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Investigating an overdetermined system of linear
equations by using convex functions

Zlatko Pavi¢ ∗ † and Vedran Novoselac ‡

Abstract

The paper studies the application of convex functions in order to prove
the existence of optimal solutions of an overdetermined system of lin-
ear equations. The study approaches the problem by using even convex
functions instead of projections. The research also relies on some spe-
cial properties of unbounded convex sets, and the lower level sets of
continuous functions.
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1. Introduction

We consider a system of m linear equations with n unknowns over the �eld of real
numbers given by

(1.1)

a11x1 + . . . + a1nxn = b1
...

. . .
...

am1x1+ . . . + amnxn = bm

.

Including the matrices

(1.2) A =

 a11 . . . a1n

...
. . .

...
am1 . . . amn

 , x =

 x1

...
xn

 , b =

 b1
...
bm

 ,

the given system gets the matrix form

(1.3) Ax = b.
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Identifying the matrix A with a linear operator from Rn to Rm, the column matrix x
with a vector of Rn, and the column matrices Ax and b with vectors of Rm, the given
system takes the operator form.

If the vector b is not contained in the image R(A) of the operator A, then the equation
in formula (1.3) has no solution. Respectively, the system in formula (1.1) is said to be
inconsistent. A system of linear equations is said to be overdetermined if there are
more equations than unknowns. The overdetermined system with linearly independent
equations is evidently inconsistent.

To summarize, employing a linear operator A : Rn → Rm where n < m, and a vector
b ∈ Rm, we receive the equation Ax = b with unknown vectors x ∈ Rn. If b ∈ R(A), the
set of solutions is the preimage of b as

(1.4) A(−1)(b) = {x ∈ Rn : Ax = b}.

If b /∈ R(A), the equation has no solution. To include both cases, we use a norm on the
space Rm, and the function f : Rn → R de�ned by

(1.5) f(x) = ‖Ax− b‖.

Then we are looking for the global minimum points x of the function f . Expressed as an
equation, it is f(x) = miny∈Rn f(y) or

(1.6) ‖Ax− b‖ = min
y∈Rn

‖Ay − b‖,

and its solutions are called optimal solutions of the equation Ax = b respecting the given
norm. The above equation is reduced to Ax = b if b ∈ R(A).

The existence of the solution of the minimization problem in formula (1.6) is provided
in the framework of the theory of projections. In order to remake it without using
projections, we will utilize even convex functions.

Methodical introduction to overdetermined systems of linear equations can be seen in
[12]. The general insight into the problem of least absolute deviations can be found in
[1]. Linear optimization problems were presented in [2].

2. A�nity and convexity, rays, lower level sets

Let X be a real vector space. Let x1, x2 ∈ X be vectors, and let t1, t2 ∈ R be
coe�cients. Then the linear combination t1x1 + t2x2 is said to be a�ne (convex) if
t2 = 1− t1 (0 ≤ t2 = 1− t1 ≤ 1). A set S ⊆ X is said to be a�ne (convex) if it contains
all binomial a�ne (convex) combinations of its vectors.

The set A(−1)(b) ⊆ Rn in formula (1.4) is a�ne. In general, if a set B ⊆ R(A) is a�ne
(convex), then its preimage A(−1)(B) ⊆ Rn is a�ne (convex) too.

Let S be an a�ne (convex) set. A function f : S → R is said to be a�ne (convex) if
the equality (inequality)

(2.1) f
(
t1x1 + t2x2

)
= (≤) t1f(x1) + t2f(x2)

holds for all a�ne (convex) combinations t1x1 + t2x2 of points x1, x2 ∈ S.

If x1, x2 ∈ X are vectors, then the ray or half-line R from x1 passing through x2 is the
subset of X de�ned as

R =
{

(1− t)x1 + tx2 : t ≥ 0
}
.

If f : S → R is a function, then the lower level set L of the function f with a height
l ∈ R is the subset of S de�ned as

L = {x ∈ S : f(x) ≤ l}.
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The lower level sets of a convex function are convex.

The following lemma can be found in [3, Theorem 1, page 23]. We o�er the proof by
using convex combinations.

2.1. Lemma. Let S ⊆ Rn be an unbounded closed convex set, and let s ∈ S be a point.

Then there is a ray from s belonging to S.

Proof. Without loss of generality, using the translation in the space Rn by the vector −s,
we can assume that the set S contains the origin o. So, we are looking for a ray from o
contained in S.

Since S is unbounded, we can pick out a sequence (yk)k of points yk ∈ S such that
‖yk‖ = k for every k ∈ N.

Since S is convex, each line segment between o and yk is contained in S. Then it
follows that the convex combination

xk =
k − 1

k
o +

1

k
yk =

1

k
yk

belongs to S for every k ∈ N. Each xk satis�es ‖xk‖ = 1. We have the sequence (xk)k of
points xk belonging to the intersection S0 of the set S and the unit sphere in Rn. The
set S0 is compact because it is closed and bounded, and therefore the sequence (xk)k has
a subsequence (xrk )k converging to some point x0 ∈ S0.

Let R be the ray from o passing through x0. We will verify that R is contained in S.
Since R = {tx0 : t ≥ 0}, we have to show that each ray point tx0 is in S. Let t ≥ 0 be a
nonnegative coe�cient. Since S is convex, the points

txrk =
t

rk
yrk =

rk − t

rk
o +

t

rk
yrk

are in S for rk ≥ t. The above points approach tx0 if k approaches in�nity. Since S is
closed, the limit tx0 is in S. �

The proof of Lemma 2.1 is illustrated in Figure 1, and the same is still applicable to
an unbounded convex set of Rn and points of its interior.

Figure 1. A ray in the unbounded convex set of R2

Statements similar to the next lemma and corollary are exposed in [11, Theorem 8.4,
Theorem 8.5 and Theorem 8.6, pages 30-31]. Bounded sets play a decisive role for the
global minimum existence. Considering lower level sets and the global minimum of a
continuous function, one can �nd the following.
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2.2. Lemma. Let f : Rn → R be a continuous function whose lower level sets are

bounded. Then f has the global minimum.

Proof. First we take a point x0 ∈ Rn, and a number l ≥ f(x0). Then we specify the
lower level set L of the function f with the height l, which is nonempty. The set L is
bounded by the assumption, and closed by the continuity of f . Thus L is compact, and
there is a point x∗ ∈ L such that f(x∗) = minx∈L f(x). The value f(x∗) is the global
minimum, which is easy to demonstrate as follows.

Let x ∈ Rn be a point. If x ∈ L, then applies f(x∗) ≤ f(x) ≤ l. If x /∈ L, then we
have f(x∗) ≤ l < f(x). �

A convex function on the space Rn approaching in�nity on all rays from the origin
being examined.

2.3. Corollary. Let f : Rn → R be a convex function such that

(2.2) lim
t→∞

f(tx) =∞

for every x ∈ Rn \ {o}. Then f has the global minimum.

Proof. Since f is convex on Rn, it is also continuous (a convex function on an open
domain is continuous). Respecting the continuity of f in the context of Lemma 2.2, it is
su�cient to prove that the lower level sets of f are bounded.

Let L be the lower level set of f with a height l ≥ f(o). The set L contains the
origin o, and it is closed and convex. If L is not bounded, then it contains some ray R
from the origin o by Lemma 2.1. Thus, a point x0 ∈ L \ {o} exists such that the ray
R = {tx0 : t ≥ 0}. Since R ⊆ L, for each t ≥ 0 we have that

f(tx0) ≤ l.

It follows that the condition in formula (2.2) does not apply to x0 ∈ Rn \ {o}. Hence the
lower level set L must be bounded. Consequently, all lower level sets of the function f
are bounded. �

Very well written and motivated book in [9] can be recommended as an introduc-
tory course to the analysis of convex functions. One chapter of this book refers to the
optimization.

The usage of a�ne and convex combinations is important in the �eld of mathematical
inequalities. A re�nement of the Jensen inequality was obtained in [7] by using a�ne
combinations, and improvements of the Hermite-Hadamard inequality were obtained in
[8] by using convex combinations.

The book on level set methods and fast marching methods in [10] is intended for math-
ematicians and applied scientists. This book includes applications from computational
geometry, �uid mechanics, computer vision and materials science.

3. Main results

In this section, we assume that the space Rn is equipped with some norm, and utilize
the property of compactness of bounded closed sets in Rn.

If f : Rn → R is an even convex function, then its global minimum is f(o). It is easy
to verify by combining the convexity and equation f(−x) = f(x), from which it follows
that the inequality

f(o) = f

(
1

2
x +

1

2
(−x)

)
≤ 1

2
f(x) +

1

2
f(−x) = f(x)

holds for every x ∈ Rn.
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In the next lemma and corollary, we will use a convex function f : R → R and the
property of nondecreasing slopes of its chords expressed by the double inequality

(3.1)
f(t2)− f(t1)

t2 − t1
≤ f(t3)− f(t1)

t3 − t1
≤ f(t3)− f(t2)

t3 − t2
,

which holds for every triple of points t1, t2, t3 ∈ R in the order of t1 < t2 < t3.

The inequality of the �rst and third term in formula (3.1) can be derived by using the
inequality in formula (2.1). To verify the whole double inequality in formula (3.1), we
represent its middle term as the convex combination of the �rst and third term in the
form of

(3.2)
f(t3)− f(t1)

t3 − t1
=

t2 − t1
t3 − t1

f(t2)− f(t1)

t2 − t1
+

t3 − t2
t3 − t1

f(t3)− f(t2)

t3 − t2
.

3.1. Lemma. Let f : R → R be an even convex function. Then f is either constant or

meets the limits limt→±∞ f(t) =∞.

Proof. The function f may be a constant because the collection of even convex functions
includes all constants.

Suppose that f is not constant. Then a point t1 > 0 exists so that f(t1) > f(0).
Let t2 > t1. Applying the left-hand side of the inequality in formula (3.1) to the triple
0 < t1 < t2, we get

f(t1)− f(0)

t1 − 0
≤ f(t2)− f(0)

t2 − 0
.

Then applies f(t2)− f(0) > 0, otherwise we get f(t1) ≤ f(0), and therefore

(3.3) f(t1)− f(0) ≤ t1
t2

(
f(t2)− f(0)

)
< f(t2)− f(0),

which yields f(t1) < f(t2). Hence the function f is strictly increasing on the interval
[t1,∞). Since f is even, there must be limt→±∞ f(t) =∞. �

3.2. Corollary. Let f : R → R be a convex function, and let g : R → R be an even

convex function.

If there exists a number c ≥ 0 such that the inequality

(3.4) g(t)− c ≤ f(t) ≤ g(t) + c

holds for every t ∈ R, then the function f has the global minimum.

Proof. According to Lemma 3.1, the function g is constant or meets the limits limt→±∞ g(t) =
∞.

If g is constant, then using the assumption in formula (3.4) with c1 = g(0) − c and
c2 = g(0) + c, we obtain that c1 ≤ f(t) ≤ c2 for every t ∈ R. We will show that f is
constant. Let t1 < t2. Applying the inequality of the �rst and third term in formula
(3.1) to the triple t < t1 < t2, we get

f(t1)− f(t)

t1 − t
≤ f(t2)− f(t1)

t2 − t1
.

Sending t to −∞ and respecting the boundedness of the function f , we obtain that
0 ≤ f(t2) − f(t1), and so f(t1) ≤ f(t2). Similarly we get the reverse inequality. The
conclusion is that f(t1) = f(t2).

If limt→±∞ g(t) = ∞, then the re�ection moment applied to formula (3.4) yields
limt→±∞ f(t) =∞. The function f has the global minimum by Corollary 2.3. �

The above corollary can be generalized to higher dimensions.
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3.3. Theorem. Let f : Rn → R be a convex function, and let g : Rn → R be an even

convex function.

If there exists a number c ≥ 0 such that the inequality

(3.5) g(x)− c ≤ f(x) ≤ g(x) + c

holds for every x ∈ Rn, then the function f has the global minimum.

Proof. The restriction of the function g to any line in Rn passing through the origin is
an even convex function. Then according to Lemma 3.1, for x ∈ Rn \ {o} we have either
limt→±∞ g(tx) =∞ or g(tx) = g(o) for every t ∈ R.

Suppose that g meets the limits limt→±∞ g(tx) =∞ for every x ∈ Rn \{o}. Applying
the re�ection moment to the inequality

g(tx)− c ≤ f(tx) ≤ g(tx) + c

by sending t to ±∞, it follows that limt→±∞ f(tx) = ∞ for every x ∈ Rn \ {o}. The
function f has the global minimum by Corollary 2.3.

Suppose that g is constant on the line X = {tx0 : t ∈ R} for some point x0 ∈ Rn \{o}.
Then f is constant on the line X by the proof of Corollary 3.2. Without loss of generality,
using the rotation in the space Rn+1 around the function axis xn+1 which the line X
turns into axis xn, we can assume that f and g are constant on the axis xn. To prove that
f has the global minimum, we will apply the mathematical induction on the dimension
n. The theorem holds for n = 1 by Corollary 3.2. We assume that the theorem holds for
n− 1, where n ≥ 2.

Then we de�ne the convex functions f0 and g0 on the space Rn−1 by

f0(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0)

and

g0(x1, . . . , xn−1) = g(x1, . . . , xn−1, 0),

which satisfy the assumptions of the theorem. Including the function f0 into the induction
premise, we can consider that it has the global minimum. The global minimum of f0 is
also the global minimum of f . �

Theorem 3.3 can be applied to overdetermined systems as follows.

3.4. Corollary. Let A : Rn → Rm be a linear operator where n < m, and let b ∈ Rm

be a point. Let ‖ ‖ be a norm on Rm, and let f : Rn → R be a function de�ned by

f(x) = ‖Ax− b‖. Then f has the global minimum.

Proof. The convexity of the function f follows from the norm triangle inequality.
Using the inequality

‖Ax‖ − ‖b‖ ≤ ‖Ax− b‖ ≤ ‖Ax‖+ ‖b‖

in the context of formula (3.5) with f(x) = ‖Ax− b‖, g(x) = ‖Ax‖ and c = ‖b‖, we can
conclude that f has the global minimum. �

3.5. Corollary. Let the assumptions of Corollary 3.4 be ful�lled. Let S ⊆ Rn be the set

of the global minimum points of f . Then S is nonempty, closed respecting any norm on

Rn, and convex.

Proof. The set S is nonempty by Corollary 3.4.
The set S is closed respecting any norm on Rn because the operator A is continuous

respecting any pair of norms on Rn and Rm.
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To demonstrate the convexity of S, let us take a convex combination t1x
∗
1 + t2x

∗
2 of

points x∗1, x
∗
2 ∈ S. Then the convexity of f yields

f(t1x
∗
1 + t2x

∗
2) ≤ t1f(x∗1) + t2f(x∗2)

= f(x∗1) = f(x∗2),

and therefore f(t1x
∗
1+t2x

∗
2) = f(x∗1) = f(x∗2) because the value f(x∗1) = f(x∗2) is minimal.

Thus the combination t1x
∗
1 + t2x

∗
2 belongs to the set S, providing its convexity. �

4. Applications to overdetermined systems by using p-norms

In numerous studies related to an estimation, we need norms that depend on real
numbers. Let y = (y1, . . . , ym) ∈ Rm be a point, where m ≥ 2. The p-norms on the
space Rm are de�ned for numbers p ≥ 1 by

(4.1) ‖y‖p =

(
m∑
i=1

|yi|p
) 1

p

,

and their limit case the max-norm is expressed by

(4.2) ‖y‖∞ = max
1≤i≤m

|yi|.

Let A, x and b be as in formula (1.2). Applying the above norms to the point y = Ax,
and thus to the coordinates yi =

∑n
j=1 aijxj − bi, the function f in formula (1.5) takes

the forms

(4.3) fp(x) = ‖Ax− b‖p =

(
m∑
i=1

∣∣∣∣ n∑
j=1

aijxj − bi

∣∣∣∣p
) 1

p

and

(4.4) f∞(x) = ‖Ax− b‖∞ = max
1≤i≤m

∣∣∣∣ n∑
j=1

aijxj − bi

∣∣∣∣.
The investigation of overdetermined systems by using the p-homogeneous metric for

0 < p < 1 was done in [6]. General analysis of convex functions including their extreme
values can be found in [4]. Optimization problems concerning convex functions were
discussed in [5].

In the next two examples, we will illustrate the application of functions in formula
(4.3) and formula (4.4) in �nding the optimal solutions of overdetermined systems. As
usual, the functions f1, f2 and f∞ will mostly be used.

To make it easier to present the set of optimal solutions, we will use a notion of the
convex (a�ne) hull. Given a set S in a real vector space, the convex hull convS (a�ne
hull affS) represents the smallest convex (a�ne) set in the respective vector space which
contains the set S.

4.1. Example. Using the functions f1, f2 and f∞, �nd the optimal solutions of the
overdetermined system

(4.5)

x1 = 1

x1 − x2 = 0

x2 = 2

.

Using the function

f1(x1, x2) = |x1 − 1|+ |x1 − x2|+ |x2 − 2|,
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and eliminating the signs of absolute values, we obtain that f1(x1, x2) = 1 on the triangle
with vertices T1(1, 1), T2(1, 2) and T3(2, 2). Combining vertices T1, T2, T3 with coe�cients
t1, t2, t3 ∈ [0, 1] of the sum t1+t2+t3 = 1, we can conclude that each convex combination

x∗ = t1T1 + t2T2 + t3T3 = (t1 + t2 + 2t3, t1 + 2t2 + 2t3)

is the minimum point, and the global minimum is

f1(t1 + t2 + 2t3, t1 + 2t2 + 2t3) = 1.

So, the set S1 of optimal solutions respecting the 1-norm is the triangle with vertices T1,
T2 and T3. Using the convex hull, we can write

S1 = conv{T1, T2, T3}.
Using the function

f2(x1, x2) =
√

(x1 − 1)2 + (x1 − x2)2 + (x2 − 2)2,

and applying the di�erential calculus, we �nd that x∗ = (4/3, 5/3) is the unique minimum
point, and so the global minimum is

f2

(
4

3
,

5

3

)
=

√
3

3
.

The set of optimal solutions respecting the 2-norm is the singleton

S2 = {(4/3, 5/3)}.
Using the function

f∞(x1, x2) = max
{
|x1 − 1|, |x1 − x2|, |x2 − 2|

}
,

and removing the signs of absolute values, we obtain that x∗ = (4/3, 5/3) is the unique
minimum point, and thus the global minimum is

f∞

(
4

3
,

5

3

)
=

1

3
.

The set of optimal solutions respecting the max -norm is

S∞ = {(4/3, 5/3)}.

Knowing the global minimum points, we can determine the projections of the vector
b onto the space R(A) as vectors in R(A) of the minimal distance to b.

4.2. Remark. As regards the projections of b onto R(A) relating to the system in
formula (4.5), we have to point out the vectors

a1 =

 1
1
0

 , a2 =

 0
−1

1

 , b =

 1
0
2

 .

The space R(A) is the plane in R3 spanned by the vectors a1 and a2. The projections
of the vector b onto the plane R(A) respecting the 1-norm are the vectors

b∗1 = (t1 + t2 + 2t3)

 1
1
0

+ (t1 + 2t2 + 2t3)

 0
−1

1



= t1

 1
0
1

+ t2

 1
−1

2

+ t3

 2
0
2

 .

The above convex combinations indicate that the set of projections is the triangle with
vertices V1(1, 0, 1), V2(1,−1, 2) and V3(2, 0, 2).
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The projection of b onto R(A) respecting the 2-norm and max -norm is the vector

b∗2 = b∗∞ =
4

3

 1
1
0

+
5

3

 0
−1

1

 =

 4/3
−1/3

5/3

 .

Let c ∈ R be a number, and let f : R→ R be the function de�ned by f(x) = |x− c|p
where p > 1. Then the function f is di�erentiable at each point x with the derivative

f ′(x) =

{
−p|x− c|p−1 for x ≤ c

p|x− c|p−1 for x ≥ c
.

Another note regarding Example 4.1. Taking p > 1, and using the functional

fp(x1, x2) = p
√
|x1 − 1|p + |x1 − x2|p + |x2 − 2|p,

we �nd that x∗ = (4/3, 5/3) is the unique minimum point with the global minimum

fp

(
4

3
,

5

3

)
=

p
√

3

3
.

4.3. Example. Using the functions fp for p ≥ 1 and p =∞, �nd the optimal solutions
of the overdetermined system

(4.6)

x1 − x2 = 0

x1 − x2 = 1

x1 − x2 = −1

.

Using the functions fp for p ≥ 1 and p = ∞, we �nd that each point x∗ of the line
x1 = x2 is the minimum point, and the global minimum is

fp(x1, x1) =
p
√

2.

The set Sp of optimal solutions respecting any p-norm (p ≥ 1 and p = ∞) is the line
x1 = x2. Using the a�ne hull of the points T1(0, 0) and T2(1, 1), we can write

Sp = aff{T1, T2}.

4.4. Remark. As regards the projections of b onto R(A) relating to the system in
formula (4.6), we have to point out the vectors

a1 =

 1
1
1

 , a2 =

−1
−1
−1

 , b =

 0
1
−1

 .

The space R(A) is the line in R3 spanned by the vector a1. The projection of the
vector b onto the line R(A) respecting any p-norm (p ≥ 1 and p =∞) is the origin as a
result of

b∗p = x1

 1
1
1

+ x1

−1
−1
−1

 =

 0
0
0

 .
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