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Convergence of the class of methods for solutions
of certain sixth-order boundary value problems

K. Farajeyan *, J. Rashidinia ¥ and R. Jalilian

Abstract

The Class of various order numerical methods based on non-polynomial
spline have been developed for the solution of linear and non-linear
sixth-order boundary value problems. We developed non-polynomial
spline which contains a parameter p, act as the frequency of the trigono-
metric part of the spline function, when such parameter tends to zero
the defined spline reduce into the septic polynomial spline, the consis-
tency relation of non-polynomial spline derived in such a way that, to
be fitted to approximate the solution of the given sixth-order boundary
value problems. Boundary formulas are developed to associate with
presented spline methods. Truncation errors are given, we developed
the class of second, fourth, sixth and eight order methods. Convergence
analysis has been proved. The obtained methods have been tested on
nine examples, to illustrate practical usefulness of our approach. The
results of our higher eight order method compare with the existing
methods so far.
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1. Introduction
We consider non-linear sixth-order boundary value problem of type
(1.1)  uw92) = f(z,u), a<z<b, abz€R,
with the following boundary conditions
u(a) = Aiyu (@) = Ao,u” (@) = Aa,  w(b) = Aa,u (b) = As,u” (b) = e,

or

"

u(a) = Ar,u” (@) = As,u™® (@) = Xo,  u(b) = Ao, u” (b) = Arr,u™® (b) = Aia,
(1.2)

where A; for i = 1,2,...,12, are finite real constants and u(z) andf(z,u) are continu-
ous functions defined in the interval [a, b].

The sixth-order boundary value problem occurs in several models of engineering and
branches of physics, applied mathematics and astrophysics. For example in astrophysics,
they believed that the narrow convecting layers border which have fix layers, compass
A-type of stars may be modeled by sixth-order boundary value problems [7, 22].

The existence and uniqueness of solution of the sixth-order boundary value problem has
been discussed by Agarwal [1]. Many attempts have been done to approximate the so-
lution boundary value problems (1.1)-(1.2). Finite difference methods of various orders,
for the solutions of such problems have been developed by Boutayeb and Twizell [5],
Pandey [17], Twizell [23] and Twizell and Boutayeb [24]. Sinc-Galerkin method for the
solution of sixth-order boundary value problems has been developed by El-Gamel et
al. [6]. The spectral method based on Bernstein polynomials for solving high order non-
linear boundary value problems have been developed by Behroozifar [4]. The Homotopy
perturbation and Variational iteration methods for solving sixth-order boundary value
problems have been given by Noor et al. [15, 16]. Adomian decomposition method for
solving sixth-order boundary value problems developed by Wazwaz [27] and Hayani [8].
Daftardar Jafari method (DJM) for solutions of fifth and sixth-orders boundary value
problems presented by Ullah et al. [25]. The series solution method for higher-order
boundary value problems has been developed by Aslanov [2].

The numerical solution based on polynomial and non-polynomial splines have been devel-
oped by many authors, to solve sixth-orders boundary value problems (1.1)-(1.2). Siddiqi
and Twizell [21] derived the polynomial splines of degree six, also Siddiqi et al. [19] used
quintic spline and later on Siddiqi and Akram [20] used septic spline to developed the
numerical solution of (1.1)-(1.2).

Non-polynomial spline has been used by Akram et al. [3] later on Ramadan et al. [18]
used non-polynomial spline for the solution of sixth-order boundary value problems. Jalil-
ian et al. [10] presented the solutions of non-linear sixth-order boundary value problems
using nonic-spline method. Jha et al. [11] introduced an efficient algorithm based on
non-polynomial spline approximations on a geometric mesh for the numerical solution of
linear and non-linear two-point boundary value problems. Lang et al. [14] used quintic
spline and Arshad Khan et al. [12, 13] applied parametric quintic spline and septic splines
for the solution of sixth-order boundary value problems.

The spline functions proposed in this paper have the form 77 = span{1, z, z?, 23,
z*, 2% cos(px),sin(px)} where p is the frequency of the trigonometric part of the spline
functions which can be real or pure imaginary and such parameter will be used to de-
veloped the classes of the various order and raise the accuracy of the methods. Thus in
each subinterval z; < x < x;41 we have

span{l,a:,xz,x3,x4,m5,x6,x7}, (when p — 0),
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which is the septic polynomial spline.

In this paper, in section 2, non-polynomial spline is developed. We derive the con-
sistency relation of non-polynomial spline in such a way to be fitted with the solution
of boundary value problems (1.1) along with boundary condition (1.2). The class of
various order of second up to eight-order methods have been obtained. Development of
the boundary formulas are considered to be associated with various order methods, in
section 3. Convergence analysis proved in section 4 and finally in section 5, numerical
examples are included to compare our results with the results obtained by other existing
methods, and to show superiority of our approach.

2. Numerical methods

To develop the spline approximation to the sixth-order boundary value problem (1.1)-
(1.2), the interval [a,b] is divided in to n equal subintervals using the grid z; = a + ih,
1=20,1,2,...,n, where h = b’T‘l We consider the following non-polynomial spline S;(x),
on each subinterval [z;, zi+1], ¢ =0,1,2,...,n — 1, 2o = a,zn = b,

5
(2.1)  Si(z) = Zai]- (x — x;)” + bicos p(x — xi) + ¢isin p(x — x;),

Jj=0

where a;;, (7 =0,1,2,3,4,5),b;, and ¢;, are real finite constants and p, is free parame-
ter. The spline is defined in terms of its first, second and sixth derivatives, and we denote
these values at knots as:
Si(wi) = s, S; (i) = ma, S, (@) = My, S (2:) = pi,
(2~2) Si(l'i+1) = Ui41, S;($i+1) = Mi41, S;l ($i+1) = M'H»l, 57;(6) ($i+1) = Pi+1,
1=0,1,2,....,.n— 1.

Assuming u(x), to be the exact solution of the boundary value problem (1.1) and u;,
be an approximation to u(x;), using the continuity conditions of third, fourth and fifth
(S™) (z:) = S™ (2;) where pu = 3,4 and 5), and also by elimination of m., and M, we
obtain the following relations between u; and p;:

h6(api73 + Bpi—2 + Ypi—1 + Op; + YPit+1 + Bpit2 + apiys) =
(2.3) Uj—3 — 6uj—2 + 15u;—1 — 20u; + 15ui41 — 6uitr2 + wits,
i =3,4,....,m—3.

where

o = 155 (—120 4 0(120 — 200 + 6*) csc(0)),

B = 5o (360 — 0(120 — 200% + 6*) cot(6) + 6(—240 — 200 + 130*) csc(6)),

¥ = 1355 (—1800 + (9606 + 806 — 526°) cot(6) + 6(840 + 1006° + 676") csc(6)),

§ = 5055 (600 — (240 + 206 — 130" + (360 + 606 + 3360*) cos(0)) csc(h)),

If p— 0,(0 = ph),0 — 0 then (v, 3,7,8) = (s055° 35> 1ong+ 5ox ), then we obtain the
second-order method and also the relations defined by (2.3) reduce into septic polynomial
spline function [20]. Now by using the spline relation (2.3) and discretize the given system
(1.1) at the grid points z;, we obtain (n—5) non-linear equation in the (n—1), unknowns
u, t=1,2,....,n—1, as:

(wi—s + uiys) — ah® (f(zi—s,ui=3) + f(Tit3,uits))—
6(ui—2 + uir2) — BRO(f(zi—a, wi2) + f(2ir2, wite))+
15(ui—1 + uip1) = yh(f(io1, uiz1) + f(@ir1, uigr))—
20u; — 6h8 f(zi,uis) =0, i=34,.,n—3.

(2.4)
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We obtain the local truncation error corresponding to the method (2.3) as

T = (1=2a+p+7) - ®W<®+<1 9o — 4 — y)htuld +

(%0 - Ia - 7/3 )hm 404 (94Q 40a - 456( )3é0’y)h12u§12)+
13 729 4 14, (14
(2:5) ?()1120960 _72%2400“ ~315° 20160 h y (12;
(7603300 — T3100% — 141756 18144007)17“ + .
i1 =3,4,....,n—3.

By using the above truncation error to eliminate the coefficients of various powers h, we
can obtain classes of the methods in the following form.
Second-order method

If we choose a = ﬁ,ﬂ 42,w = 1369870 and § = éi’é, the coefficient of h° in (2.5) can be

vanish, then the truncation error of method is T; = —%hgugs) + O(h'?).
Fourth-order method

For a =0,86=0,7y = i and § = %, the coefficient of h® and h® in (2.5) can be vanish,
then the truncation error of method is T; = ﬁhlougw) + O(h'?).

Sixth-order method
Fora=0,8= 120,7 andé—

simultaneously and then the truncation error of method is T; =
Eighth-order method

For a = ﬁ,,@. = 53%,7 = 120108890 and § = %, the c.oeﬂicient of h® up to. h'? in
(2.5) can be vanish simultaneously and then the truncation error of method is T; =

sraoah ' + O(h'°).

11 the coefficient of h® up to hlo in (2.5) can be vanish
hi2y (12) + O(h14)

30240

3. Development of the boundary formulas

System of equation (2.4) contains (n — 5) equations, with the (n — 1) number of un-

known, so that to obtain the unique solution of the system we need four more equations
to be associated with system (2.4).
By using boundary conditions (1.2) we can develop these equations to be associate with
system (2.4), but here we obtained different class of methods so that we need to developed
the boundary value formulas of various orders, in our knowledge so far in the literature
most of the existing methods based on spline are suffer from boundary conditions, in this
paper we need to develop the new class of boundary conditions of orders 4,6 and 8, so
that we define the following identity:

S Omul+hu1uo+h Aluo =h ST vl 41,
Zf Omuz—&—huzuo—&—h )\guo =ho ZZ Owl U—i—tz

3.1

( ) 215 o filln—i hﬂzun+h )\2UTL h6 Zz Q Wil 516>1+tn 2,
Sy Mt — by + WA, = B0 Y vl + b,
Z?:O Tillg +h2191u0 +h4g1u — RS Zz Oalu(ﬁ) Tt

(32)  Dimobus+ KOst + Woaus” =hUSL piu w® +ta,

ZZ 0 Ciln—i + h? '(9216 + h4Q2u =h' ZZ:O ’lﬁzuif)_)z + tn—4,

S Tittn—i + h*Y1u, + hrorul) = BT oS 4 s,

by using Taylor’s expansion we obtain the unknown coefficients in (3.1) and (3.2) as
follows:

(Mo, M1, M2, M3, Ma, 1, A1) = (415, =576, 216, —64, 9, 300, 72),

(Ko, K1, K2, K3, Ka, K5, 2, A2) = (22, — ’250 ,0,1, 80 50),

(70, 71,72, 73,72, V1, 01) = (=5, 14, —14,6, — 5)
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(407C13C27<37<47<5,1927 92) = (47 —14,20,-15,6, -1, -1, _le)v

Boundary equations of fourth order:

(vo,v1, V2, V3, V4, Vs, V6, V7) = (W 119 21,O 0,0,0),
(wo,w1,wg,w37w4,w5,w6,w7) ( 5 3> 100245, 2(2)2’ 1452152,0 0 0 0)

(1 = h 0 O™, 12 = Ehull®) + O(11%),

(thoy = 7ooh10 (10) +O(h12) o = 288hlo (10) +O(h12))
(00701702,03704705,0'670'7) (22 M8 10 25..0,0,0,0),
(Yo, 1, b2, s, ha, s, e, h7) = (102098077%’ ggigv 25001461070 0,0,0),
(ts = %hlo (10) +O(h12) ty = &zgggghlo (10) +O(h12))

(tn_s = 18615424300h10 (10) + O(h'2), th_s = 3—635%(;2?)}110 (10) + O(h'2)),

Boundary equations of sixth order:
_ /1301 15223 24611 _ 332 131
(v0,v1,v2, V3,4, V5,06, 7) = (53105, 5772 115500 — 5775 33007 577570 0),

2515 32345 65815 203 2455
(wo,wl,wz,W3,w4,ws,w6,W7) (Ges38> 16633 33264’ 1188 66528 16632’0 0),

(1 = saagh 6™ + O(BM), 2 = g h*ug™ + O(')),
(t _ 19800}112 (12)+O(h14) b = 193905584}L12U£L12)_’_O(h14))7
00701702’03704705706707) (= —34697 —76723 —133901 —1253 4979  —2833 0,0),

( 604800 2 T20600 3 "907200. > 21600 ? 3592007 907200
(woiwh V2,93, 94,95, 96, P7) = (1209600’ 259200 ° 259200 * 302400 ’ 3628800’ 259200’
0,0

(12 12
(ts = 106927 h12u0 ) + O(h14) by = 499 B12,,032) + O(h14))
(

39916800 79833600

_106927_p 12, (12)+O(h14) g = 499 h12 (12)+O(h14))

tn-s = 39916800 79833600

Boundary equations of eight order:
_ (184253 4726277 23209 —186409 34379 —373 _ 808
(v0,v1,v2, V3,4, V5,6,17) = (37551567 1801500 10725 1801800 * 450450 7160 325535

—3097
} 261260077 480985 10029805 3476285 221855 381715 —36875
(wo, w1, w2, ws, wa,ws, ws, W7) = (15108096 5189184 > 17397987 1739728 51891817 729738
2465 14255 )
576576’ 36324288 ( : ( :

33587 114, (14 16 4793 114, (14 16
(tr = 63063000h’ (J)O(h )yt = 2()417664h "'(%(h ),
_ 33587 14 16 _ 4793 114, (1 16

(tn-1 = —G363000 1 un T O"),tn2 = —5577 664h +O(h")),

0 _es357 —s30a600 L 888767 7661869 697307
(00,01,02,03,04,05,06,07) = (7347406 13505600 5979200 39916500 > 1089600
538177 17011 13093 )

7983360 7 9072007 5702400 5941 —1928191 —10955801 —5789947 _—9799
(W0, 11, b2, s, ha, s, b, h7) = (1108800’ 8870400 ’ 19958400 ’ 26611200 ’ 1247400’
—12409 19 a1

79833600’ 604800’ 11404800

(tg = LOBOL363T 514, (14)+O(h16) ty = 1018379 hl4u(()14)_’_O(hm))7

54486432000 <14) 54486432000 (14)
__ 108013637 14 16 _ 1018379 14 16
(tn_3 54486432000 h + O(h ) tn—a = 54486432000 h Un, + O(h ))

4. Convergence analysis

In this section, we investigate the convergence analysis of the presented eight-order
method, in the same manner we can prove the convergence analysis for the rest of other
classes of methods. The system of equations (2.4) along with boundary conditions (3.1)
or (3.2) yields the non-linear system of equations, and may be written in matrix form as

(4.1)  AUD + 1 BEV (WD) = RY (AU + mBEV W) = BV,
in (4.1) the matrices Ao, B and B are order n — 1 and are given by

Ag = P2,
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P = (pi;) is monotone tri diagonal matrix defined by

2, i=j=1,23,.,n—1,
(42) py=4 -1, li—jl=1,
0, otherwise.

By using Henrici [9] the matrix P is a monotone matrix and we have

(b—a)®

(3) 1)< gt

and the matrix B and B in case of eight-order method defined by

141 129} 1%:3 V4 Vs Vg %44
w1 W2 W3 W4 W5 We Wy
B vy & v B
a B v &

™ R
Q

a B v b v B a
a B v & v B
w7 We W5 W4 W3 W2 W1
124 17 Vs V4 vy V2 V1
o1 o2 o3 g4 05 06 a7
Y1 P2 Y3 wa Ps Pe Yr
B v & v B «a
a B v & v B«
(4.5) B = . R
a B v & v B a
7 B Y 0 vy B
1/’7 V6 ¢5 wWaq 1/)3 P2 1/)1
a7 06 05 04 o3 o2 01
We get that

(4.6) Ag = P?
where Ay is seven-diagonal matrix thus we have

(b-a)°

) I [ e
47 A< 51970

The matrixs £, R and E(l) each have n — 1 components and are given by

(4.8) £ =M L
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where ffl)(U(l)) = f(ai, ul V), 1=1,2,..,n—1, and

—Touo — h2191u h4g1u(4) + hGO' Ug )

—Couop — h2192u h492u(4) + h6¢ u(6>
—uo +ah°u(6)
0
(4.9) RWY = : ;
0
—un + ahbuy, ©
—Coun — h292ull — h* 0o u(4) hSpoul?,
—Totn — h201u) — h*ooul? + hboou'?,
—nNouo — h,uluo — hz)\lu@) + hsy Uy 6)
—KoUo — hjauy — h2>\2u(2) + h8wo uéG),
—uo + ahbu é6>,
0
(4.10) RY = : ,
0
—ug + ahbuy (6)
—KoUn + h,ugun h2)\2u(2) + hﬁwou,(f),

—NoUn + hpiul, — hz)\lu@) + h6you;6)7
where u( ) = = f(zo,u0), ul® = f(xn, un). We suppose that
(4.11) AU + 1 BEVTM) = Y 4 ¢,

where the vector U = u(x),l = 1,2,...,n — 1, is the exact solution and D =
[til),tém, ...,tSZl}T, is the vector of order n — 1 of local truncation errors. Also in the
same way we can prove the convergence analysis for B, and E(D, of the method. From
(4.1) and (4.11) we have:

(4.12) [AEYW =[Ao + h°BF, (UM EM =),

where
77(1) 1 1 1
(413) E(l) U; - U<1) = [€§ )7eé >7 '(n)l}T7
(T ( )) fO(UM) = Fk(U(l))E(l),
and Fi,(UY) = dlag{ (1)} =12, — 1, is a diagonal matrix of order n — 1.

Lemma 4.1 If M i 1s a square matrix of order N and ||[M|| < 1, then (I + M)~ exist and
1 +M)7 < a=fmpy-

Proof: [26]

Lemma 4.2 The matrix [Ag + hGBFk(U(l))] in (4.12) is nonsingular, provided Y <

2554675200

5506027(b_aJ8 » Where ¥ = max| (1) | 1=1,2,....,n— 1. (The norm referred to is the Lo

norm).

Proof:

We know that [Ag + h®BF,(UM)] = Ao[I + h°A;*BF,(U™M)], we need to show that
inverse of [I + hSA;*BF;,(U™)] exist. By using lemma 4.1, we have

(4.14) 1 AG ' BE(UW)|| < h°lIAG I BIIF(U™M)]] < 1,
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. €Y
by using (4.5) we obtain || B|| < 333%02% and also we have |F(UM)) <Y = max|%§1>|,l =

1,2,...,n — 1, and then by using (4.7) and (4.14) we obtain
2554675200
5506027(b — a)8"
As a consequence of Lemmas 4.2 and 4.1 the non-linear system (4.1) has a unique solu-

s 2554675200
tion if Y < 5506027(6—a)0 -

Theorem 4.3 Let u(xz;) be the exact solution of the boundary value problem (1.1)
with boundary conditions (1.2) and we assume u;, | = 1,2,...,n — 1, be the numerical
solution obtained by solving the non-linear system (4.1). Then we have:

2554675200 .
5506027(b — a)° for eight-order method.)

Proof: We can write the error equation (4.12) in the following form
EW = (Ao + h°BE,(UM) 1Y = (1 4+ 1A' BR.(UW)) L a5 +W),
IED | < (T + 1A BE(UD) 1A 11,

IEM || = O(h®), (providedY <

It follows that
[ A

e[| A 1B F(U®)||”

provided that h®|| Ay ||| B||||Fk(U™M)]| < 1. Also we have

108013637

(415) BV < —

4.16) [tV < =222 ptag
(4.16) 111 < 556432000 1
o 1 8- 41 2189 . 4153
T 30240°7 T 5040° 7 T 10080°° T 7560

where M1y = max|u® (¢)],a < € < b.
Substituting || Ay |, [|Fx(U™)][, | B]| and |[t™"|| from above relations in (4.15) and sim-
plifying we obtain
) < 108013637(b — a)®h® M4

= 10920(2554675200 — 5506027(b — a)6Y)

It is a eight-order convergent method provided

2554675200
5506027(b — a)®

(4.17) ||E O(h%),

(418) Y <

5. Numerical illustration

In this section for sake of briefness the eight-order presented method are applied to

the following test problems. If we choose o = 41 2189 and ¢ = 4153

1 — — >
302407 /B = 5040°7 = 70080 7560

we obtained the eight-order method. Examples 1-9 have been solved and also compared
the obtained solution with the exact solution. The maximum absolute errors in solutions
of eight-order method are tabulated in Tables 1-10. The maximum absolute errors in
solutions of examples 1-9 are compared with methods in [12, 13, 25, 11, 15, 18, 19, 20]
moreover, in figures 1-3 we plot the graphs of exact and numerical solution for the non-
linear examples 5, 8 and 9, with different values of step size h.

Example 1. Consider the following linear problem [12, 19, 20]
w9 (z) = u(z) —6e”, 0<z<1,

w(0) = 1,4 (0) = 0,u (0) = —1,u(1) = 0,4 (1) = —e,u (1) = —2e.
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The exact solution for this problem is u(z) = (1 — z)e”.

Example 2. Consider the following linear problem [12, 19]
u®(z) = —u(z) + 6cos(z), 0<z <1,
u(0) = 0,4/(0) = —1,u” (0) = 2,u(1) = 0,u'(1) = sin(1),u" (1) = 2cos(1).
The exact solution for this problem is u(z) = (z — 1) sin(z).
Example 3. Consider the following linear problem [20]
w9 (z) = —(5z 4 Du(z) + (1852 — 252> + 10z*) cos(x) 4 (270 — 3622) sin(z),
-1 <x <1,
u(—1) = 4cos(1),u'(—1) = cos(1) + 4sin(1),u (—1) = —16cos(1) + 2sin(1),
u(1) = —2cos(1),u’ (1) = cos(1) + 2sin(1),u”(1) = 14 cos(1) — 2sin(1).
The exact solution for this problem is u(x) = (22° — 52 + 1) cos(z).
Example 4. Consider the following linear problem [20]
u'® (z) = —u(z) 4 6(2x cos(x) + 5sin(x)), —1 <z <1,
w(—1) = 0,u/(—1) = 2sin(1),u (—1) = —4cos(1) — 2sin(1),
u(1) = 0,4/(1) = 2sin(1),u (1) = 4cos(1) + 2sin(1).
The exact solution for this problem is u(z) = (2 — 1) sin(z).
Example 5. Consider the following non-linear problem [11, 15, 25]
u'®(z) = e"u?(z), 0<a<1,
u(0) = —u'(0) = (0) = Lu(l) = —u'(1) =u (1) ="

The exact solution for this problem is u(z) = e™*.

Example 6. Consider the following linear problem [15]
w9 (z) = u(z) — 6%, 0<z<1,
u(0) =1,u (0) = —1,u?(0) = =3,u(1) = 0,u” (1) = —2¢,u” (1) = —de.
The exact solution for this problem is u(z) = (1 — z)e”.

We solved this example with different order of methods and the computed results are
tabulated in tables 6-7.

Example 7. Consider the following linear problem [18]
u<6>(az) = —u(z) + 6(2x cos(z) + 5sin(x)), 0 <z <1,
w(0) = (0) = u™(0) = u(1) =0,
u (1) = 2sin(1) + 4 cos(1),u® (1) = —12sin(1) — 8 cos(1).
The exact solution for this problem is u(z) = (z? — 1) sin(z).
Example 8. Consider the following non-linear problem [11, 13, 15, 25]
uz) = e "l (z), 0<z <1,
u(0) = u”(0) = ™ (0) = Lu(l) =u"(1) = V(1) = e
The exact solution for this problem is u(z) = €.
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Table 1: Maximum absolute errors of Example 1

n

Our method

Method in [19]

Method in [20]

Method in [12]

16

32

64
128
256
512

6.4170x 10716
1.6230x10718
7.6442x10~ 2!
3.0225x107 23
1.1822x1072°
4.6183x10~28
1.8040x 103

3.6463x107°
3.0209%1077
2.1369x10~8
1.2289x107°
1.4821x107°

1.37x10~°
1.08x10~7
2.25x1078
7.04x107°
7.46x107°

6.64x107°
1.04x107°
7.66x107 1!
9.39x10~ !

Table 2: Maximum absolute errors of Example 2

n Our method

Method in [19]

Method in [12]

8 3.5357x 10716 1.8429x1076 2.95x107°
16 9.0187x1071? 1.3951x10~7 4.50x107 10
32 4.1814x10~2! 9.4848x107° 3.65%x107 1!
64 1.6501x10~23 5.6293x 10710 5.92x10~ 11
128 6.4497x 10726 6.4848x 10710
256 2.5198x 10728 - -
512 9.8430x 10731 - -
Table 3: Maximum absolute errors of Example 3
n Our method Method in [20]
8 1.2569x 10710 1.17x1074
16 6.8147x 10714 1.62x107°
32 9.2677x 10716 3.80x10~°
64 3.8581x107 18 9.52x10~"7
128 1.5136x10720 8.68x10~ "7
256 5.9141x10723 -
512 2.3102x10~2° -
Table 4: Maximum absolute errors of Example 4
n Our method Method in [20]
8 4.8027x 10~ 12 8.25%x10°°
16 2.5527x107 12 1.13x107°
32 3.5500%x 10717 2.64x10~7
64 1.4796x1071° 6.96x10~8
128 5.8057 x 10722 7.17x1078
256 2.2684x10724 -
512 8.8614x10727 -

Example 9. Consider the following non-linear problem [11, 13, 18]

u'®(z) = —u?(z) + (2* — 1) sin®(z) + (31 — 2?) sin(z) + 12z cos(z),

u (1) = 2sin(1) 4+ 4cos(1),u'? (1) =

The exact solution for this problem is u(z)

—125sin(1) — 8 cos(1).

= (2% — 1) sin(z).



Table 5: Maximum absolute errors of Example 5

x Our method Method in [11] Method in [25] Method in [15]
0.1 6.459x10729 1.56x107° 3.1x107 -2.347x1077
0.2 2.664x107  3.02x107° 1.9%x10713 -1.389x1076
0.3 2.725x107'Y  3.84x107° 4.8x107 13 -3.307x1076
0.4 1.473x107°  3.67x107° 8.0x10713 -5.203x1076
0.5 5.148x10729  2.34x107° 1.0x10712 -6.198x1076
0.6 6.907x1072° 1.58x1071! 1.0x10~12 -5.780%1076
0.7 1.514x107' 2.58x107° 8.1x107 13 -4.082x107°
0.8 1.663x107 5.10x107° 4.3x107 13 -1.903x1076
0.9 4.233x1072° 5.02x107° 9.2x107 1 -3.570x1077
Table 6: Maximum absolute errors of Example 6
x a=0,8=0, a=0,8= 113,
y=%1.0=3% w:%,ézz—q
0.1 4.7183x107° 1.9793x107 12
0.2 8.9841x10~° 3.7550x 10712
0.3 1.2383x1078 5.1624x10712
0.4 1.4582x1078 6.0777x10712
0.5 1.5361x107% 6.4198x 10712
0.6 1.4636x1078 6.1523x10712
0.7 1.2470x1078 5.2864x 10712
0.8 9.0702x10~° 3.8842x 10712
0.9 4.7706x107° 2.0630x10712
Table 7: Maximum absolute errors of Example 6
(for & = 55375, 8 = 5510, 7 = wooso 2nd 6 = 185
x Our method Method in [15]
0.1 1.9865x 1014 4.0933x10~%
0.2 3.7664x 10714 7.7820% 1074
0.3 5.1722x107 14 1.07048x1073
0.4 6.0790x 10714 1.25787x107°
0.5 6.4068x 1071 1.32238x107°
0.6 6.1232x107 14 1.25787x1073
0.7 5.2455x 10714 1.07048x107°
0.8 3.8425x 10714 7.7820% 1074
0.9 2.0357x 10714 4.0933x10~4
Table 8: Maximum absolute errors of Example 7
n Our method Method in [18]
8 2.5215x 10712 1.652489367x 108
16 2.7189x107 1 2.497231310x 10~ 1°
32 4.0730x107 18 2.125805087x 10~ 11
64 9.8572x 107! -
128 3.2795x 10723 -
256 1.2263x1072° -

512

4.7374x10728

845
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Table 9: Maximum absolute errors of Example 8

x Our method Method in [11] Method in [25] Method in [15]
0.1 1.466x1071% 8.34x1071° -4.8x107 11 -1.233x107%
0.2 2.780x107%% 8.26x1071° -9.1x107 1 -2.354x107%
0.3 3.817x107%*% 4.15x1071° -1.3x10710 -3.257x1074
0.4 4.486x107° 7.90x1071! -1.5%x10710 -3.855x107%
0.5 4.726x107°  4.49x10710 -1.6x10710 -4.086x1074
0.6 4.516x107*° 5.91x1071° -1.6x10710 -3.919x 1074
0.7 3.868x10715 4.98x1071° -1.4x10710 -3.361x10~*
0.8 2.833x1071°% 2.51x1071° -9.9x10~ 1! -2.459x1074
0.9 1.500x107%° 8.87x1071? -5.2x107 1 -1.299x 1074
n Our method Method in [13]
8 4.2504x1071*  3.79x107 10
16 4.9352x10”'7  2.51x1071!
32 7.5809x1072° 5.10x1071°
64  1.7794x107%2 -
128 5.7714x1072° -
256 2.1379x10727 -
512  8.2366x107%Y -
Table 10: Maximum absolute errors of Example 9
n Our method Method in [11] Method in [18] Method in [13]
8 2.5172x10712  1.78x10~" 1.6497x1078 9.69%x107°
16 2.7143x10'®  1.43x1078 2.5983x10710  2.04x1071°
32 4.0661x107'®  1.01x107° 6.8631x107 11 5.43x1071!
64  9.8406x1072'  6.75x107 11 -
128 3.2740x1072% - - -
256 1.2242x1072°% - - -
512  4.7294x10728 - - -
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Figure 1: The graph of exact and approximation solutions with 0 <z <1 and h = % for
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Figure 3: The graph of exact and approximation solutions with 0 <z <1

Conclusion

0.4 0.6

Example 9.

and h = j for

We approximate solution of the sixth-order linear and non-linear boundary value prob-
lems by using non-polynomial spline, we developed the class of various order of 4,6 and
8 methods. The new approach enable us to approximate the solution at every point
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of the range of integration. Tables 1-10 show that our approach produced better in
the sense that max | e; | is minimum in comparison with the methods developed in
[12, 13, 25, 11, 15, 18, 19, 20]. The results obtain by our methods are observed to be
better than that obtained results by Arshad Khan [12, 13], Ullah et al. [25], Navnit Jha
et al. [11], Noor et al. [15], Ramadan et al. [18] and Siddigi et al. [19, 20] as discussed in
examples 1-9.
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