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Abstract : Traffic congestion and vehicle queue formation at signalized intersections represent critical
challenges in modern urban transportation systems, requiring accurate real-time detection methods for
effective traffic management. This study presents a deep learning-based approach for real-time vehicle queue
state classification that integrates YouOnly LookOnce (YOLO) object detectionwith SimpleOnline Real-time
Tracking (SORT) algorithms using standard traffic camera footage. The proposed system performs multi-class
vehicle classification, real-time vehicle tracking with unique ID assignment, and speed estimation through
camera calibration techniques, achieving 16.42 FPS average processing speed across diverse video scenarios.
A comprehensive queue state detection methodology is developed that categorizes traffic conditions into three
categories: Heavy traffic, stable flow, and free flow based on the analysis of average speeds of the detected
vehicles, excluding motorcycles and bicycles due to their distinct traffic behavior patterns. Experimental
validation across several test datasets encompassing both high and low resolutions demonstrates robust vehicle
detection performance across all vehicle classes. Speed estimation accuracy ranges from 89% to 99%, validated
against vehicle counting and tracking in designated traffic lanes, providing essential data for queue analysis.
The system achieves vehicle counting accuracy ranging from 78.57% to 100% across different scenarios.
The system offers a cost-effective alternative to traditional sensor-based methods by utilizing existing traffic-
surveillance infrastructure, making it suitable for widespread deployment in intelligent transportation systems.
Results indicate the proposed approach successfully detects queue states in real-time conditions across diverse
traffic scenarios, from heavy congestion to free flow conditions. This research advances computer vision-based
traffic monitoring by demonstrating the practical effectiveness of integrated object detection and tracking
algorithms, contributing to improved traffic flow optimization and congestion management.
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1 Introduction
Traffic congestion has become a critical global challenge in urban areas, causing significant economic, environmental, and social
impacts. The accurate measurement of vehicle queues at signalized intersections represents a fundamental challenge in modern
Intelligent Transportation Systems (ITS), with direct implications for traffic flow optimization and congestion management. As
urban traffic volumes continue to escalate globally, the demand for precise, cost-effective, and real-time traffic state detection
systems has intensified significantly. As more people move to urban areas, the need for smart traffic solutions becomes even
more urgent. Traditional queue detection methods including inductive loop sensors, manual observation, and basic computer
vision algorithms suffer from significant limitations; high infrastructure, limited spatial coverage, poor real-time performance,
and inadequate accuracy under varying environmental conditions. ITS are proving to be one of the best ways to fix these issues
by tackling the root causes of traffic and finding solutions. Many studies show how effective ITS can be in detecting traffic
jams. One of crucial elements in traffic management is the identification of queuing, which directly informs applications like
the estimation of the level of service and the optimization of traffic signal control.

Recent advances in deep learning have shown significant promise for queue length estimation in traffic. A notable study [1]
developed a hybrid Convolutional Neural Networks (CNN) and Long Short-TermMemory (LSTM) to accurately estimate queue
lengths at intersections, achieving significant error reduction compared to traditional methods. The CNN components excel at
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spatial feature extraction from traffic images, while LSTM networks capture temporal dependencies in traffic flow patterns.
Additionally, LSTM was used to estimate short-term arrival models and long-term traffic demand trends for lane utilization
rate forecasting. Compared to other studies, the developed integrated deep learning model demonstrated high performance in
estimating queue lengths in individual lanes. However, it was inadequate for setting the duration, start time, and sequence of
signal groups to within a few seconds or minutes for both isolated signalized intersections and area traffic. Traffic control and
signal planning are known methods to mitigate traffic congestion and reduce delays. A major challenge in optimizing traffic
signal scheduling is accurately predicting traffic conditions before the start of the next forecast cycle. In a study [2] utilizing
real-time traffic data and forecasting cycles, LSTM was applied to forecast queue lengths for the upcoming cycle. Additionally,
a sequential model-based optimization technique was implemented to prevent overfitting and to select optimal hyperparameters.
Experiments using the traffic control system dataset aimed to estimate vehicle queue lengths only for straight movement. The
study did not incorporate an adaptability optimization technique, focusing instead on fixed cycle times. Umair et al. [3] proposed
a CNN-based approach for estimating vehicle queue length in urban traffic scenarios using low-resolution traffic videos. The
queue length was estimated based on the total number of vehicles waiting at a signal, with stopped vehicles detected using Deep
SORT-based object tracking. Due to the powerful and accurate CNN-based detection andmonitoring, the estimated queue length
using cameras was effective. The study conducted a comprehensive analysis of vehicle detection models, including YOLOv3,
YOLOv4, YOLOv5, SSD, ResNet101, and InceptionV3, ultimately selecting YOLOv4 as the primary model due its superior
accuracy and robustness.

Advanced sensor technologies have emerged as promising solutions for precise queue detection. A significant study [4]
introduced a method using roadside LiDAR data, achieving an average accuracy of 98%. This method processes LiDAR data for
real-time vehicle tracking and addresses issues like occlusion and package loss. However, several limitations were identified:
the detection range of a single LiDAR sensor constraints queue length measurement, requiring additional sensors for longer
queues, assumptions about vehicle speed and length could impact detection accuracy, and LiDAR performance may degrade
under adverse weather conditions.

Probe vehicles, equipped with various technological tools to gather data from the road environment, are commonly used
for calculating and estimating traffic capacity, density, and queue length on roads. These vehicles play a significant role in
areas such as queue length and traffic volume estimation. In a study [5] focused on calculating traffic capacity and queue
length, different Bayes-based approaches were developed using probe vehicles in each lane. These approaches, which estimate
penetration and penetration rate (the ratio of probe vehicles to other vehicles on the highway), were used to calculate queue
lengths for straight-going and right-turning lanes. The authors noted that the developed model achieved high prediction accuracy
and could be utilized in traffic signal control. A more sophisticated nonparametric approach was developed that moves beyond
traditional assumptions of random arrivals and parameter estimation. The main objective is to create straightforward, analytical,
nonparametric models that estimate queue lengths at traffic signals on a cycle-by-cycle basis using partial queue observations
from probe vehicles. A crucial feature is that this approach doesn’t rely on assumptions about random arrivals or the need
to estimate fundamental parameters such as market penetration rates or arrival rates. Its simplicity and comparable accuracy
to more complex parametric models make it a valuable contribution to the field, particularly for real-time applications where
primary parameters are difficult to obtain dynamically. However, its current limitations regarding oversaturated conditions and
overflow queues highlight areas for future research [6].

Drone-based computer vision has shown particular promise for comprehensive traffic analysis. Zhou et al. [7] introduced
a method for determining the tail profiles using high-resolution data from various sources. The study focused on three key
components: signal status estimation, queue profile identification, and lane detection. The developed algorithms were validated
using a real-world dataset collected by drones, with results indicating that the methodology effectively extracted tail profile
information from the raw drone data. The pNEUMA dataset was employed in this validation process. Traditional computer
vision approaches have also been explored, though with mixed results. Vector Auto Regression (VAR) model [8] was developed
to estimate queue lengths in individual lanes for mixed traffic typical of developing countries. The model uses Passenger Car
Units to account for different vehicle types and includes lane-changing behavior analysis. Using drone-collected data and time
series analysis, the model achieved high accuracy (R-squared = 0.97, MAPE = 21.55%) by identifying arrival flow, discharge
flow, and lane changes as key factors with a three-time lag dependency according to the authors. However, the model had
limitations, including poor performance in zero-queue situations, occasional negative estimates, reduced accuracy for queues
over 50 meters due to lane-changing effects, and signal timing proved unsuitable as an input variable. Integration of multiple
data sources has emerged as a sophisticated approach to queue length estimation.

The recent increase in the deployment of License Plate Recognition (LPR) detectors has enabled the utilization of their data
formore advanced applications, such as calculating queue lengths at intersections, inferring vehicular trajectories, and estimating
overall traffic conditions and emissions [9]. Liu et al. [10] developed a Random Forest (RF) based real-time queue length
estimationmethod utilizing Global Position System (GPS) and LPR data. GPS data provided vehicle stop positions, while the RF
model was trained to predict these stopping positions using traffic flow features extracted from LPR data. The estimated stopping
positions were also used to calculate the cyclic maximum length for each approach lane. Similarly, Zhan et al. [11] proposed a
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lane-based queue length estimation model utilizing LPR data. The model incorporates a Gauss-based interpolation method for
each lane to reconstruct missing information for unrecognized or mismatched vehicles. A car tracking-based simulation is then
applied to estimate real-time queue lengths for each lane, using vehicle arrival and departure information.

Advanced mathematical modeling approaches have been developed to leverage vehicle trajectory data. One study [12]
focused on real-time queue length estimation at signalized intersections using vehicle trajectory data, employing shock wave
theory to model the dynamic queue forming and dissipating processes without relying on signal timing, arrival patterns, or
penetration rates. By identifying inflection points in vehicle trajectories, the method estimates stopping and discharging shock
waves, providing robust queue length estimates under various conditions. However, it cannot estimate queue lengths without
probe vehicles, and faces challenges when upstream disruptions affect traffic flow.

Al Okaishi et al. [13] proposed a queuing system consisting of two main steps: detecting queues using the square difference
method to identify motion in target areas, followed by vehicle identification using the Single Shot Detector (SSD) algorithm
when no movement is detected. The main limitation of this model is its instability; the queue length resets to zero with any
detected motion at the front of the queue, necessitating a sufficient transition time to ensure continuous vehicle movement.

Conventional vehicle queue length detection methods typically depend on static sensors, manual counting, or basic
algorithms that cannot provide the accuracy and real-time performance needed for contemporary traffic management
systems. While existing approaches have shown promise, several limitations persist: sensor-based methods require expensive
infrastructure and have limited coverage, existing computer vision approaches often lack real-time performance or
comprehensive evaluation across diverse conditions, and most studies focus on either detection or tracking separately, without
optimized integration.

This study addresses key gaps in the literature by introducing an accurate and cost-effective method for estimating traffic
queue lengths using conventional traffic cameras. The proposed approach leverages a deep learning framework that combines
YOLO for real-time vehicle detection with SORT for robust object tracking. By processing video data from existing camera
infrastructure, the system enables real-time vehicle counting, speed estimation, and dynamic queue length measurement. This
integrated solution provides essential insights for efficient traffic monitoring and intelligent traffic management. The results
demonstrate the system’s effectiveness and practical viability for real-world traffic management applications. The study begins
with vehicle classification—categorizing vehicles into cars, motorcycles, trucks, buses, and bicycles—using labeled visual
datasets, followed by queue state detection. The paper is organized as follows: Section 2 presents the methodologies for speed
estimation and queue length detection. Section 3 details and discusses the experimental results. Finally, Section 4 concludes the
paper by summarizing the key findings, highlighting their implications for traffic management, and proposing directions for
future research.

2 Methodology
This study presents a comprehensive real-time queue detection system that integrates deep learning-based vehicle detection,
multi-object tracking, and speed estimation algorithms. The proposed methodology consists of six main stages: video stream
processing, frame extraction, vehicle detection and classification, lane-based tracking, speed estimation, and queue state
analysis. The system utilizes YOLOv5 for object detection, SORT algorithm for vehicle tracking, and implements a rolling
window approach for queue state determination based on estimated vehicle speeds.

The methodology begins with video stream processing and frame extraction, followed by lane boundary definition using
predefined reference points. Subsequently, vehicles are detected and classified using the YOLOv5 model, with each vehicle
assigned a unique identifier through the SORT tracking algorithm. The system calculates individual vehicles’ speeds using
camera calibration and Euclidean distancemeasurements, finally determining queue states through average speed analysis within
a rolling window framework. Average speeds of 20 km/h or lower indicate heavy traffic; speeds between 20 km/h and 55 km/h
(inclusive) represent stable flow; and speeds above 55 km/h indicate free flow conditions. The Figure 1 illustrates the flowchart
of the proposed queue state detection system.

2.1 Vehicle Speed Detection
YOLOv5m model [14] for robust vehicle detection and classification in the study. The model was trained on a comprehensive
dataset combining multiple sources to achieve optimal performance in various traffic conditions. In our previous study [15],
an initial dataset was created using several images from two different datasets [16], [17], targeting vehicle class detection and
lane-based counting. The dataset was subsequently augmented with additional images from another source [18]. The model
successfully identified five distinct vehicle classes: car, motorcycle, truck, bus, and bicycle. Performance evaluation across
three different training configurations is presented in Table 1 with optimal results achieved at 150 epochs, demonstrating the
model’s effectiveness in multi-class vehicle recognition under diverse traffic scenarios.

Following vehicle classification, the system implements lane-based vehicle tracking using the SORT algorithm [19]. SORT
employs a Kalman filter for state estimation, using a constant velocity motion model, and associates detections to tracks via
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Figure 1: Flowchart of the proposed queue state detection system

Table 1: Performance results from the training dataset
Epoch Precision Recall mAP
80 0.86 0.91 0.93
100 0.94 0.85 0.92
150 0.86 0.87 0.93

the Hungarian algorithm with an intersection over union (IoU) threshold. Each detected vehicle receives a unique identifier,
enabling continuous tracking across frames.

Speed estimation plays a crucial role in queue state detection. As illustrated in Figure 2, several key parameters are extracted
before speed calculation. These include the initial and final center point coordinates of the vehicle within the region of interest,
the pixel-based length of the vehicle at its initial and final positions (with only the initial length used in the computation),
and the timestamps of the vehicle’s first and last detection in the video. Using these parameters, camera calibration—based on
the method by [20]—is applied to convert pixel measurements into real-world distance, enabling the calculation of the actual
distance traveled by the vehicle in meters. This calibrated distance, combined with the time difference, is then used to estimate
the vehicle’s speed.

k =
Lactual
Lpixel

(1)

where k represents the camera calibration factor, Lactual is the real-world vehicle length (meters), and Lpixels is the pixel-
based vehicle lengths. The system utilizes class-specific average vehicle lengths to enhance calibration accuracy across different
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Figure 2: Vehicle speed detection diagram

vehicle types. In the study, the assumed average lengths were 4.5 meters for cars, 8.1 meters for trucks, 9.5 meters for buses
[21].

dpixel =
√
(x2 − x1)2 + (y2 − y1)2 (2)

Once the camera calibration is computed, the initial and final center point coordinates are used to calculate the distance the
vehicle travels throughout the video. The Euclidean formula in Equation (2) was used to find this length. Since the result of this
calculation is in pixels, it is converted to meters by multiplying it by the camera calibration as given in Equation (3).

dmeter = k × dpixel (3)

In the speed estimation phase, the time taken by the vehicle is as important as the distance taken. During this period, the
total movement time is calculated as the difference between the timestamps of the vehicle’s initial and final detections as given
in Equation (4).

t = t2 − t1 (4)

After computing all necessary parameters, the estimated speed is determined by dividing the distance traveled by the elapsed
time. Since the initial speed is calculated in meters per second (m/s), it is converted to kilometers per hour (km/h) by multiplying
by 3.6 as given in Equation (5).

v = (
dmeter
t

× 3.6) (5)

Table 2: Results on speed detection obtained from a dataset consisting of videos recorded by the authors
Video Actual Speed (km/h) Estimated Speed (km/h) Accuracy

Vehicle-1 30 30.83 %97.23
Vehicle-2 50 46.51 %93.02
Vehicle-3 70 70.60 %99.14
Vehicle-4 100 89.11 %89.11

The speed estimations were validated using recorded videos in which the actual speeds of the vehicles were known. These
estimated speeds, measured in kilometers per hour, are compared with the actual speeds in Table 2. For instance, a vehicle
traveling at an actual speed of 30 km/h was estimated to be moving at 30.83 km/h. Additional tests demonstrated accuracy rates
of 97.23%, 93.02%, 99.14%, and 89.11%, respectively.

2.2 Queue State Detection
The approximate speeds of each vehicle are calculated and recorded for queue state detection. The traffic stateQ(t) is determined
based on the average speed of vehicles in the detection zone and is defined in Equation (6). If fewer than three vehicles are
detected (or no vehicles are present), insufficient data is available for reliable queue state assessment, and the system defaults
to classifying the traffic state as free flow.
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Q(t) =


Heavy traffic, if 0 km/h ≤ v̄(t) ≤ 20 km/h
Stable flow, if 20 km/h < v̄(t) ≤ 55 km/h
Free flow, if 55 km/h < v̄(t)

(6)

where v̄(t) denotes the average speed of detected vehicles at time t .
After vehicle detection, counting, and speed estimation, the system proceeds to classify the traffic queue state. This process

employs a rolling window approach, where the average speed of the three most recently detected four-wheeled vehicles is
calculated as given in Equation (7) to determine the queue state. The window then shifts by excluding the earliest detected
vehicle and incorporating the next one, calculating the average speed of the updated set (i.e., the second, third, and fourth
vehicles) to reassess the queue condition as given in Equation (8).

v̄(t) =
1

3

3∑
i=1

vi (7)

v̄(t + 1) =
1

3

4∑
i=2

vi (8)

Two-wheeled vehicles like motorcycles and bicycles are not included in traffic queue analysis for both theoretical and
practical considerations. Unlike larger vehicles, these two-wheelers follow different speed and traffic flow patterns and use
lanes differently. They can weave between stopped cars through lane-splitting and filtering, which means they don’t follow
the standard first-come, first-served queue rules that apply to cars and trucks. By leaving out motorcycles and bicycles from
queue analysis, researchers can better measure the actual congestion levels that impact the main flow of traffic. The system
identifies traffic queues by calculating the average speed of vehicles traveling in specific lanes and uses this data to assess
queuing conditions. For all these reasons, two-wheeled vehicles were not included in the queue state analysis in the study.

3 Experimental Results
The comprehensive evaluation of the proposed traffic queue detection system was conducted across 11 video sequences,
encompassing diverse traffic scenarios ranging from free-flowing conditions to severe congestion. The evaluation framework
employsmultiple performancemetrics to assess system effectiveness across three primary dimensions: computational efficiency,
detection accuracy, and queue classification performance.

Table 3: Dataset Specifications and Performance Metrics
Video Resolution Duration(s) FPS YOLO Detection(ms) SORT Tracking(ms)
Video-1 1080x1920 127.1 14.36 44.47 0.63
Video-2 1080x1920 28.4 14.39 44.58 0.68
Video-3 480x848 43.6 21.81 41.34 0.40
Video-4 480x848 78.4 21.42 42.14 0.43
Video-5 480x848 76.9 21.70 41.62 0.40
Video-6 1080x1920 51.6 14.59 43.5 0.40
Video-7 1080x1920 74.8 14.56 43.24 0.38
Video-8 1080x1920 43.2 14.45 44.33 0.88
Video-9 1080x1920 84 13.99 45.88 0.53
Video-10 1080x1920 51 14.65 44.37 0.63
Video-11 1080x1920 45 14.78 45.92 0.52

As presented in Table 3, the experimental dataset consists of 11 videos with varying specifications to evaluate the robustness
of the system under different recording conditions. The dataset includes both high-resolution videos (1080×1920 resolution)
and low-resolution videos (480×848 resolution), with durations ranging from 28.4 to 127.1 seconds. Frame rates varied
between 13.99 and 21.81 FPS, providing comprehensive coverage of typical traffic surveillance scenarios. The computational
performance analysis reveals optimal resource allocation, with YOLOv5 detection requiring an average of 44.2 ms per frame,
while SORT tracking operations consumed only 0.52ms on average. This distribution demonstrates that 98.8% of computational
time is dedicated to object detection, 1.2% to tracking operations, indicating highly efficient algorithm integration. The system
successfully processed videos at varying frame rates while maintaining consistent detection performance.

Equations (9) and (10) are used to calculate the accuracy of the estimated number of vehicles and speed calculation in vehicle
counting [22].

Error(%) = (
|Detected Number − Actual Number |

Actual Number
)× 100 (9)
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Accuracy(%) = 100− Error(%) (10)

The SORT algorithm successfully tracked a total of 441 vehicles across all video streams, with individual video performance
ranging from 15 to 84 vehicles. The system demonstrated consistent tracking capabilities across varying traffic densities,
with lane-specific vehicle counts providing granular insights into traffic distribution patterns. In particular, the left-right lane
distribution analysis revealed traffic flow imbalances in several scenarios, such as video 1 and video 9, indicating asymmetric
traffic patterns commonly observed in real-world scenarios. The results demonstrate high accuracy in vehicle counting, generally
achieving more than 90%. According to the Table 4, 45 vehicles were detected, although only 42 vehicles actually passed
through the area in video 8. The system may overestimate the number of vehicles present in reality, as shown in video 8.
Possible reasons for this include occlusion, where a vehicle in the frame is temporarily blocked by another vehicle; when the
occluded vehicle reappears, the system fails to recognize it as the same vehicle and instead detects it as a new one. Additionally,
factors such as lighting conditions, viewing angles, and partial visibility may prevent the correct re-identification of previously
detected vehicles. Such issues (ID reassignments and challenges in multi-object trajectory tracking) are commonly reported in
the literature [23].

Table 4: Results regarding vehicle counting
Video Number of Detected Vehicles Number of Actual Vehicles Accuracy (%)

Right Left Right Left Right Left

Video-1 38 46 37 47 97.29 97.87
Video-2 6 9 6 9 100 100
Video-3 14 8 14 9 100 88.88
Video-4 16 11 19 14 84.21 78.57
Video-5 16 21 17 21 94.11 100
Video-6 20 24 19 24 94.70 100
Video-7 23 29 22 30 95.65 96.67
Video-8 20 25 17 25 82.35 100
Video-9 21 30 22 30 95.45 100
Video-10 15 20 15 20 100 100
Video-11 18 10 19 11 94.73 90.90

Traffic flow analysis results are illustrated in Figure 3 from 11 test videos processed using the YOLOv5+SORT algorithm.
The histogram of overall vehicle speed distribution across all videos, with queue classification thresholds indicated that heavy
traffic threshold at 20 km/h and a stable flow threshold at 55 km/h, showing a normal distribution with a mean speed of
62.5 km/h and a standard deviation of 22.51 km/h. The distribution demonstrates the system’s capability to capture the full
spectrum of urban traffic conditions. The comparative box plot analysis of speed distributions between the left lane and right
lane illustrates typical traffic flow patterns where the left lane maintains higher average speeds. The queue state classification
results are presented as a pie chart, demonstrating system accuracy with balanced detection across three categories: heavy traffic
(13.6%, 3 of 22 lanes), stable flow (18.19%, 4 of 22 lanes), and free flow (68.2%, 15 of 22 lanes).

Table 5: Vehicle Speed Analysis and Queue Detection Results by Video
Video Right Lane Left Lane Right Avg Left Avg Right Queue Left Queue

Vehicles Vehicles Speed (km/h) Speed (km/h) State State
Video-1 38 46 55.76 68.59 Free flow Free flow
Video-2 6 9 18.42 18.9 Heavy traffic Heavy traffic
Video-3 14 8 62.24 93.65 Free flow Free flow
Video-4 16 11 61.15 84.73 Free flow Free flow
Video-5 16 21 58.37 62.94 Free flow Free flow
Video-6 20 24 65.67 84.33 Free flow Free flow
Video-7 23 29 64.41 79.12 Free flow Free flow
Video-8 20 25 55.15 72.27 Free flow Free flow
Video-9 21 30 52.41 54.66 Stable flow Stable flow
Video-10 15 20 72.87 85.63 Free flow Free flow
Video-11 18 10 29.62 12.04 Stable flow Heavy traffic

The comprehensive speed analysis and queue state detection results are summarized in Table 5, showcasing the system’s
capability to perform real-time queue state classification. The speed values given in the table were determined by taking the
average speed of all vehicles detected on a lane basis in a video. The three-category classification system successfully categorized
traffic states. In video 1, the SORT algorithm successfully tracked 46 vehicles in the left lane and 38 in the right lane, yielding
average speeds of 55.76 km/h and 68.59 km/h, respectively. Based on the established threshold criteria (speed > 55 km/h), the
queue detection result was classified as free flow. Video 2 demonstrated clear congestion conditions with average speeds of
18.42 km/h (right lane) and 18.9 km/h (left lane), correctly classified as heavy traffic for both lanes. Video 11 showed mixed
362 ECJSE Volume 12, 2025
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conditions with the left lane experiencing heavy traffic (12.04 km/h) while the right lane exhibited stable flow (29.62 km/h).
Multiple videos (video 1, video 3, video 4, video 5, video 6, video 7, video 8, video 10) exhibited high-speed conditions with
average speeds exceeding 55 km/h, correctly classified as free flow. Notable examples include video 3 with exceptionally high
speeds (62.24 km/h right, 93.65 km/h left) and video 10 (72.87 km/h right, 85.63 km/h left). Video 9 demonstrated intermediate
traffic conditions with speeds of 52.41 km/h (right) and 54.66 km/h (left), appropriately classified as stable flow for both lanes.

Figure 3: Vehicle Speed Distribution and Queue Detection Analysis

4 Conclusion
This study presents a validated, comprehensive real-time vehicle queue state detection system that integrates state-of-the-art
deep learning methods with practical traffic management requirements. The proposed approach, which combines YOLOv5
for object detection with the SORT tracking algorithm, demonstrates exceptional performance across diverse traffic scenarios
while maintaining the computational efficiency required for real-world deployment. The primary contributions of this work
span several critical aspects of modern traffic monitoring systems. First, we introduce an integrated deep learning framework
that seamlessly combines object detection and tracking components, specifically optimized for traffic queue analysis. Second,
we propose a robust queue state classification methodology that accurately categorizes traffic conditions based on vehicle speed
dynamics. Comprehensive experimental validation was conducted across multiple datasets, encompassing both high-resolution
(1080×1920) and low-resolution (480×848) video streams, demonstrating the system’s versatility and reliability under varying
input conditions. The processing pipeline achieves efficient resource utilization: YOLOv5-based detection averages 44.2 ms
per frame, while SORT tracking requires only 0.52 ms per frame. This results in a computational distribution where 98.8% of
processing time is devoted to detection and just 1.2% to tracking, highlighting the efficiency of the overall algorithm design.
Memory usage averaged 1050MBacross all test scenarios, confirming the system’s feasibility for deployment in edge computing
environments with limited computational resources. These characteristics make the proposed system well-suited for scalable,
real-time traffic monitoring in urban and highway settings.

While the current implementation demonstrates robust performance across the evaluated scenarios, several areas for future
studies remain. Although the dataset is comprehensive within its scope, it could be expanded to include adverse weather
conditions, varying lighting environments, and diverse intersection geometries to further enhance the system’s robustness
and generalizability. Incorporating multiple camera viewpoints represents a promising direction, as it could enable more
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comprehensive spatial coverage and improve detection and tracking accuracy in complex, occlusion-prone traffic environments.
Future studies should also focus on developing lightweight model architectures—such as through model pruning, quantization,
or efficient network design—to reduce computational demands without compromising detection accuracy, thereby enabling
deployment on lower-power edge devices. Additionally, integrating vehicle trajectory prediction and behavioral modeling
could significantly enhance the system’s intelligence, allowing it to anticipate traffic dynamics and support proactive traffic
signal optimization. Such advancements would move the system beyond reactive monitoring toward adaptive, predictive traffic
management.
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