RESEARCH ARTICLE

Dirihlet problem for the generalized Beltrami equation

Pelin Ayşe Gökgöz^{1*} ©

¹Gebze Technical University, Department of Computer Technologies, Cyber Security Vocational School, Gebze, 41400, Kocaeli, Türkiye

ABSTRACT

In this article, we investigate the Dirichlet problem for the generalized Beltrami equation. Firstly, we introduce the solutions of the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc. Secondly, we state the properties of the integral operators for regular domains. Then, by using Banach fixed point theorem, we obtain the existence of the unique solution of the Dirichlet problem for the generalized Beltrami equation in the unit disc.

Mathematics Subject Classification (2020): 30E25 35C15 31A10

Keywords: Dirichlet problem, Unit disc, Generalized Beltrami equation, Banach fixed point theorem

1. INTRODUCTION AND PRELIMINARIES

Many researchers studied Dirichlet problem in different domains Begehr, H. (2005a,b); Vaitsiakhovich, T. (2008a); Vaitekhovich, T.S. (2008b); Vaitekhovich, T. (2007); Gökgöz, P.A. (2024a,b); Begehr, H. and Shupeyeva, B. (2021); Wang, Y. and Du, J. (2015); Aksoy, Ü. and Çelebi, A.O. (2012); Begehr, H.G.W. (1994); Vekua, I.N. (1962); Aksoy, Ü. and Çelebi, A.O. (2010); Begehr, H. and Vaitekhovich, T., (2012); Begehr, H. and Gaertner, E. (2007). In this paper, we study the Dirichlet problem for the generalized Beltrami equation in the unit disc. The rest of the paper is structured as follows: Section 2 is reserved for an overview of the Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc. In Section 3, we examine the properties of the integral operators. In the last section, we obtain the existence of the unique solution of the Dirichlet problem for the generalized Beltrami equation in the unit disc using Banach fixed point theorem.

Now we provide the necessary background and fundamental concepts required for the development of the main results in this paper.

One of the main tools in solving complex boundary value problems is the complex analogue of Gauss's theorems Begehr, H. (2005a).

Theorem 1.1. Gauss Theorems (complex form)

Let $w \in C^1(D; \mathbb{C}) \cap C(\bar{D}; \mathbb{C})$ in a regular domain D of the complex plane \mathbb{C} then

$$\int_{D} w_{\bar{z}}(z) dx dy = \frac{1}{2i} \int_{\partial D} w(z) dz$$

and

$$\int_{D} w_{z}(z)dxdy = -\frac{1}{2i} \int_{\partial D} w(z)d\bar{z}$$

From the Gauss theorems in complex form, the following representation formulas can be deduced Begehr, H. (2005a,b); Begehr, H.G.W. (1994). The following formulas provide an explicit representation of the solution of boundary value problems.

Theorem 1.2. Cauchy-Pompeiu representations

Let $D \subset \mathbb{C}$ be a regular domain and $w \in C^1(D;\mathbb{C}) \cap C(\bar{D};\mathbb{C})$. Then using $\zeta = \xi + i\eta$ in for $z \in D$

$$w(z) = \frac{1}{2\pi i} \int_{\partial D} w(\zeta) \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{D} w_{\bar{\zeta}}(\zeta) \frac{d\xi d\eta}{\zeta - z}$$

Corresponding Author: Pelin Ayşe Gökgöz E-mail: pelingokgoz@gtu.edu.tr

Submitted: 18.02.2025 • Revision Requested: 02.06.2025 • Last Revision Received: 11.06.2025 • Accepted: 12.06.2025

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0)

and

$$w(z) = -\frac{1}{2\pi i} \int_{\partial D} w(\zeta) \frac{d\bar{\zeta}}{\overline{\zeta - z}} - \frac{1}{\pi} \int_{D} w_{\zeta}(\zeta) \frac{d\xi d\eta}{\overline{\zeta - z}}$$

hold.

For the proof of Theorem 1.2, see for instance Begehr, H. (2005a). We can observe that if $w_{\bar{\zeta}}$ is given in D and the values of w along the boundary is known, we can identify a unique function w(z). This representation is an example of the solution of the Dirichlet problem. This highlights how integral representation formulas facilitate the solution of boundary value problems.

In connection with the Hölder continuity of Cauchy integrals we mention a result from Begehr, H.G.W. (1994).

Theorem 1.3. Let w = u + iv be analytic in the unit disc \mathbb{D} , where v is continuous in the closure $\overline{\mathbb{D}}$ and Hölder continuous on the boundary $\partial \mathbb{D}$ satisfying

$$|v(\zeta) - v(\tau)| \le H|\zeta - \tau|^{\alpha}, \quad \zeta, \tau \in \partial \mathbb{D}.$$

Then w is Hölder continuous in $\overline{\mathbb{D}}$ with the same exponent and the constant kH where k only depends on α , i.e.

$$|w(z) - w(z_0)| \le kH|z - z_0|^{\alpha}, \quad z, z_0 \in \overline{\mathbb{D}}.$$

2. DIRICHLET PROBLEM IN THE UNIT DISC

Dirichlet problem for the inhomogeneous Cauchy-Riemann equation in the unit disc has been studied by Begehr, H. (2005b). Now we state this problem as follows.

Theorem 2.1. Begehr, H. (2005b) The Dirichlet problem for the inhomogeneous polyanalytic equation in the unit disc

$$\partial_{\bar{\tau}}^n w = f$$
 in \mathbb{D} , $\partial_{\bar{\tau}}^{\nu} w = \gamma_{\nu}$ on $\partial \mathbb{D}$, $0 \le \nu \le n-1$,

is uniquely solvable for $f \in L_1(\mathbb{D}; \mathbb{C}), \ \gamma_{\nu} \in C(\partial \mathbb{D}; \mathbb{C}), \ 0 \leq \nu \leq n-1, \ \text{if and only if for } 0 \leq \nu \leq n-1$

$$\begin{split} &\sum_{\lambda=\nu}^{n-1} \frac{\bar{z}}{2\pi i} \int_{|\zeta|=1} (-1)^{\lambda-\nu} \frac{\gamma_{\lambda}(\zeta)}{1-\bar{z}\zeta} \frac{(\overline{\zeta-z})^{\lambda-\nu}}{(\lambda-\nu)!} d\zeta \\ &+ \frac{(-1)^{n-\nu}\bar{z}}{\pi} \int_{|\zeta|<1} \frac{f(\zeta)}{1-\bar{z}\zeta} \frac{(\overline{\zeta-z})^{n-1-\nu}}{(n-1-\nu)!} d\xi d\eta = 0. \end{split}$$

The solution then is

$$w(z) = \sum_{\nu=0}^{n-1} \frac{(-1)^{\nu}}{2\pi i} \int_{|\zeta|=1} \frac{\gamma_{\nu}(\zeta)}{\nu!} \frac{(\overline{\zeta-z})^{\nu}}{\zeta-z} d\zeta + \frac{(-1)^{n}}{\pi} \int_{|\zeta|=1} \frac{f(\zeta)}{(n-1)!} \frac{(\overline{\zeta-z})^{n-1}}{\zeta-z} d\xi d\eta.$$

Proof. For the proof of this theorem, we may use induction. In the case of n = 1, we obtain the Dirichlet problem for the Cauchy-Riemann equation in the unit disc as

$$\partial_z w = f$$
 in \mathbb{D} , $w = \gamma_0$ on $\partial \mathbb{D}$.

The solution is given by the classical Cauchy-Pompeiu formula:

$$w(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{\gamma_0(\zeta)}{\zeta - z} d\zeta - \frac{1}{\pi} \int_{|\zeta|<1} \frac{f(\zeta)}{\zeta - z} d\xi d\eta.$$

if the solvability condition holds.

Assume that the result holds for order n-1. In the case of n can be structured by decomposing the problem into the following system of equations:

$$\begin{split} \partial_{\bar{z}}^{n-1} w &= \omega \text{ in } \mathbb{D}, \ \partial_{\bar{z}}^{\nu} w = \gamma_{\nu} \text{ on } \partial \mathbb{D}, \ 0 \leq \nu \leq n-2, \\ \partial_{\bar{z}} \omega &= f \text{ in } \mathbb{D}, \ \partial_{\bar{z}} \omega = \gamma_{n-1} \text{ on } \partial \mathbb{D}, \end{split}$$

where

$$\omega(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \gamma_{n-1}(\zeta) \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{|\zeta|<1} f(\zeta) \frac{d\xi d\eta}{\zeta - z}$$

Each of these two problems is solved explicitly using known integral representations for lower-order cases. ω is substituted into the expression for w, thereby completing the proof.

3. PROPERTIES OF THE INTEGRAL OPERATORS

In this section, we state the properties of the integral operators for regular domains. The properties of the integral operators have been extensively investigated in Begehr, H. (2005a); Begehr, H. and Hile, G.N., (1997); Vekua, I.N. (1962).

Definition 3.1. Begehr, H. (2005a) For $f \in L_1(D; \mathbb{C})$ the integral operator

$$Tf(z) = -\frac{1}{\pi} \int_{D} f(\zeta) \frac{d\xi d\eta}{\zeta - z}, \ z \in \mathbb{C}$$

is called Pompeiu operator.

Theorem 3.2. Begehr, H. (2005a) If $f \in L_1(D; \mathbb{C})$ then for all $\varphi \in C_0^1(D; \mathbb{C})$

$$\int_{D} Tf(z)\varphi_{\bar{z}}(z)dxdy + \int_{D} f(z)\varphi(z)dxdy = 0.$$

Proof. We use the Cauchy-Pompeiu representation formula and the fact that the boundary values of φ vanish at the boundary. We obtain

$$\varphi(z) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \varphi(\zeta) \frac{d\zeta}{\zeta - z} - \frac{1}{\pi} \int_{D} \varphi_{\bar{\zeta}}(\zeta) \frac{d\xi d\eta}{\zeta - z} = \left(T \varphi_{\bar{\zeta}} \right) (z).$$

We can interchange the order of integration

$$\int_D T f(z) \varphi_{\bar{z}}(z) dx dy = -\frac{1}{\pi} \int_D f(\zeta) \int_D \varphi_{\bar{z}}(z) \frac{dx dy}{\zeta - z} d\xi d\eta = -\int_D f(\zeta) \varphi(\zeta) d\xi d\eta.$$

This means that

$$\partial_{\bar{\tau}} T f = f$$

in distributional sense.

Theorem 3.3. Vekua, I.N. (1962) If $f \in L^1(D)$ then T f has generalized first order derivative with respect to \bar{z} equal to f, i.e.,

$$\frac{\partial}{\partial \bar{z}}Tf = f.$$

Proof. This theorem is a consequence of Theorem 3.2.

Also, we can compute the z derivative of Tf(z).

Remark 3.4. For $z \in \mathbb{C} \setminus \overline{D}$, Tf is analytic and its derivative with respect to z is

$$\partial_z T f(z) = \Pi f(z) = -\frac{1}{\pi} \int_D f(\zeta) \frac{d\xi d\eta}{(\zeta - z)^2}.$$

Theorem 3.5. Vekua, I.N. (1962) For $f \in L^p(\mathbb{C})$ we have $\Pi f \in L^p(\mathbb{C})$ and

$$\|\Pi f\|_{L^p(\mathbb{C})} \le \Lambda_p \|f\|_{L^p(\mathbb{C})} \quad (p > 1)$$

with $\|\Pi\|_{L^2(\mathbb{C})} = 1$.

Proof. For the proof of this theorem, see for instance Vekua, I.N. (1962), p. 66-72.

4. DIRICHLET PROBLEM FOR THE GENERALIZED BELTRAMI EQUATION IN THE UNIT DISC

Some of the boundary value problems for the Beltrami equation are studied by several researchers see for instance Begehr, H. and Harutyunyan, G. (2009); Begehr, H. and Obolashvili, E. (1994); Harutyunyan, G. (2007); Tutschke, W. (1983); Begehr, H. and Vaitekhovich, T. (2007); Yüksel, U. (2010).

In this section, we prove the existence and uniqueness of the solution to the Dirichlet problem for the generalized Beltrami equation in the unit disc using Banach fixed point theorem. Let $\mathbb D$ be the unit disc, $\partial \mathbb D$ its boundary and $C^{\alpha}(\overline{\mathbb D})$ the space of Hölder

continuous functions in $\overline{\mathbb{D}}$ with the Hölder exponent α , where $0 < \alpha < 1$. Based on Begehr, H. and Vaitekhovich, T. (2007), the problem under consideration is as follows:

"Find the unique solution of the complex differential equation

$$w_{\overline{z}} = F(z, w, w_z) := q_1(z)w_z + q_2(z)\overline{w_z} + a(z)w + b(z)\overline{w} + c(z) \text{ in } \mathbb{D}$$

$$\tag{1}$$

satisfying the boundary condition

$$w = \gamma \text{ on } \partial \mathbb{D} \tag{2}$$

where

$$|q_1(z)| + |q_2(z)| \le q_0 < 1 \tag{3}$$

and $q_1, q_2, a, b, c \in C^{\alpha}(\overline{\mathbb{D}}), \gamma \in C^{\alpha}(\partial \mathbb{D}), 1 < p$."

We need some assumptions on the function $F(z, w, w_z)$.

• The function $F(z, w, w_z)$ is Hölder continuous with respect to z.

For $z_1, z_2 \in \overline{\mathbb{D}}$, we obtain

$$\begin{split} |F(z_1,w,w_z)-F(z_2,w,w_z)| &= |(q_1(z_1)-q_1(z_2))w_z+(q_2(z_1)-q_2(z_2))\overline{w_z}\\ &+ (a(z_1)-a(z_2))w+(b(z_1)-b(z_2))\overline{w}+c(z_1)-c(z_2)|\\ &\leq |w_z||q_1(z_1)-q_1(z_2)|+|w_z||q_2(z_1)-q_2(z_2)|\\ &+|w||a(z_1)-a(z_2)|+|w||b(z_1)-b(z_2)|+|c(z_1)-c(z_2)|. \end{split}$$

So

$$|F(z_1, w, w_z) - F(z_2, w, w_z)| \le C(1 + |w| + |w_z|)|z_1 - z_2|^{\alpha}.$$

• The function $F(z, w, w_z)$ satisfies the Lipschitz conditions with respect to z and w_z . For $z_1, z_2 \in \overline{\mathbb{D}}$ and $w_{z_1}, w_{z_2} \in \mathbb{C}$, we obtain

$$\begin{split} |F(z_1,w,w_{z1})-F(z_2,w,w_{z2})| &= |q_1(z_1)w_{z1}-q_1(z_2)w_{z2}+q_2(z_1)\overline{w_{z1}}-q_2(z_2)\overline{w_{z2}}\\ &+(a(z_1)-a(z_2))w+(b(z_1)-b(z_2))\overline{w}+c(z_1)-c(z_2)|\\ &\leq |q_1(z_1)||w_{z1}-w_{z2}|+|q_1(z_1)-q_1(z_2)||w_{z2}|\\ &+|q_2(z_1)||w_{z1}-w_{z2}|+|q_2(z_1)-q_2(z_2)||w_{z2}|\\ &+|a(z_1)-a(z_2)||w|+|b(z_1)-b(z_2)||w|+|c(z_1)-c(z_2)| \end{split}$$

We know that all coefficients of (1) are in $C^{\alpha}(\overline{\mathbb{D}})$. Also we have the condition (3). Using these, the result follows.

$$|F(z_1, w, w_{z1}) - F(z_2, w, w_{z2})| \le q_0 |w_{z1} - w_{z2}| + C(1 + |w| + |w_{z2}|)|z_1 - z_2|^{\alpha}.$$

Our aim is to transform the Dirichlet problem for the generalized Beltrami equation (1) with (2) to a fixed point problem. We prove the following theorem.

Theorem 4.1. A function $w \in C^{1,\alpha}(\bar{\Omega})$ is a solution to the Dirichlet problem (1) with the boundary condition (2) if and only if w can be written as the integral equation

$$w(z) = \varphi(z) + T\left[F\left(z, w, w_z\right)\right](z),\tag{4}$$

where $\varphi \in C^{\alpha}(\bar{\Omega})$ is holomorphic in the domain $\mathbb D$ satisfying the Dirichlet boundary condition

$$\varphi(z) = \gamma(z) - T[F(z, w, w_z)] \text{ on } \partial \mathbb{D}.$$
 (5)

Proof. We assume that $w \in C^{1,\alpha}(\bar{\Omega})$ is a solution to the Dirichlet problem (1) with the boundary condition (2). We define a function φ by

$$\varphi(z) = w(z) - T [F(z, w, w_z)](z).$$

Differentiating φ with respect to \bar{z} , we obtain

$$\varphi_{\bar{z}} = w_{\bar{z}} - [F(z, w, w_z)] = 0.$$

That is, φ is a holomorphic function in \mathbb{D} . The Dirichlet condition (2) becomes

$$\varphi(z) = \gamma(z) - T[F(z, w, w_z)] \text{ on } \partial \mathbb{D}.$$

for the holomorphic function φ . We have $\gamma \in C^{\alpha}(\partial \mathbb{D})$. Further, $F(z, w, w_z) \in C^{\alpha}(\bar{\mathbb{D}})$ and therefore $T_{\Omega}[F(z, w, w_z)] \in C^{\alpha}(\bar{\mathbb{D}})$. Then, by Theorem 1.3, $\varphi(z) \in C^{\alpha}(\bar{\Omega})$ and therefore we have provided that w can be written as the integral equation (4) and Dirichlet boundary condition (5) is satisfied.

Conversely, suppose that w can be written as the integral equation (4), where φ is a holomorphic function satisfying (5). Differentiating (4) with respect to \bar{z} , we obtain

$$w_{\bar{z}} = F(z, w, w_{\bar{z}}).$$

This shows that $w \in C^{1,\alpha}(\bar{\mathbb{D}})$ is a solution of the Dirichlet problem (1) with (2).

We use the representation

$$w(z) = \varphi(z) + T \left[F(z, w, w_z) \right] (z) \tag{6}$$

where $\varphi(z)$ is an analytic function in \mathbb{D} . Differentiating (6) with respect to z and using the properties of the Pompeiu operators, we obtain

$$w_z(z) = \varphi' + \Pi \left[F(z, w, w_z) \right] (z). \tag{7}$$

The boundary condition becomes

$$\varphi(z) = \gamma(z) - T[F(z, w, w_z)] \text{ on } \partial \mathbb{D}.$$
(8)

The equations (6) and (7) form the following system of integro-differential equations.

$$w(z) = \varphi(z) + T [F (z, w, w_z)] (z)$$

 $w_z(z) = \varphi'(z) + \Pi [F (z, w, w_z)] (z)$

For the simplicity, we denote w_z by w^* . Let w and w^* be any functions in $C^{\alpha}(\bar{\mathbb{D}})$. We define an operator Q by

$$Q:(w,w^*)\to (W,W^*)$$

where

$$W = \varphi_{(w,w^*)} + T[F(\cdot, w, w^*)]$$

$$W^* = \varphi'_{(w,w^*)} + \Pi[F(\cdot, w, w^*)],$$

 $arphi_{(w,w^*)}$ is holomorphic in $\mathbb D$ and satisfies the Dirichlet boundary condition

$$\varphi_{(w,w^*)} = \gamma(z) - T[F(z,w,w^*)] \text{ on } \partial \mathbb{D}.$$

The fixed point of the operator Q provides the solution of the (1) satisfying Dirichlet boundary condition (2). We will obtain the conditions on the coefficients of F under which the operator Q has a fixed point. We introduce function space

$$S = \left\{ (w, w^*) : w, w^* \in C^{\alpha}(\bar{\mathbb{D}}) \right\}$$

equipped with the norm

$$||(w, w^*)||_{*,\alpha} = \max(||w||_{\alpha}, ||w^*||_{\alpha}),$$

where $\|\cdot\|_{\alpha}$ denotes the Hölder norm in $C^{\alpha}(\bar{\Omega})$. Since $C^{\alpha}(\bar{\Omega})$ is a Banach space, S is a Banach space.

We pick (w_1, w_1^*) and (w_2, w_2^*) from S. Now let $Q(w_1, w_1^*) = (W_1, W_1^*)$ and $Q(w_2, w_2^*) = (W_2, W_2^*)$. Then we have

$$W_{1} = \varphi_{(w_{1}, w_{1}^{*})} + T \left[F \left(\cdot, w_{1}, w_{1}^{*} \right) \right]$$

$$W_{1}^{*} = \varphi'_{(w_{1}, w_{1}^{*})} + \Pi \left[F \left(\cdot, w_{1}, w_{1}^{*} \right) \right]$$

and

$$\begin{split} W_2 &= \varphi_{\left(w_2, w_2^*\right)} + T\left[F\left(\cdot, w_2, w_2^*\right)\right] \\ W_2^* &= \varphi_{\left(w_2, w_2^*\right)}' + \Pi\left[F\left(\cdot, w_2, w_2^*\right)\right]. \end{split}$$

where

$$\varphi_{(w_1,w_1^*)} = \gamma(z) - T[F(z,w_1,w_1^*)] \text{ on } \partial \mathbb{D}.$$

and

$$\varphi_{(w_2,w_2^*)} = \gamma(z) - T[F(z, w_2, w_2^*)] \text{ on } \partial \mathbb{D}$$

respectively.

We obtain

$$||W_{1} - W_{2}||_{\alpha} \leq ||\varphi_{(w_{1}, w_{1}^{*})} - \varphi_{(w_{2}, w_{2}^{*})}||_{\alpha} + ||T[F(\cdot, w_{1}, w_{1}^{*})] - T[F(\cdot, w_{2}, w_{2}^{*})]||_{\alpha}$$

$$\begin{aligned} \left\| W_{1}^{*} - W_{2}^{*} \right\|_{\alpha} &\leq \left\| \varphi_{\left(w_{1}, w_{1}^{*}\right)}^{'} - \varphi_{\left(w_{2}, w_{2}^{*}\right)}^{'} \right\|_{\alpha} + \left\| \Pi \left[F\left(\cdot, w_{1}, w_{1}^{*}\right) \right] \\ &- \Pi \left[F\left(\cdot, w_{2}, w_{2}^{*}\right) \right] \right\|_{\alpha}. \end{aligned}$$

For these computations, we set

$$C_1 := ||T||_{\alpha} \left(C_{11} ||w_1^* - w_2^*||_{\alpha} + C_{12} ||w_1 - w_2||_{\alpha} \right)$$

$$C_2 := \|\Pi\|_{\alpha} \left(C_{11} \|w_1^* - w_2^*\|_{\alpha} + C_{12} \|w_1 - w_2\|_{\alpha} \right)$$

where $C_{11} := \|q_1\|_{\alpha} + \|q_2\|_{\alpha}$ and $C_{12} = \|a\|_{\alpha} + \|b\|_{\alpha}$.

Now, we use the fact that the operators T and Π are bounded in $C^{\alpha}(\bar{\Omega})$.

$$\left\|T\left[F\left(\cdot,w_{1},w_{1}^{*}\right)\right]-T\left[F\left(\cdot,w_{2},w_{2}^{*}\right)\right]\right\|_{\alpha}\leq\left\|T\right\|_{\alpha}\left\|F\left(\cdot,w_{1},w_{1}^{*}\right)-F\left(\cdot,w_{2},w_{2}^{*}\right)\right\|_{\alpha}\leq C_{1}.$$

$$\|\Pi\left[F\left(\cdot,w_{1},w_{1}^{*}\right)\right]-\Pi\left[F\left(\cdot,w_{2},w_{2}^{*}\right)\right]\|_{\alpha}\leq\|\Pi\|_{\alpha}\|F\left(\cdot,w_{1},w_{1}^{*}\right)-F\left(\cdot,w_{2},w_{2}^{*}\right)\|_{\alpha}\leq C_{2}$$

and using Theorem 1.3, we have

$$\left\|\varphi_{\left(w_{1},w_{1}^{*}\right)}-\varphi_{\left(w_{2},w_{2}^{*}\right)}\right\|_{\alpha}\leq C_{1}k$$

where k depends only on α . Similarly,

$$\left\|\varphi_{(w_{1},w_{1}^{*})}^{'}-\varphi_{(w_{2},w_{2}^{*})}^{'}\right\|_{\alpha}\leq C_{2}\hat{k}$$

where \hat{k} depends only on α .

Now we consider the distance $d\left(Q\left(w_1, w_1^*\right), Q\left(w_2, w_2^*\right)\right)$.

$$\begin{split} d\left(Q\left(w_{1},w_{1}^{*}\right),Q\left(w_{2},w_{2}^{*}\right)\right) &= \left\|\left(W_{1}-W_{2}\right),\left(W_{1}^{*}-W_{2}^{*}\right)\right\| \\ &= \max\left(\left\|W_{1}-W_{2}\right\|_{\alpha},\left\|W_{1}^{*}-W_{2}^{*}\right\|_{\alpha}\right) \\ &\leq \max\left(\left\|\varphi_{\left(w_{1},w_{1}^{*}\right)}-\varphi_{\left(w_{2},w_{2}^{*}\right)}\right\|_{\alpha} + \\ &\left\|T\left[F\left(\cdot,w_{1},w_{1}^{*}\right)\right]-T\left[F\left(\cdot,w_{2},w_{2}^{*}\right)\right]\right\|_{\alpha},\left\|\varphi_{\left(w_{1},w_{1}^{*}\right)}^{\prime}-\right. \\ &\left.\left.\left.\left.\left.\left(w_{2},w_{2}^{*}\right)\right\|_{\alpha}+\right\|\Pi\left[F\left(\cdot,\omega_{1},w_{1}^{*}\right)\right]-\Pi\left[F\left(\cdot,w_{2},w_{2}^{*}\right)\right]\right\|_{\alpha} \\ &\leq \max\left(C_{1}k,C_{2}\hat{k}\right) \\ &\leq \left(C_{1}+C_{2}\right)d\left(\left(w_{1},w_{1}^{*}\right),\left(w_{2},w_{2}^{*}\right)\right)\max\left(k\|T\|_{\alpha}\right. \\ &\left.\left.\hat{k}\|\Pi\|_{\alpha}\right). \end{split}$$

The operator Q is contractive if

$$\|q_1\|_{\alpha} + \|q_2\|_{\alpha} + \|a\|_{\alpha} + \|b\|_{\alpha} < \frac{1}{\max\left(k\|T\|_{\alpha} + \hat{k}\|\Pi\|_{\alpha}\right)}$$

We obtain the existence of the unique solution (w, w^*) by using Banach fixed point theorem.

Remark 4.2. The methodology considered in this work suggests the potential for analogous studies regarding the solvability of the generalized Beltrami equation under alternative boundary conditions.

Peer Review: Externally peer-reviewed.

Conflict of Interest: Authors declared no conflict of interest. **Financial Disclosure:** Authors declared no financial support.

LIST OF AUTHOR ORCIDS

Pelin Ayşe Gökgöz https://orcid.org/0000-0003-4381-1535

REFERENCES

Aksoy, Ü., Çelebi, A.O., 2012, Dirichlet problem for a generalized inhomogeneous polyharmonic equation in an annular domain, Complex Variables and Elliptic Equations, 57 2-4, 229-241.

Aksoy, Ü., Çelebi, A.O., 2010, Dirichlet problems for generalized n-Poisson equation, Oper. Theory Adv. Appl. 205, 129-142.

Begehr, H., 2005a, Boundary value problems in complex analysis I, Boletin de la Asociacion Matematica Venezolana, 12-1, 65-85.

Begehr, H., 2005b, Boundary value problems in complex analysis II. Boletin de la Asociacion Matematica Venezolana, 12-2, 217-250.

Begehr, H., Shupeyeva, B., 2021, Polyanalytic boundary value problems for planar domains with harmonic Green function, Analysis and Mathematical Physics, 11, 137.

Begehr, H.G.W., 1994, Complex Analytic Methods for Partial Differential Equations: An introductory text, World Scientific, Singapore.

Begehr, H., Vaitekhovich, T., 2012, Harmonic Dirichlet problem for some equilateral triangle, Complex Variables and Elliptic Equations, 57, 185-196.

Begehr, H., Gaertner, E., 2007, Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane, Georgian Math J. 14, 33-52.

Begehr, H., Hile, G.N., 1997, A hierarchy of integral operators, Rocky Mountain J. Math. 27, 669-706.

Begehr, H., Harutyunyan, G., 2009, Neumann problem for the Beltrami operator and for second order operators with Poisson/Bitsadze operator as main part, Complex Variables and Elliptic Equations 54-12, 1129-1150.

Begehr, H., Obolashvili, E., 1994, Some boundary value problems for a Beltrami equation. Complex Variables and Elliptic Equations, 26, 1-2, 113-122.

Begehr, H., Vaitekhovich, T., 2007, Complex partial differential equations in a manner of I. N. Vekua. Lecture Notes of TICMI, 8, 15-26.

Gökgöz, P.A., 2024a, Dirichlet boundary value problem for linear polyanalytic equation in upper half plane, Complex Variables and Elliptic Equations, 70-4, 549–554.

Gökgöz, P.A., 2024b, Dirichlet Problem for Nonlinear Higher-Order Equations in Upper Half Plane, Complex Analysis and Operator Theory 18, 121.

Harutyunyan, G., 2007, Boundary value problems for the Beltrami operator, Complex Variables and Elliptic Equations, 52-6, 475-484.

Tutschke, W., 1983, Partielle Differentialgleichungen - Klassiche, Funktionalanalytische und Komplexe Methoden, Teubner Texte zur Mathematics. Band 27, B.G. Teubner, Leipzig.

Vaitsiakhovich, T., 2008a, Boundary Value Problems for Complex Partial Differential Equations in a Ring Domain [Ph.D. thesis], Freie Universitat Berlin.

Vaitekhovich, T.S., 2008b, Boundary value problems to first-order complex partial differential equations, Integral Transforms and Special Functions, 19, 211-233.

Vaitekhovich, T., 2007, Boundary value problems to second order complex partial differential equations in a ring domain, Siauliai Mathematical Seminar, 2-10, 117-146.

Vekua, I.N., 1962, Generalized Analytic Functions. Pergamon Press, Oxford.

Yüksel, U., 2010, A Schwarz problem for the generalized Beltrami equation, Complex Variables and Elliptic Equations, 56-6, 503-511.

Wang, Y., Du, J., 2015, Harmonic Dirichlet problem in a ring sector. In: Current trends in analysis and its applications: Trends Math. Cham, Switzerland 67-75.