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Abstract 

Modern crop recommendation systems must accurately grasp the complex and nonlinear 

relationships between soil nutrients to support effective agricultural decisions. In this 

study, we introduce a framework that combines supervised and unsupervised learning 

through kernel feature fusion, integrating Radial Basis Function (RBF) Kernel Principal 

Component Analysis (KPCA) and Kernel Linear Discriminant Analysis (KLDA) into a 

single seven-dimensional embedding. First, six principal components are extracted using 

RBF-KPCA to capture global nonlinear variance in the raw data. Similarly, in the raw 

space, an Nystroem-approximated RBF transformation followed by LDA produces a 

single discriminant axis (KLDA) for better supervised class separation. These features are 

fused by concatenation and then input into Support Vector Machine (SVM) classifiers 

(using polynomial and RBF kernels) and a Random Forest (RF) classifier. In the 

experiments, a publicly available dataset comparing maize and barley based on six soil 

features was used. The fused representation significantly outperformed raw data and 

single-embedding methods, with Polynomial SVM increasing by 18.5%, RBF SVM 

improving by 10.1%, and RF rising by 4.7% over the raw data. These results show that 

combining unsupervised variance maximization with supervised discriminant projection 

creates a richer, more discriminative feature space—especially beneficial for SVMs in 

crop recommendation tasks. Our kernel fusion approach offers a powerful and flexible 

strategy for precision agriculture, enabling robust decision support without extensive field 

trials or repeated laboratory tests. 

Keywords: Precision Agriculture, Crop Recommendation, Soil Nutrient Embedding, 

Kernel Feature Fusion, Artificial Intelligence 
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INTRODUCTION 

As the global population continues to grow, and in light of climate variability and limited agricultural resources, 

optimizing crop selection has become essential for modern agriculture (Gunawan et al., 2024; Liakos et al.,2018). 

Recommending suitable crops for cultivation based on environmental and soil conditions not only boosts agricultural 

productivity but also supports sustainable land use and efficient resource management. Historically, crop recommendations 

relied heavily on expert knowledge, historical data, and trial-and-error methods, which often fail to adapt to rapidly changing 

climate patterns and regional soil differences. Recent advancements in Artificial Intelligence (AI) have created new 

opportunities for data-driven decision-making in agriculture (Mishra and Mishra, 2024; Linaza et al., 2021). An analysis of 

OECD AI investment data for the G7 and Turkey shows that AI investments in agriculture are generally lower than in other 

sectors. However, Turkey and Canada emerge as two of the leading investors in agricultural AI (Çağlar, 2024).  

Effective crop recommendations rely on identifying meaningful patterns from intricate soil and environmental data—

this challenge is particularly evident in remote sensing and precision agriculture (Getahun et al., 2024; Bandara et al., 2020; 

Gosai et al., 2021). This process is called Feature Extraction and it is a crucial step in developing AI models, particularly 

when working with high-dimensional and diverse datasets like those found in agriculture (Ruano-Ordás, 2024). This process 

involves converting raw data into a set of informative, non-redundant features that effectively represent the underlying 

structure of the data (Zebari et al., 2020). By doing so, it enhances model accuracy, generalizability, and computational 

efficiency (Cheng, 2024).  
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Feature extraction is an essential step in AI pipelines and is frequently utilized in precision agriculture applications, 

including production forecasting (Gür, 2024)  and robotic harvesting (Kahya & Aslan, 2024). This process is vital because 

extracting informative features greatly improves model performance and informs better decision-making (Ruano-Ordás, 

2024). Feature extraction in agricultural decision-making systems, such as crop recommendation, serves two main purposes 

(Barburiceanu et al., 2021). Firstly, it allows for dimensionality reduction, which reduces noise, redundancy, and 

computational demands by decreasing the number of input variables while preserving the most relevant information. 

Secondly, it supports representation learning, enabling the extraction of high-level, abstract patterns from raw data—

especially from temporal or structured inputs—that are often challenging to capture through manual feature engineering. 

However, the performance of these models heavily depends on the quality and structure of the input features, highlighting 

the importance of effective feature extraction (Taye, 2023).  

Principal Component Analysis (PCA) is commonly used in agricultural studies, particularly in soil analyses, to reduce 

dimensionality, reveal relationships among variables, and visualize regional or spatial differences. The study performed by 

Yanardağ (2025)  used the PCA algorithm to analyze the relationship between soil nutrients and to reduce the data size. The 

study highlighted that the principal components revealed regional differences, thus highlighting the need to prioritize organic 

matter management and pH regulation. However conventional machine-learning pipelines often depend on manually crafted 

features or linear dimensionality reduction techniques, such as PCA, which may not effectively capture the complex, 

nonlinear class boundaries present in soil-nutrient interactions (Kusuma et al., 2025). Kernel‐based methods address this 

limitation by projecting data into high‐dimensional feature spaces via a Mercer kernel, where classes that are inseparable in 

the original space become linearly separable (Anowar et al., 2021). KPCA enhances variance in an unsupervised manner by 

applying PCA to the kernel Gram matrix, effectively capturing global nonlinear structures (Briscik et al., 2023). In addition, 

KLDA focuses on supervised discriminant projection by first approximating the kernel using a Nystroem transform and then 

applying LDA to extract the axes that most effectively separate class means (Baudat & Anouar, 2000).  

Feature fusion has emerged as a powerful technique in various machine learning domains, as it combines complementary 

representations to create more robust and discriminative feature sets. Early work by Bishop and Tipping (2000) demonstrated 
that concatenating features from multiple sources can enhance the performance of generative models. In recent years, various 

feature fusion strategies have been employed in the field of precision agriculture with distinct objectives (Upadhyay et al., 

2025). These include crop classification, fertilizer recommendation, crop yield prediction, crop recommendation, pest 

detection, and others ( Huang et al., 2024; Swaminathan et al., 2023; Boppudi and Jayachandran, 2024; Mahesh et al., 2024; 

Jiao et al., 2022).   

In the context of kernel methods, a few studies arise on feature ranking fusion, crop classification. Especially fusion of 

KPCA and KLDA features used for tea classification in the study mentioned in Kaushal et al., (2022). Their results indicated 

that the nonlinear, kernel‑based methods (KPCA and KLDA) outperformed the traditional linear approaches (PCA and LDA) 

in classification accuracy.  

This study is the first, to our knowledge, to integrate Kernel Principal Component Analysis (KPCA) and Kernel Linear 

Discriminant Analysis (KLDA) into a dedicated, end-to-end feature extraction pipeline specifically designed for nutrient-

based crop recommendations. Although previous research, such as that by Kaushal et al. (2022), has applied KPCA and 

KLDA separately in areas like tea classification, demonstrating that nonlinear kernel methods can outperform linear 

alternatives, no study has systematically evaluated the combination of KPCA and KLDA features for agricultural 

recommendation tasks. Our work addresses this gap by proposing a principled kernel fusion strategy and benchmarking it 

directly against single-embedding and raw-feature baselines. 

We demonstrate that combining an unsupervised Kernel Principal Component Analysis (KPCA) embedding, which 

captures global nonlinear variance patterns, with a supervised Kernel Linear Discriminant Analysis (KLDA) discriminant 

axis, which focuses on class-specific information, retains complementary insights that either method alone might overlook. 

Through comprehensive experiments across various classifiers, including SVM variants and Random Forest, the fused 

representation consistently shows improvements in classification accuracy and the quality of decision boundaries. In addition 

to enhanced empirical performance, this fusion approach also increases robustness against noise and offers a practical 

pipeline (comprising kernel approximation, supervised projection, and fusion) that practitioners can easily adopt when 

working with small to moderately sized nonlinear agricultural datasets. 

In this study, we developed a kernel feature fusion pipeline for nutrient-based crop recommendations. We began with a 

RF–based feature ranking on the raw six-dimensional nutrient dataset to identify the most informative variables: potassium 

(K), nitrogen (N), zinc (Zn), sulfur (S), soil pH, and phosphorus (P). The selected features were then mapped through two 

complementary kernel transformations: an RBF Kernel PCA (KPCA) that captures global nonlinear variance (retaining the 

top m components), Nystroem approximation followed by LDA (KLDA) that produces a supervised discriminant axis. The 

KPCA components and the single KLDA score were concatenated to form a compact (m+1)-dimensional fused embedding, 

which serves as input to downstream classifiers. By removing low-importance attributes before kernel embedding, noise is 

reduced, and the subsequent nonlinear projections focus on the variables most critical for distinguishing maize from barley. 

To leverage the complementary strengths of unsupervised variance maximization and supervised discriminant projection 

(Kempfert et al., 2020; Peng & Zhao 2023), the six selected nutrients were processed through two parallel kernel mappings. 

The RBF-KPCA method extracted the top six nonlinear principal components, which capture the global variance structure, 

while a Nystroem approximation combined with LDA yielded a single supervised axis KLDA that was optimized for class 

separation. 

These six KPCA components were concatenated with the one KLDA score to form a unified (m + 1)-dimensional feature 

vector. This feature fusion strategy allows the holistic nonlinear patterns uncovered by KPCA and the class-specific 
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discrimination provided by KLDA to be preserved, resulting in a richer and more discriminative embedding for downstream 

classifiers, such as SVM (with polynomial and RBF kernels) and RF. Through the combination of targeted feature selection 

and kernel fusion, improved accuracy, robustness, and computational efficiency were achieved for crop recommendations 

under varying environmental conditions. The combined feature set outperformed the baseline of raw data and individual 

embedding methods, with accuracy increases of 18.5% for Polynomial SVM, 10.1% for RBF SVM, and 4.7% for RF. The 

suggested kernel fusion framework serves as a high-performance solution for precision agriculture, facilitating dependable 

decision-making without the need for extensive field trials or laboratory experiments. 

The paper is organized as follows: In the following “Materials and Methods” section, we detail the nutrient dataset 

comparing Maize and Barley, the process of feature selection, and the kernel-fusion pipeline, which includes RBF-KPCA, 

Nystroem-KLDA, and a seven-dimensional embedding. This section also covers the SVM models (both polynomial and 

RBF) and RF models. Then “Results and Discussion” highlights classification accuracies across different feature spaces and 

includes partial-dependence analyses. Finally, last section “Conclusions” provides a summary of the key findings and their 

implications for precision agriculture. 

 

MATERIAL AND METHOD 

Dataset Description and Preprocessing  

This study used a publicly available crop recommendation dataset consisting of 3,867 instances, which includes a variety 

of soil characteristics and meteorological parameters collected across four seasons. A detailed list of all features is presented 

in Table 1. Each instance includes a combination of soil chemical properties—such as pH, nitrogen (N), phosphorus (P), 

potassium (K), sulfur (S), and zinc (Zn)—along with soil color and various seasonal meteorological variables. These 

meteorological factors include maximum and minimum temperature, humidity (QV2M), total precipitation 

(PRECTOTCORR), wind speed (WS2M), cloud cover (CLOUD_AMT), and surface pressure (PS), all recorded across four 

seasons: winter, spring, summer, and autumn. The target variable is a categorical label indicating the most suitable crop for 

cultivation under the specified conditions. In this study, we studied a total of 1006 data samples consisting of maize and 
barley samples.  

 

Table 1. Description of Dataset Features 

Category Column Name Description 

Soil Properties Soilcolor Color of the soil (categorical) 
 pH Soil pH value 
 K, P, N Potassium, phosphorus, and nitrogen content 
 Zn, S Zinc and sulfur content 

Seasonal Weather Data QV2M-W/Sp/Su/Au 
Specific humidity at 2 meters (Winter, Spring,                

Summer, Autumn) 
 T2M_MAX-W/Sp/Su/Au Maximum temperature (°C) for each season 
 T2M_MIN-W/Sp/Su/Au Minimum temperature (°C) for each season 

 PRECTOTCORR- 

W/Sp/Su/Au 
Precipitation amount (mm/day) for each season 

Other Meteorological Data WD10M Wind direction at 10 meters 
 GWETTOP Surface soil moisture content 
 CLOUD_AMT Cloud coverage percentage 
 WS2M_RANGE Wind speed range at 2 meters 
 PS Surface pressure 

Target Variable label 
Recommended crop label (e.g., Barley, Maize,     

Groundnut, etc.) 

  

Feature Extraction 

 To effectively capture both the global nonlinear structure and the discriminative information from six scaled soil nutrient 

variables, we utilize two complementary kernel methods: KPCA and KLDA (Hekmatmanesh et al., 2020). The results from 

these methods are then combined to create a unified feature vector. 

KPCA enhances classical PCA by mapping original input vectors 𝑥𝑖 ∈ ℝ𝒅 into a high-dimensional Hilbert space ℌ using 

a nonlinear feature map 𝜑, explicitly computing 𝜑. Instead, it defines the Gram matrix as follows (Equation 1): 

𝐾𝑖𝑗 = 〈𝜑(𝑥𝑖), 𝜑(𝑥𝑗) 〉 = exp (−𝛾‖𝑥𝑖 − 𝑥𝑗  ‖2 )                                                                                                                  (1) 

using an RBF kernel with width parameter 𝛾. Centering in feature space yields (Equation 2) 

𝐾̃ = 𝐾 − 𝟏𝑛𝐾 − 𝐾𝟏𝑛 + 𝟏𝑛𝑲𝟏𝑛                                                                                                                                                           (2) 

where 𝟏𝑛 is the 𝑛𝑥𝑛 matrix with all entries 1/ 𝑛. Then it is solved the eigenvalue problem (Equation 3) 

𝐾̃v = λv                                                                                                                                                                                                      (3) 
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and retain the top 𝑚 = 6  eigenvectors {v1, … , v6}  corresponding to the largest eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆6. The 𝑘th 

KPCA component for a new sample 𝑥 is computed as (Equation 4) 

      [v𝑘]T[𝐾(𝑥, 𝑥1), … , 𝐾(𝑥, 𝑥𝑛)]T                                                                                                                                             (4) 

producing a six-dimensional embedding that preserves the directions of greatest variance in the RBF-kernel feature space. 

KPCA is an unsupervised method, whereas KLDA is a supervised approach aimed at maximizing the scatter between 

classes in relation to the scatter within classes, but within a nonlinear kernel space. To make the computation manageable, 

we begin by approximating the RBF mapping using the Nystrom method. This involves randomly selecting 𝑝 = 50 basis 

points {𝑧𝑗}, compute the 𝑛 × 𝑝 submatrix 𝐾𝑛𝑝 of kernel values 𝜅(𝑥𝑖, 𝑧𝑗), and form a low-rank feature map (Equation 5) 

𝜑̃(𝑥) ≈ 𝐾𝑛𝑧𝐾𝑧𝑧
−1 2⁄                                                                                                                                                                                  (5) 

where 𝐾𝑧𝑧  is the 𝑝 × 𝑝 kernel matrix among the basis points. On this approximated 𝑝-dimensional representation, we 

perform standard LDA: compute the class-conditional means 𝜇𝑐 and overall mean 𝜇, then solve (Equation 6) 

      𝒘 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑤 𝑤𝑇𝑆𝐵𝑤 𝑤𝑇𝑆𝑊𝑤⁄                                                                                                                                                          (6) 

with between-class scatter 𝑆𝐵 = ∑ 𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)⊤
𝑐 and within-class scatter 𝑆𝑊 = ∑ (𝑥𝑖 − 𝜇𝑦𝑖)(𝑥𝑖 − 𝜇𝑦𝑖)⊤

𝑖 . The 

leading eigenvector 𝒘  of 𝑆𝑊
−1𝑆𝐵 defines a single discriminant axis; projecting each sample onto this axis yields the 

one-dimensional KLDA feature. 

These two kernel projections together provide a seven-dimensional feature set—six KPCA components and one KLDA 

coordinate. This set captures both the dominant nonlinear variance and the supervised class separation essential for effective 

crop recommendation. 

Feature Fusion 

After extracting nonlinear embeddings using KPCA and identifying a discriminant axis through KLDA, we combined 

these complementary feature sets into a unified representation. Let (Equation 7), 

𝑧𝑖
𝐾𝑃𝐶𝐴 ∈ ℝ𝑚                                                                                                                                                                                              (7) 

denote the 𝑚-dimensional KPCA embedding of sample i and let (Equation 8) 

𝑧𝑖
𝐾𝐿𝐷𝐴 ∈ ℝ                                                                                                                                                                                                  (8) 

its corresponding one-dimensional KLDA score. We then create a concatenated feature vector (Equation 9) 

𝑓𝑖 = [𝑧𝑖
𝐾𝑃𝐶𝐴 𝑧𝑖

𝐾𝐿𝐷𝐴]𝑇 ∈ ℝ𝑚+1                                                                                                                                                            (9) 

from these components. This fusion step retains the global variance structure captured by KPCA while also emphasizing 

the supervised class separation highlighted by KLDA (Guan et al., 2024). To ensure numerical stability and maintain a 

balanced influence of each component, we optionally apply an additional standardization step (Equation 10), 

𝑓𝑖 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑟(𝑓𝑖)                                                                                                                                                                   (10) 

where each dimension of 𝑓𝑖 is centered to zero mean and scaled to unit variance across the training set. 

The resulting vectors in (𝑚 + 1)  dimensions serve as input to downstream classifiers, merging diverse nonlinear 

perspectives into a unified feature space that improves model robustness and predictive accuracy. 

A SVM is a supervised learning algorithm that creates optimal hyperplanes to separate data points in high-dimensional 

space. It is especially effective when the number of dimensions exceeds the number of samples and is applicable for both 

linear and non-linear classification tasks. 

Support Vector Machine 

SVMs, introduced by Vapnik (1995), are widely used for classification and prediction in supervised machine learning. 

They work by identifying the optimal decision boundary, known as a hyperplane, which maximizes the margin between 

different classes. This hyperplane is defined in a high-dimensional space, and the goal is to make the distance (or margin) to 

the nearest data points, known as support vectors, as large as possible. The concepts of support vectors, the hyperplane, and 

the margin are illustrated in Figure 1. 

SVM handles non-linearly separable data by introducing slack variables and a regularization parameter C, which trades 

off margin width against classification errors and permits some points to lie within or across the margin. If even this 

“soft-margin” formulation fails to separate the classes in the original input space, SVM employs the kernel trick—using 

polynomial, RBF, or other kernel functions—to implicitly project the data into a higher-dimensional feature space where a 

linear separation may exist. In its dual form, SVM training reduces to solving a convex quadratic program over Lagrange 

multipliers, guaranteeing a unique global optimum. At inference time, each new sample is classified by computing the sign 

of the weighted sum of its kernel similarities to the support vectors plus a learned bias term. 

The margin of a linear SVM classifier is defined as the perpendicular distance between the two supporting hyperplanes 

that touch the nearest training points from each class. When the separating hyperplane is expressed as (Equation 11) 

𝐰. 𝒙 + 𝑏 = 0                                                                                                                                                                   (11) 

the margin width is given by (Equation 12) 

 𝑑 = 2 ‖𝐰‖⁄                                                                                                                                                                     (12) 

where ‖𝐰‖ denotes the Euclidean norm of weight vector 𝐰. The same Euclidean metric (Equation 13), 

((𝒙𝟐 − 𝒙𝟏)𝟐 + (𝒚𝟐 − 𝒚𝟏)𝟐)𝟏/𝟐                                                                                                                                       (13) 

applies to any points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) in ℝ2, and is used both in computing the margin and in measuring inter-point 

distances in the input space. 

A labeled dataset of N examples (Equation 14), 

{(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁                                                                                                                                                                       (14) 
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with feature vectors 𝐱𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑞) ∈ ℝ𝑞 and class labels 𝑦𝑖 ∈ {−1, +1}, is used for training. The parameters by 

solving a constrained optimization problem that maximizes this margin while enforcing correct (or soft-margin) 

classification of the training points. 
 

 
 

Figure 1. Illustration of SVM: Hyperplane, Margin and Support Vectors 

 

SVMs were initially developed to solve linearly separable classification problems; however, such ideal scenarios rarely 

occur in real-world applications. To handle nonlinear class boundaries, SVMs use kernel functions that implicitly map the 

original feature vectors into richer, higher-dimensional spaces. In these spaces, it becomes easier to separate the classes with 

a linear hyperplane. During the training process, SVMs identify a subset of data points known as support vectors. These 

support vectors determine the position and orientation of the optimal decision boundary, with those having larger weights 

exerting a greater influence on the boundary's placement (Piccialli & Sciandrone, 2022). 

In the soft-margin formulation, the hyperplane parameters are found by minimizing (Equation 15) 

𝚽(𝐰, 𝛏) = 1 2⁄ ‖𝐰‖2 + 𝐶 ∑ 𝜉𝑖
𝑁
𝑖=1                                                                                                                                   (15) 

subject to (Equation 16) 

      𝑦𝑖(𝐰. 𝐱𝑖 + 𝑏) ≥ 1 − 𝛏𝑖  , 𝛏𝑖 ≥ 0, 𝑖 = 1, … , 𝑁                                                                                                           (16) 

where each 𝐱𝑖 ∈ ℝ𝑛 is a training feature vector, 𝑦𝑖 ∈ {∓1} is its class label, 𝐶 controls the trade-off between margin 

width and training error, and 𝜉𝑖 are the slack variables. 

Kernel methods replace the inner product 𝐱𝑖 . 𝐱𝑗 with a kernel function (Equation 17) 

𝑘(𝐱𝑖 . 𝐱𝑗) = 𝛷(𝐱𝑖). 𝛷(𝐱𝑗)                                                                                                                                                (17) 

where 𝛷(. ) is the implicit feature map. The resulting decision function takes the form (Equation 18) 

      𝑓(𝐱) = ∑ 𝛼𝑗𝑦𝑗𝑘(𝐱𝑗 , 𝐱) + 𝑏𝑁
𝑗=1                                                                                                                                    (18) 

in which the 𝛼𝑗 are Lagrange multipliers, 𝑏 is the bias term defining the hyperplane ofset, and the support vectors are 

those training points with nonzero 𝛼𝑗. 

In this study, we employ two classic SVM kernel functions. First, the polynomial kernel of degree 𝑑 is defined as 

(Equation 19) 

      𝐊(𝐱𝑖 , 𝐱𝑗)    =    (𝛾 𝐱𝑖
⊤𝐱𝑗 + 𝐶)𝑑                                                                                                                                      (19) 

where 𝛾 controls the influence of higher-order terms, 𝐶 is a constant offset, and 𝑑 is the polynomial degree. 

Second, we use the RBF kernel, given by (Equation 20) 

      𝐊(𝐱𝑖 , 𝐱𝑗)    =   𝑒𝑥𝑝 (−𝛾 ‖𝐱𝑖 − 𝐱𝑗‖
2

)                                                                                                                          (20) 

where the parameter 𝛾 determines the “spread” of the Gaussian and thus the flexibility of the decision boundary. 

Random Forest 

RF is an ensemble algorithm based on bagging that constructs multiple decision trees using bootstrap samples from the 

training data. At each split in a tree, only a random subset of features is considered, which promotes diversity among the 

trees and reduces correlation between the individual learners. During inference, each tree casts a “vote” for the predicted 

class, and the final output of the forest is determined by majority voting. This process helps lower variance compared to 

using a single decision tree. 

 

The model's hyperparameters—such as the number of trees, the maximum tree depth, and the number of features sampled 

at each split—control the trade-off between bias and variance. Feature importance can be measured by the mean decrease in 

impurity (MDI), which averages the reduction in Gini impurity (or entropy) contributed by each feature across all splits and 

trees. This combination of bootstrapping, random feature selection, and aggregation creates a robust classifier that 

generalizes well to unseen data and offers insights into feature relevance (Ibrahim 2022). 
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DATA ANALYSIS, EXPERIMENTAL STUDIES AND RESULTS 

Data analysis 

To gain a clearer understanding of the dataset's distributional properties and structure, exploratory data analysis (EDA) 

was conducted. The objective was to identify any skewness, outliers, and seasonal trends within both soil and weather-

related features. As illustrated in Figure 2, several soil attributes—including phosphorus (P), potassium (K), and sulfur (S)—

displayed strongly right-skewed distributions with significant outliers. This suggests that normalization or transformation of 

these data may be necessary before modeling. In contrast, features such as pH and nitrogen (N) exhibited more symmetrical 

or multimodal distributions, reflecting the underlying variability across different regions. 

Figure 3 shows the correlation heatmap for the numerical features in the dataset. Strong positive correlations are observed 

among the seasonal temperature variables (e.g., T2M_MAX-W, T2M_MAX-Sp, T2M_MAX-Su), indicating that higher 

temperatures during different seasons are closely related. Additionally, specific humidity values (such as QV2M-W, QV2M-

Sp, etc.) also exhibit strong mutual correlations. 

 

 
 

Figure 2. Kernel density estimates of the empirical distributions for the selected features used in feature selection 

 

 
 

Figure 3. Pearson correlation heatmap of all numerical features considered for model development(red = positive, blue = 

negative.) 

 

To highlight seasonal patterns, boxplots were created to display maximum temperatures and precipitation levels across 

the four seasons. Figure 4 illustrates that summer temperatures are significantly higher than those in winter and spring. 

Meanwhile, Figure 5 shows that precipitation peaks during the summer and decreases in winter, confirming the dataset's 

seasonal granularity. 
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Figure 4. Seasonal distribution of daily maximum temperatures (°C) shown as boxplots for Winter, Spring, Summer, and 

Autumn. 

 
 

Figure 5. Boxplots of daily precipitation (mm/day) for Winter, Spring, Summer and Autumn. 

 

Feature Importance and Feature Selection 

First, we conducted feature importance analysis using a RF model, with results shown in Figure 6. Potassium (K) received 

the highest importance score, making it the single most influential feature for distinguishing Maize from Barley. Nitrogen 

(N) and zinc (Zn) hold significant discriminative power, closely followed by sulfur (S) and soil pH, which rank fourth and 

fifth, respectively. This highlights the importance of these chemical properties in crop recommendations. Phosphorus (P) 

has been an important predictor, though it is somewhat less influential than pH. In addition to the six core nutrients, certain 

soil color categories—specifically brown, black, and red—provide moderate additional information. In contrast, seasonal 

weather variables have been less significant in terms of their importance. These findings indicate that feature-selection efforts 

should focus on K, N, Zn, S, pH, and P. Additionally, soil color should be considered a secondary categorical feature while 

meteorological factors take on a supportive role. 

The heatmap given in Figure 7 illustrates that the strongest interaction effects occur between potassium (K) and itself 

(highlighted in the K–K diagonal), as well as between potassium and phosphorus (K–P); these cells are the brightest in the 

matrix. Nitrogen’s interaction with potassium (N–K) is also notable, indicated by a lighter green color. In contrast, zinc (Zn) 

shows the weakest interactions with all other nutrients (depicted in deep purple), signifying minimal synergistic effects. 

Additionally, sulfur (S) and pH both exhibit small but non-zero interactions with potassium and nitrogen (marked in mid-

range blues), suggesting minor pairwise contributions. Conversely, the nearly empty columns for zinc, sulfur, and pH 

indicate that their mean SHAP interaction values with the other features are close to zero. 

Experimental Studies 

We retained the six most influential predictors from the feature importance plot (Figure 6) potassium (K), nitrogen (N), 

zinc (Zn), sulfur (S), soil pH, and phosphorus (P) discarding less important variables. We then created a reduced dataset with 

these predictors and the crop label, evaluating our crop recommendation framework. 

In this framework (Figure 8), the raw nutrient data for Maize and Barley is loaded and cleaned. Following this, the data 

is split into stratified training and test sets. All six soil-nutrient features are then standardized before the feature extraction 

step is applied, followed by feature fusion. Finally, two different SVM kernels—polynomial and RBF and RF were trained 

on these embeddings.  
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Figure 6. Top 15 feature importances as estimated by a Random Forest classifier (mean decrease in impurity). 

 
 

Figure 7. Mean absolute SHAP interaction values computed across the test set. Mean SHAP interactions (brighter = 

stronger): K and P show the largest interactions, while Zn and several auxiliary features are weak. 

 

Explanation of tese experiments were given in Table 2. In each experiment, the six soil nutrient variables (K, N, Zn, S, 

pH, and P) were standardized to have a mean of zero and a variance of one. The dataset was then divided into an 80/20 

stratified train/test split. Model performance was evaluated using test set accuracy.  

 

 
 

Figure 8. Pipeline flowchart of the proposed crop-recommendation system (data cleaning → scaling → kernel feature 

extraction → fusion → SVM classification → evaluation). 

 

 

 

 

 

 

    A[Load & Clean Data] --> B[Train/Test Split] 

    B --> C[Scale Features] 

    C --> D[Feature Extraction] 

    D --> E[Concatenate- Feature Fusion] 
    E --> F[SVM Classifiers] 

    F--> H[Evaluate: Accuracy, F1‑Score, Confusion Matrix] 

 

    subgraph SVM_Kernels [ ] 

        direction LR 
        K1[Linear]  

        K2[Polynomial]  

        K3[RBF]  

        K4[Sigmoid] 

    end 

    I --> SVM_Kernels 
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RESULTS AND DISCUSSION 

In the original feature space (Figure 9 Top left), Barley and Maize samples show significant overlap when plotted along 

any two raw nutrient axes. This suggests that the six-dimensional soil nutrient variables alone do not offer a clear distinction 

for classifying the crops. Although there are slight clustering tendencies—such as Maize samples having slightly higher 

potassium values—no decision boundary appears in this raw space. 

In contrast, the KPCA embedding (Figure 9 Top right) unfolds the data into a six-dimensional nonlinear manifold. Two 

principal components reveal some structural separation: Maize points tend to cluster on one side of the KPCA1–KPCA2 

plane, while Barley points gather on the opposite side. However, there is still substantial overlap between the classes, 

indicating that unsupervised variance maximization alone only partially clarifies the underlying class boundaries. 

The KLDA projection (Figure 9 Bottom left) presents a markedly different view: by extracting a single supervised 

discriminant axis, the samples of Barley and Maize are nearly perfectly aligned along this one-dimensional line. Low KLDA 

scores are predominantly associated with Barley, while high scores correspond primarily to Maize. This outcome confirms 

that supervised, kernel-based class separation can effectively concentrate essential discriminant information into a single 

coordinate. 

 

Table 2. Explanation of four experimental studies 

Experiment Description 

Raw Features with Four 

SVM Kernels 

Train four SVMs directly on the scaled six-dimensional nutrient data without feature 

extraction. Serves as reference performance. 

KPCA (m=6) with Four 

SVM Kernels 

Apply RBF-kernel PCA to the scaled nutrients, retaining m=6 components that capture the 

bulk of nonlinear variance. Train four SVM kernels on this 6-D KPCA embedding to assess 

unsupervised variance reduction benefits. 

KLDA (1D) with Four 

SVM Kernels  

Approximate the RBF feature map with p=50 Nystroem basis functions, then perform LDA to 
extract a single supervised discriminant axis (KLDA). Four SVMs are trained on this 1-D 

KLDA output to measure the impact of supervised kernel projection. 

KPCA (6D) + KLDA (1D) 

Fusion with Four SVM 

Kernels 

Concatenate the six KPCA components with the one KLDA score into a 7-D fused feature 

vector. Train four SVM variants on this hybrid embedding to evaluate whether combining 

unsupervised and supervised kernels yields additional gains over KPCA or KLDA alone. 

 

The fused KPCA+KLDA space (Figure 9 Bottom right) integrates six components from KPCA with one score from 

KLDA, resulting in a seven-dimensional embedding. In this space, the first two KPCA axes, along with the KLDA axis, 

create a 3D scatter plot in which the class clusters are clearly separated. Maize and barley occupy distinct areas within this 

hybrid space, utilizing both global variance patterns and supervised discriminative power. This combination produces a 

representation that significantly enhances the accuracy of SVM classification compared to using either method alone. 

As shown in Figure 10, using only raw nutrient features results in modest baseline accuracies: 0.599 for the Polynomial 

SVM, 0.663 for the RBF SVM, and 0.688 for the RF model. When applying KPCA alone, all three models experience a 

consistent boost in accuracy to 0.710. This demonstrates that unsupervised variance maximization leads to a reliable, though 

limited, improvement in performance. On the other hand, applying KLDA alone results in significant improvements for the 

two SVM variants: the Polynomial SVM increases by 11.9% (from 0.599 to 0.670), while the RBF SVM improves by 7.1% 

(from 0.663 to 0.710). In contrast, RF experiences a slight decline of 1.2% (from 0.688 to 0.680), indicating that the single 

supervised axis may discard some variance that tree-based methods find beneficial. 

The feature fusion of KPCA with KLDA yields significantly better results across all models. The accuracy of the 

Polynomial SVM increases by 18.5%, rising from 0.599 to 0.710. The RBF SVM shows an improvement of 10.1%, 

increasing from 0.663 to 0.730, while RF’s accuracy increases by 4.7%, going from 0.688 to 0.720. These consistent 

improvements demonstrate that merging unsupervised kernel variance with a supervised discriminant axis creates a more 

effective and discriminative feature space. This is particularly advantageous for SVMs using polynomial and RBF kernels 

in crop recommendation tasks. 

To evaluate the impact of kernel-based feature extraction methods effectively, we chose a dataset that clearly displays 

significant nonlinear characteristics, as shown in our data scatter plots. This inherent nonlinearity helps to explain why the 

overall prediction accuracies given with the bar plot in Figure 10 tend to remain moderate on average. 

Figure 11 illustrates the decision boundaries learned by polynomial and RBF SVMs on the fused KPCA+KLDA 

embedding, comparing KPCA Component 1 with Component 2, and coloring by KLDA score. the RBF SVM in the right 

panel produces a smoother, more localized boundary that tightly wraps around the high-density cluster in the center while 

correctly excluding many of the peripheral Barley points. The color gradient of the KLDA scores further illustrates how the 

RBF kernel utilizes supervised separability along the vertical axis to refine its decision boundaries in the KPCA plane. 

Overall, these plots confirm that the RBF SVM is more effective at leveraging the combined unsupervised and supervised 

feature space, leading to more accurate class separation compared to the polynomial kernel. 
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Figure 9. Data scattering plots. The top left shows raw K vs. N., the top‑right plot shows the first two KPCA components, 

the bottom left displays the one‑dimensional KLDA score and the bottom‑right fuses KPCA1,2  colored by KLDA. 

 
 

Figure 10. Accuracies of Polynomial SVM, RBF SVM, and RF using Raw, KPCA, KLDA, and fused KPCA+KLDA 

feature spaces. 

 

The Partial Dependency Plots (PDPs) shown in Figure 12 illustrate that integrating the unsupervised KPCA components 

with the supervised KLDA axis creates a more complex and multidimensional decision surface in the feature fused space.The 

Polynomial SVM utilizes this fused space by balancing the negative influence of KPCA1 with the separation provided by 

KLDA. Meanwhile, the RBF SVM takes advantage of both the global variance captured by KPCA and the local 

discrimination achieved through KLDA to create more flexible decision boundaries. Additionally, the tree-based ensemble 

benefits from the increased variance represented by KPCA, leading to smoother, upward-trending partial dependence 

profiles compared to the case with only KLDA. 
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Figure 11. Decision boundaries of polynomial (left) and RBF (right) SVMs on the fused KPCA + KLDA feature space 

(points colored by KLDA score). 

 

 
Figure 12. Pdp analysis on feature fused space for Poly SVM, RBF SVM and RF 

 

CONCLUSION 

Through our comprehensive experimentation, we have found that understanding the underlying data distribution is 

crucial when choosing a classification method. The raw nutrient scatter (Figure 9, top-left) shows that the six original features 

have significant overlap, which makes linear or low-complexity models unsuitable without further feature transformation. 

On the other hand, the KLDA projection (Figure 9, bottom-left) illustrates that even a single, well-selected discriminant axis 

can achieve nearly perfect class separation. However, relying solely on this supervised perspective overlooks important 

variance, as indicated by the modest decline in RF performance. Our results emphasize the transformative power of feature 

fusion. By combining unsupervised KPCA components with the supervised KLDA axis, we create a hybrid embedding that 

captures both the global nonlinear structure of the data and the specific boundaries between classes. This fused representation 

consistently outperforms each standalone approach, increasing Polynomial SVM accuracy by 18.5%, RBF SVM by 10.1%, 

and RF by 4.7% compared to raw features. It also yields the most flexible decision surfaces, particularly for RBF kernels 

(Figure 11) and richer partial-dependence profiles (Figure 12). Notably, the novel integration of KPCA and KLDA in this 

study represents, to our knowledge, the first demonstration of supervised-unsupervised kernel fusion applied to crop 

recommendation. This fusion maximizes the discriminatory information available to downstream classifiers while 

addressing the limitations of purely unsupervised or purely supervised transformations. In the context of recommending 

maize versus barley based on soil nutrients, our kernel feature fusion framework stands out as a powerful and generalizable 

approach for precision agriculture. It enables more accurate and robust decision-support models without the need for 

extensive field trials or manual feature engineering. 
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