quadratic Assignment Problem,” ORSA Journal on
Computing, vol. 2, pp. 33-45, 1990.

[13] E. D. Taillard, “Robust taboo search for the quadratic
assignment problem,” Parallel Computing, vol. 17, pp.
443-455, 1991.

[14] A. Misevičius ve A. Ostreika, “Defining Tabu tenure
for the Quadratic Assignment Problem,” Information
Technology and Control, vol. 36, 2007.

[15] “Developer Centers: CUDA Zone,” nVIDIA,.
Available: http://developer.nvidia.com/cuda/what-
cuda.

[16] S. Tsutsui ve N. Fujimoto, “Solving Quadratic
Assignment Problems by Genetic Algorithms with
GPU Computation: A Case Study,” GECCO, Montreal,
2009.

[17] S. Tsutsui ve N. Fujimoto, “Fast QAP Solving by ACO
with 2-opt Local Search on a GPU,” IEEE Section
Congres, San Francisco, 2011.

[18] M. Czapinski, “An effective Parallel Multistart Tabu
Search for Quadratic Assignment Problem CUDA
platform,” J. Parallel Distrib. Comput., vol. 73(11), pp.
1461-1468, 2013 .

[19] E. Özçetin ve G. Öztürk, “A Hybrid Genetic Algorithm
for the Quadratic Assignment Problem on Graphics
Processing Units,” ANADOLU UNIVERSITY
JOURNAL OF SCIENCE AND TECHNOLOGY –A
Applied Sciences and Engineering, vol. 17, no. 1, pp.
167-180, 2016.

