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Abstract
Let n be a fixed positive integer. A ring R is called left n-Π- coherent if every n-
generated torsionless left R-module is finitely presented, some characterizations
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1. Introduction
Recall that a left R-module M is called torsionless if M can be embedded into some direct

product of RR, or equivalently, if the natural map i : M → M∗∗ is monic, where M∗ denotes
HomR(M,R). A ring R is called left Π-coherent [2] if every finitely generated torsionless left R-
module is finitely presented. Clearly, a left left Π- coherent ring is left coherent, so, in [14], Π-
coherent rings are also called strongly coherent rings. Π- coherent rings have been studied by a
series of authors (see, for example, [2, 5, 9, 10, 14, 19]).

In this article, we extend the concept of left Π- coherent rings to left n-Π- coherent rings, we call
a ring R left n-Π- coherent if every n-generated torsionless left R-module is finitely presented.

In section 2, we give a series of characterizations of left n-Π-coherent rings. As corollaries,
some characterizations of left Π- coherent rings are obtained. To characterize left n-Π- coherent
rings, we shall study n-projective modules, this concept was introduced in [22]. Moreover, by using
the concept of 1-Π-coherent rings, we give a new characterization of Quasi-Frobenius rings.

In Section 3, we call a ring R right n-GF if every n-generated right R-module embeds in a free
module. n-GF rings are characterized by n-projective modules, conditions under which left n-Π-
coherent rings are right n-GF rings are given. As corollaries, conditions under which left Π-coherent
(resp., left 1-Π-coherent) rings are right FGF (resp., right CF) rings are given.

A ring R is called right n-semihereditary [23] if every n-generated right ideal of R is projective.
By [23, Theorem 1], a ring R is right n-semihereditary if and only if every n-generated submod-
ule of a projective right R-module is projective. In Section 4 , we call a ring R right strongly
n-semihereditary if every n-generated torsionless right R-module is projective. n-semihereditary
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rings are characterized by n-projective modules, conditions under which right IF rings are right
strongly n-semihereditary rings are given, and conditions under which left n-Π- coherent rings are
right n-semihereditary rings are given too. As corollaries, some new characterizations of PP rings
and semihereditary rings are given, conditions under which left Π-coherent (resp., left 1-Π- coher-
ent) rings are right semihereditary (resp., right PP) rings are given. Furthermore , by using n-Π-
coherent rings and n-projective modules, we give a series characterization of commutative strongly
n-semihereditary rings.

Throughout this paper, n is a positive integer, R is an associative ring with identity, and all mod-
ules considered are unitary. In general, for a set S , we write S n for the set of all formal 1 × n
matrices whose entries are elements of S , and S n for the set of all formal n × 1 matrices whose
entries are elements of S . Let N be a left R-module, X ⊆ Nn and A ⊆ Rn. Then we denote
rNn (A) = {u ∈ Nn : au = 0,∀a ∈ A} and lRn (X) = {a ∈ Rn : ax = 0,∀x ∈ X}.

2. n-Π- coherent rings
Recall that a right R-module M is called finitely projective (resp., singly projective) [1] if for

every epimorphism f : N → M and any homomorphism g : C → M with C finitely generated
(resp., cyclic) right R-module, there exists h : C → N such that g = f h . In [22], Zhu extended the
two concepts to n-projective modules. Following [22], a right R-module M is called n-projective
if for any epimorphism f : N → M and for every n-generated submodule M0 of M, there exists a
homomorphism g : M0 → N such that f g is the identity map of M0.

The following Theorem will be used frequently in the sequel.

2.1. Theorem. The following are equivalent for a right R-module M:
(1) M is n-projective.
(2) For every epimorphism f : N → M and any homomorphism g : C → M with C an n-

generated right R-module, there exists h : C → N such that g = f h.
(3) For any n-generated right R-module N and any homomorphism f : N → M, f factors

through a finitely generated free right R-module F, that is, there exist g : N → F and h : F → M
such that f = hg.

(4) For any n-generated submodule N of M, the inclusion map ι : N → M factors through a
finitely generated free right R-module F.

(5) For any n-generated submodule N of M, the inclusion map ι : N → M factors through a free
right R-module F.

(6) For any n-generated submodule N of M, the inclusion map ι : N → M factors through a
finitely projective right R-module F.

(7) For any n-generated submodule N of M, the inclusion map ι : N → M factors through an
n-projective right R-module P.

Proof. (1)⇔ (2). It is obvious.
(2)⇒ (3). Let F1 be a free module and π : F1 → M be an epimorphism. Since M is n-projective,

there exists a homomorphism g : N → F1 such that f = πg. Note that N is n-generated, Im(g) is
finitely generated , so there is a finitely generated free module F such that Im(g) ⊆ F ⊆ F1. Let
ι : F → F1 be the inclusion map and h = πι. Then h is a homomorphism from F to M and f = hg.

(3)⇒ (4)⇔ (5)⇒ (6)⇒ (7). It is obvious.
(4)⇒ (2). Let f : N → M be an epimorphism and g : C → M be any homomorphism, where C

is an n-generated right R-module. Then Im(g) is n-generated. By (4), the inclusion ι : Im(g) → M
factors through a finitely generated free right R-module F, i.e., there exist ϕ : Im(g) → F and
ψ : F → M such that ι = ψϕ. Since F is projective, there exists a homomorphism θ : F → N such
that ψ = f θ. Now write h = θϕg, then h is a homomorphism from C to N, and g = ιg = ψϕg =

( f θ)ϕg = f h. Thus (2) holds.
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(7) ⇒ (5). Let N be an n-generated submodule of M, and ι : N → M be the inclusion map. By
(7), there exist an n-projective right R-module P, a homomorphism α : N → P and a homomor-
phism β : P → M such that ι = βα. Let π : F → P be an epimorphism, here F is a free module.
Since P is n-projective, there exists a homomorphism g : N → F such that α = πg. Now write
h = βπ. Then h ∈ HomR(F,M) and ι = hg. �

2.2. Corollary. Every n-generated n-projective module is projective.

2.3. Corollary. The following are equivalent for a right R-module M:
(1) M is finitely projective.
(2) For any epimorphism f : N → M and for every finitely generated submodule M0 of M, there

exists a homomorphism g : M0 → N such that f g is the identity map of M0.
(3) For any finitely generated right R-module N and any homomorphism f : N → M, f factors

through a finitely generated free right R-module F, that is, there exist g : N → F and h : F → M
such that f = hg.

(4) For any finitely generated submodule N of M, the inclusion map ι : N → M factors through
a finitely generated free right R-module F.

(5) For any finitely generated submodule N of M, the inclusion map ι : N → M factors through
a free right R-module F.

(6) For any finitely generated submodule N of M, the inclusion map ι : N → M factors through
a finitely projective right R-module P.

2.4. Proposition. Every pure submodule of an n-projective module is n-projective.

Proof. Let M be an n-projective right R-module and M′ a pure submodule of M. Let C be an
n-generated right R-module and f be a homomorphism from C to M′. Write ι : M′ → M be the
inclusion map. Since M is n-projective, by Theorem 2.1, ι f factor through a finitely generated free
right R-module F, that is, there exist g : C → F and ϕ : F → M such that ι f = ϕg. So we have a
commutative diagram with exact rows:

C
g

−−−−−−−→ F
π1

−−−−−−−→ F/Im(g) −−−−−−−→ 0y f
yϕ yψ

0 −−−−−−−→ M′
ι

−−−−−−−→ M
π2

−−−−−−−→ M/M′

, where π1 and π2 are the natural epimorphisms, and ψ(x + Im(g)) = π2ϕ(x). Since M′ is pure in
M and F/Im(g) is finitely presented, there exists a homomorphism α : F/Im(g) → M such that
ψ = π2α. Thus, by Diagram Lemma (see [18], page 53), there exists a homomorphism h from F to
M′ such that f = hg. Therefore, M′ is n-projective. �

2.5. Corollary. [1, Proposition 14] Every pure submodule of a finitely (or singly) projective module
is finitely (or singly) projective.

Let F be a class of right R-modules and M a right R-module. Following [11], we say that
a homomorphism ϕ : M → F where F ∈ F is an F-preenvelope of M if for any morphism
f : M → F′ with F′ ∈ F, there is a g : F → F′ such that gϕ = f . An F-preenvelope ϕ : M → F is
said to be an F-envelope if every endomorphism g : F → F such that gϕ = ϕ is an isomorphism. It
is easy to see that an epic F-preenvelope is an F-envelope.

2.6. Theorem. Let F be a class of right R-modules closed under pure submodules and isomor-
phisms. Then the following statements are equivalent:

(1) F is closed under direct product.
(2) Every right R-module has an F-preenvelope.
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Proof. (1)⇒ (2). Let N be any right R-module. By [11, Lemma 5.3.12], there is a cardinal number
ℵα dependent on Card(N) and Card(R) such that for any homomorphism f : N → F with F ∈ F,
there is a pure submodule S of F such that f (N) ⊆ S and Card S ≤ ℵα. Thus f has a factorization
N → S → F with S ∈ F since F is closed under pure submodules. Now let {ϕβ}β∈B be the family of
all such homomorphisms ϕβ : N → S β with Card S β ≤ ℵα and S β ∈ F . Then any homomorphism
N → F with F ∈ F has a factorization N → S i → F for some i ∈ B. Thus the homomorphism
N →

∏
β∈B S β induced by all ϕβ is an F-preenvelope since

∏
β∈B S β ∈ F by (1).

(2) ⇒ (1). For any family {Fi}i∈I of right R-modules in F, by hypothesis,
∏

i∈I Fi has an F-
preenvelope ϕ :

∏
i∈I Fi → F. Let pi :

∏
i∈I Fi → Fi be the projective. Then there exists fi : F → Fi

such that pi = fiϕ. Define ψ : F →
∏

i∈I Fi by ψ(x) = ( fi(x)) for each x ∈ F, then it is easy to check
that ψϕ = 1. Hence

∏
i∈I Fi is isomorphic to a direct summand of F, and so

∏
i∈I Fi ∈ F . �

2.7. Proposition. If M is an n-generated right R-module, then every projective preenvelope of M is
an n-projective preenvelope of M .

Proof. Let f : M → P be a projective preenvelope of M. Then P is clearly n-projective. And for
any n-projective right R-module P′ and any homomorphism g : M → P′, by Theorem 2.1, g factors
through a finitely generated free right R-module F, that is, there exist α : M → F and β : F → P′

such that g = βα . Since f : M → P is a projective preenvelope of M, there exists a homomorphism
γ : P→ F such that α = γ f . Now let h = βγ. Then g = h f . So f is an n-projective preenvelope of
M. �

2.8. Corollary. (1) If M is a finitely generated right R-module, then every projective preenvelope
of M is a finitely projective preenvelope of M .

(2) If M is a cyclic right R-module, then every projective preenvelope of M is a singly projective
preenvelope of M .

Proof. (1). By a similar way to the proof of Proposition 2.7.
(2). It follows immediately from Proposition 2.7. �

Inspired by the concept of Π- coherent rings, we have the following definition.

2.9. Definition. A ring R is called left n-Π- coherent if every n-generated torsionless left R-module
is finitely presented.

Similarly, we have the concept of right n-Π-coherent rings. Clearly, a ring R is left Π-coherent
if and only if it is left n-Π-coherent for every positive integer n. A left (n + 1)-Π-coherent ring is
left n-Π-coherent, but the converse does not hold in general.

2.10. Lemma. Let X = {αi : i ∈ I} be a subset of Rn. Then lRn (X) � P∗, where P = Rn/
∑

i∈I αiR.

Proof. Define σ : lRn (X) → P∗ by σ(β) = fβ , where fβ(γ) = βγ. Then it is easy to check that σ is
a left R- isomorphism. �

Now we characterize left n-Π-coherent rings as follows.

2.11. Theorem. The following statements are equivalent for a ring R:
(1) R is left n-Π-coherent.

(2) If 0 → K
f
→ M

g
→ T is an exact sequence of left R-modules, where M is n-generated and T

is torsionless, then K is finitely generated.
(3) lRn (X) is a finitely generated submodule of RRn for any subset X of Rn.
(4 For any n-generated right R-module M, the dual module M∗ is a finitely generated left R-

module.
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Proof. (1) ⇒ (2). Since R is left n-Π-coherent and Im(g) is an n-generated torsionless left R-
module, Im(g) is finitely presented. Note that the sequence 0 → Ker(g) → M → Im(g) → 0 is
exact, we have that Ker(g) is finitely generated. Thus K � Im( f ) = Ker(g) is finitely generated.

(2) ⇒ (3). Let X = {αi : i ∈ I}. Then we have an exact sequence of left R-modules 0 →
lRn (X)→ Rn g

→ RI , where g(β) = (βαi)i∈I . By (2), lRn (X) is a finitely generated left R-module.
(3)⇒ (1). Let T = Rt1 + · · · + Rtn be an n-generated submodule of RI , where t j = (ai j)i∈I . Write

αi = (ai1, · · · , ain)′, i ∈ I, X = {αi | i ∈ I}. Then we have an exact sequence of left R-modules
0→ lRn (X)→ Rn → T → 0. By (3), lRn (X) is finitely generated, so T is finitely presented.

(3)⇔ (4) follows from Lemma 2.10. �

2.12. Corollary. The following statements are equivalent for a ring R:
(1) R is left Π-coherent.

(2) If 0 → K
f
→ M

g
→ T is an exact sequence of left R-modules, where M is finitely generated,

T is torsionless, then K is finitely generated.
(3) lRn (X) is a finitely generated submodule of RRn for any positive integer n, any subset X of Rn.
(4) For any finitely generated right R-module M, the dual module M∗ is a finitely generated left

R-module.

We note that the equivalence of (1), (3) and (4) in Corollary 2.12 was shown in [2, Theorem
1], but the method we use in the proof of our Theorem 2.11 is different from that of [2, Theorem
1]. Following [10], a ring R is said to be a right ?-ring provided that every finitely generated right
R-module has finitely generated dual, so, by Corollary 2.12, right ?-rings are identified with left
Π-coherent rings.

2.13. Corollary. Let R be a right coherent left n-Π-coherent ring. Then it is a right n-Π-coherent
ring.

Proof. Let M be an n-generated torsionless right R-module. Since R is left n-Π-coherent, by Theo-
rem 2.11, M∗ is a finitely generated left R-module, and so there exists a finitely generated free left
R-module F such that F → M∗ → 0 is exact, which induces an exact sequence 0 → M∗∗ → F∗ .
But M is torsionless, the natural map i : M → M∗∗ is monic, and so the sequence 0 → M → F∗

is exact, it shows that M is a finitely generated submodule of a free right R-module. Note that R
is right coherent, we have that M is finitely presented by [4, Theorem 2.1]. Therefore, R is a right
n-Π-coherent ring. �

2.14. Corollary. [10, Corollary 2.5B] A right coherent left Π-coherent ring is right Π-coherent.

Following [20], a ring R is called left (m,n)-coherent if every n-generated submodule of the left
R-module Rm is finitely presented.

2.15. Example. Let K be a field , and x, y1, y2, ... be commuting indeterminates, S = K[x, y1, y2, ...]
and R = K[x2, x3, y1, y2, ..., xy1, xy2, ...]. Then R is a subring of the domain S, so R is 1-Π-coherent.
But by [20, Example 5.8], R is not (1,2)-coherent and so it is not 2-Π-coherent.

2.16. Theorem. The following are equivalent for a ring R:
(1) R is a left n-Π-coherent ring.
(2) Every n-generated right R-module has a projective preenvelope.
(3) Every n-generated right R-module has an n-projective preenvelope.
(4) Every direct product of n-projective right R-modules is n-projective.
(5) Any direct product of copies of RR is n-projective.
(6) Every right R-module has an n-projective preenvelope.

Proof. (1)⇒ (2). Let M be an n-generated right R-module. Since M∗ is finitely generated, there ex-
ists a generating set { f j ∈ M∗ : j = 1, 2, ...,m}. Define f : M → Rm ; x 7→ ( f1(x), f2(x), · · · , fm(x)), x ∈
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M. We shall show that f is a projective preenvelope. It is enough to show that for any positive in-
teger k and any homomorphism g : M → Rk, there exists a homomorphism h : Rm → Rk such that
g = h f . Let πi : Rk → R be the ith projection, i = 1, 2, ..., k. Then there exist ri j ∈ R, j = 1, 2, ...,m

such that πig =
m∑

j=1
ri j f j. Define h : Rm → Rk; (a1, a2, · · · , am) 7→ (

m∑
j=1

r1 ja j,
m∑

j=1
r2 ja j, · · · ,

m∑
j=1

rk ja j).

Then g = h f .
(2)⇒ (3). By Proposition 2.7.
(3) ⇒ (4). Let {Mi}i∈I be a family of n-projective right R-modules and N any n-generated

submodule of
∏

i∈I Mi. Let ι : N →
∏

i∈I Mi be the inclusion map and πi :
∏

i∈I Mi → Mi be the ith
projection. Let i ∈ I. Since Mi is n-projective, there exist a finitely generated free right R-module
Fi, homomorphisms gi : N → Fi and hi : Fi → Mi such that πiι = higi by Theorem 2.1(3). Note
that N has an n-projective preenvelope f : N → P by (3), and so there is ϕi : P → Fi such that
gi = ϕi f . Define g : P→

∏
i∈I Mi by g(x) = ((hiϕi)(x)) . Then ι = g f . Thus

∏
i∈I Mi is n-projective

by Theorem 2.1(7).
(4)⇔ (6). By Proposition 2.4 and Theorem 2.6.
(4)⇒ (5). It is clear.
(5) ⇒ (1). Let M be an n-generated right R-module. For every index set I, there is a canonical

homomorphism τ : RI ⊗ M∗ → (M∗)I defined by τ((ri) ⊗ α) = (riα). We shall show that τ is
epic. Indeed, let ( fi) ∈ (M∗)I . Define f : M → (RR)I by f (x) = ( fi(x)). Then f is a right R-
homomorphism. By (5), (RR)I is n-projective. So by Theorem 2.1, there exist a finitely generated
free right R-module Rm, a homomorphism g : M → Rm and a homomorphism h : Rm → RI such that
f = hg. Let πi : RI → R be the ith projection, p j : Rm → R be the jth projection and ι j : R → Rm

the jth injection, j = 1, 2, · · · ,m. Put a j = hι j(1) and g j = p jg. Then for any i ∈ I and any

x ∈ M, we have fi(x) = πi f (x) = πihg(x) = πih(
m∑

j=1
ι j p j)g(x) = πi

m∑
j=1

hι j p jg(x) = πi

m∑
j=1

hι j(g j(x)) =

πi

m∑
j=1

hι j(1)(g j(x)) = πi

m∑
j=1

a j(g j(x)), so fi =
m∑

j=1
πi(a j)g j, and thus ( fi) = τ(

m∑
j=1

a j ⊗ g j). This shows

that τ is an epimorphism, and so M∗ is a finitely generated left R-module by [11, Lemma 3.2.21].
Therefore, by Theorem 2.11, R is a left n-Π-coherent ring. �

2.17. Corollary. The following are equivalent for a ring R:
(1) R is a left Π-coherent ring.
(2) Every finitely generated right R-module has a projective preenvelope.
(3) Every finitely generated right R-module has a finitely projective preenvelope.
(4) Any direct product of finitely projective right R-modules is finitely projective.
(5) Any direct product of copies of RR is finitely projective.
(6) Every right R-module has a finitely projective preenvelope.

Proof. By a similar way to the proof of Theorem 2.16. �

We note that the equivalence of (1), (2), (3), (4) and (6) in Corollary 2.17 was shown in [9,
Corollary 3.6 , Corollary 3.12 ], Corollary 3.6 and Corollary 3.12 in [9] follow from [9, Proposition
3.4] and [9, Theorem 3.10] respectively, but the way we use in the proof of our Theorem 2.16 is
different from that of [9, Proposition 3.4, Theorem 3.10].

Recall that a ring R is called Quasi-Frobenius if it is right or left self-injective and right or left
artinian, or equivalently, if it is right or left self-injective and right or left noetherian; a ring R is
called left Kasch if every simple left R-module embeds in R. At the end of this section, we give a
new characterization of Quasi-Frobenius rings by 1-Π-coherent rings.

2.18. Theorem. The following are equivalent for a ring R:
(1) R is a Quasi-Frobenius ring.
(2) R is a left self-injective, left 1-Π-coherent left Kasch ring.
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Proof. (1)⇒ (2) is obvious.
(2) ⇒ (1). Since R is left self-injective and left Kasch, by [17, Proposition 1.44], R = E(RR)

is a cogenerator, and so R/T is torsionless for every left ideal T of R. Note that R is left 1-Π-
coherent, R/T is finitely presented, and hence T is finitely generated. Thus, R is a left noetherian
left self-injective ring, and so it is a Quasi-Frobenius ring. �

3. n-GF-rings
Recall that a ring R is called right CF [17] if every cyclic right R-module embeds in a free

module, a ring R is called right FGF [10] if every finitely generated right R-module embeds in a
free module, a ring R is called right 2-GF [7, 15] if every 2-generated right R-module embeds in
a free module. These rings have important role in the studies of Quasi-Frobenius rings. Now we
extend these concepts as follows.

3.1. Definition. A ring R is called a right n-GF ring if every n-generated right R-module embeds
in a free module.

3.2. Proposition. The following are equivalent for a ring R:
(1) R is a right n-GF ring.
(2) Every injective right R-module is n-projective.
(3) The injective envelope of any n-generated right R-module is n-projective.

Proof. (1) ⇒ (2) . Let E be an injective right R-module. Then for every epimorphism f : N → E
and any homomorphism g : C → E with C being an n-generated right R-module. By (1), there
exists a free module F and a monomorphism ι : C → F. So there exists a h : F → E such that
g = hι, and hence there exists a ϕ : F → N such that h = fϕ. Thus, ϕι is a homomorphism from C
to N and g = f (ϕι). By Theorem 2.1, E is n-projective.

(2)⇒ (3) . It is clear.
(3) ⇒ (1) . Let N be an n-generated right R-module. Let ι : N → E(N) be the inclusion map

and π : F → E(N) be an epimorphism, where F is a free module. Since E(N) is n-projective, there
exists a homomorphism f : N → F such that ι = π f . It is easy to see that f is monic, and so (1)
follows. �

3.3. Corollary. The following are equivalent for a ring R:
(1) R is a right CF ring.
(2) Every injective right R-module is singly projective.
(3) The injective envelope of any cyclic right R-module is singly projective.

3.4. Corollary. [14, Theorem 2.10] The following are equivalent for a ring R:
(1) R is a right FGF ring.
(2) Every injective right R-module is finitely projective.
(3) The injective envelope of any finitely generated right R-module is finitely projective.

Recall that a ring R is called a right dual ring if rRlR(T ) = T for every right ideal T .

3.5. Definition. A ring R is called a right n-dual ring if rRn lRn (T ) = T for every submodule T of
the right R-module Rn. A ring R is called a right strongly dual ring if it is a right n-dual ring for
each positive integer n.

It is easy to see that a ring R is a right n-dual ring if and only if Rn/T is torsionless for every
submodule T of the right R-module Rn. The following theorem is partly inspired by [9, Corollary
4.3] .

3.6. Theorem. The following are equivalent for a left n-Π-coherent ring R:
(1) R is a right n-GF ring.
(2) Every right R-module has a monic n-projective preenvelope.
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(3) Every n-generated right R-module has a monic n-projective preenvelope.
(4) Every n-generated right R-module has a monic projective preenvelope.
(5) R is a right n-dual ring.

Proof. (1) ⇒ (2). Let M be any right R-module. Since R is left n-Π-coherent, by Theorem 2.16,
M has an n-projective preenvelope f : M → P. Since R is a right n-GF ring, by Proposition 3.2,
E(M) is n-projective. Let ι : M → E(M) be the inclusion map. Then there exists a homomorphism
g : P→ E(M) such that ι = g f , and hence f is monic.

(2)⇒ (3) is trivial.
(3) ⇒ (4). Let M be an n-generated right R-module. Then M has a monic n-projective preen-

velope f : M → P by (3). Thus, by Theorem 2.1(4), there exist a finitely generated free right
R-module F, a monomorphism g : M → F and a homomorphism h : F → P such that f = hg.
Now let P′ be a projective right R-module and ϕ be a homomorphism from M to P′. Then there
exists a homomorphism θ : P → P′ such that ϕ = θ f . Thus, θh is a homomorphism from F to P′

and ϕ = (θh)g. Therefore, g : M → F is a monic projective preenvelope of M.
(4) ⇒ (5). Let T be any submodule of the right R-module Rn. Then by (4), Rn/T embeds in a

projective module, so it is torsionless, and thus rRn lRn (T ) = T .
(5) ⇒ (1). Let M be an n-generated right R-module. Then there is an exact sequence 0 →

M → RI
R for some index set I by (5). Note that RI

R is n-projective by Theorem 2.16 since R is left
n-Π-coherent, M embeds in a finitely generated free right R-module by Theorem 2.1(4), that is, R
is a right n-GF ring. �

3.7. Corollary. The following are equivalent for a left 1-Π-coherent ring R:
(1) R is a right CF ring.
(2) Every right R-module has a monic singly projective preenvelope.
(3) Every cyclic right R-module has a monic singly projective preenvelope.
(4) Every cyclic right R-module has a monic projective preenvelope.
(5) R is a right dual ring.

3.8. Corollary. The following are equivalent for a left Π-coherent ring R:
(1) R is a right FGF ring.
(2) Every right R-module has a monic finitely projective preenvelope.
(3)Every finitely generated right R-module has a monic finitely projective preenvelope.
(4) Every finitely generated right R-module has a monic projective preenvelope.
(5) R is a right strongly dual ring.

Proof. By a similar way to the proof of Theorem 3.6. �

4. n-semihereditary rings and strongly n-semihereditary rings
Recall that a ring R is called right semihereditary ([3], p.14) if every finitely generated right ideal

of R is projective, a ring R is called right PP [13] if every principal right ideal of R is projective.
Following [21, 23], a ring R is called right n-semihereditary if every n-generated right ideal of R is
projective. By [23, Theorem 1], a ring R is right n-semihereditary if and only if every n-generated
submodule of a projective right R-module is projective, so a ring R is right PP if and only if every
cyclic submodule of a projective right R-module is projective . In [22], n-semihereditary rings
are also called n-hereditary rings. Here we characterize right n-semihereditary rings in terms of
n-projective modules.

4.1. Theorem. The following are equivalent for a ring R:
(1) R is a right n-semihereditary ring.
(2) Any submodule of an n-projective right R-module is n-projective.
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Proof. (1) ⇒ (2). Suppose that N is a submodule of an n-projective right R-module P, and K be
an n-generated submodule of N. Let λ : N → P and ι : K → N be the inclusion maps. Since P is
n-projective, by Theorem 2.1(4), λι factors through a finitely generated free right R-module F, and
so K embeds in F, it follows that K is projective since R is right n-semihereditary. Therefore, N is
n-projective by Theorem 2.1(6).

(2)⇒ (1). It follows from the fact that every n-generated n-projective module is projective. �

4.2. Corollary. The following are equivalent for a ring R:
(1) R is a right PP ring.
(2) Any submodule of a singly projective right R-module is singly projective.

4.3. Corollary. The following are equivalent for a ring R:
(1) R is a right semihereditary ring.
(2) Any submodule of a finitely projective right R-module is finitely projective.

Note that a ring R is right n-semihereditary if and only every n-generated submodule of a projec-
tive right R-module is projective, a ring R is right semihereditary if and only every finitely generated
submodule of a projective right R-module is projective, and observe that every submodule of a pro-
jective right R-module is torsionless, we have naturally the following definition.

4.4. Definition. A ring R is called right strongly n-semihereditary if every n-generated torsionless
right R-module is projective. A ring R is called right strongly semihereditary if every finitely gen-
erated torsionless right R-module is projective. A ring R is called right strongly PP if every cyclic
torsionless right R-module is projective.

It is easy to see that a right strongly n-semihereditary ring is both right n-semihereditary and
right n-Π-coherent.

4.5. Proposition. The following are equivalent for a ring R:
(1) R is a semisimple Artinian ring.
(2) R is a right strongly PP and right dual ring.

Proof. (1)⇒ (2). It is obvious.
(2) ⇒ (1). Let I be a right ideal of R. Since R is right dual, by [17, Lemma 1.40], R/I is

torsionless. Since R is right strongly PP, R/I is projective, and so I is a direct summand. It follows
that R is a semisimple Artinian ring. �

Recall that a ring R is called left P-injective [16], if every R-homomorphism from a principal left
ideal of R to R extends to a endomorphism of R.

4.6. Proposition. Let R be a right strongly PP and left P-injective ring. Then it is a von Neumann
regular ring.

Proof. Let a ∈ R. Since R is left P-injective, by [16, Lemma 1.1], we have rRlR(aR) = aR. So, by
[17, Lemma 1.40], R/aR is torsionless. But R is right strongly PP, R/aR is projective, and thus aR
is a direct summand. It follows that R is a von Neumann regular ring. �

4.7. Remark. In [6, Example 1], Chen and Ding constructed a ring R which is left hereditary and
right P-injective, but it is not von Neumann regular. Similarly, we can construct a ring which is
right hereditary and left P-injective, but it is not von Neumann regular. So, by Proposition 4.6, we
see that right hereditary rings need not be right strongly PP, and hence right n-semihereditary rings
need not be right strongly n-semihereditary in general.

Recall that a ring R is said to be a right IF ring [12] if every injective right R-module is flat. A
ring R is said to be a right FGTF ring [10] if every finitely generated torsionless right R-module
embeds in a projective, or equivalently, in a free right R-module. We call a ring R a right n-GTF
ring if every n-generated torsionless right R-module embeds in a free right R-module. It is easy to
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see that a ring R is a right n-GTF ring if and only if every n-generated torsionless right R-module
embeds in a projective right R-module.

4.8. Theorem. The following are equivalent for a ring R :
(1) R is a right strongly n-semihereditary ring.
(2) R is right n-semihereditary and right n-GTF.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right n-semihereditary and right n-Π-coherent.

Proof. (1)⇔ (2); and (1)⇒ (3) are obvious.
(3) ⇒ (1). Let M be an n-generated torsionless right R-module. Since R is right n-Π-coherent,

M is finitely presented. Note that R is a right IF ring, by [8, Theorem 1], M is a submodule of a free
module. Since R is right n-semihereditary, every n-generated submodule of a free right R-module
is projective, so M is projective. And (1) follows. �

4.9. Corollary. The following are equivalent for a ring R :
(1) R is a right strongly PP ring.
(2) R is right PP and right 1-GTF.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right PP and right 1-Π-coherent.

4.10. Corollary. The following are equivalent for a ring R :
(1) R is a right strongly semihereditary ring.
(2) R is right semihereditary and right FGTF.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right semihereditary and right Π-coherent.

4.11. Theorem. The following are equivalent for a left n-Π-coherent ring R:
(1) R is a right strongly n-semihereditary ring.
(2) R is a right n-semihereditary ring.
(3) Any submodule of an n-projective right R-module is n-projective.
(4) Every right R-module has an epic n-projective preenvelope.
(5) Every torsionless right R-module is n-projective.
(6) Every n-generated right R-module has an epic projective preenvelope.
(7) Every n-generated right R-module has an epic n-projective preenvelope.

Proof. (1)⇒ (2) is obvious.
(5)⇒ (1) . By Corollary 2.2.
(2)⇒ (3). By Theorem 4.1.
(3) ⇒ (4). Let M be any right R-module. Since R is left n-Π-coherent, by Theorem 2.16, M

has an n-projective preenvelope f : M → P. Note that im( f ) is n-projective by (3), so M → im( f )
is an epic n-projective preenvelope. Note that for any class of right R-modules F , each epic F-
preenvelope is an envelope, we have (4).

(4) ⇒ (5). Let M be a torsionless right R-module. Then there is a monomorphism i : M → RI
R

for some index set I. Since R is left n-Π-coherent, by Theorem 2.16, RI
R is n-projective. Let

f : M → P be an epic n-projective envelope. Then there exists a homomorphism g : P → RI
R such

that i = g f . Thus f is an isomorphism, and so M is n-projective.
(3)⇒ (6). Let M be any n-generated right R-module. Since R is left n-Π-coherent, by Theorem

2.16, M has an n-projective preenvelope f : M → P. Note that im( f ) is n-projective by (3), and
n-generated n-projective module is projective, so M → im( f ) is an epic projective preenvelope, and
therefore it is an epic projective envelope.

(6)⇒ (7). By Proposition 2.7.
(7)⇒ (1). Let M be an n-generated torsionless right R-module. Then there is a monomorphism

i : M → RI
R for some index set I. Since R is left n-Π-coherent, by Theorem 2.16, RI

R is n-projective.
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By (7), there is an epic n-projective envelope f : M → P. So there exists a homomorphism
g : P → RI

R such that i = g f . Thus f is an isomorphism, and hence M is n-projective. Noting that
an n-generated n-projective module is projective, we have that M is projective. �

4.12. Corollary. The following are equivalent for a left Π-coherent ring R:
(1) R is a right strongly semihereditary ring.
(2) R is a right semihereditary ring.
(3) Any submodule of a finitely projective right R-module is finitely projective.
(4) Every right R-module has an epic finitely projective envelope.
(5) Every torsionless right R-module is finitely projective.
(6) Every finitely generated right R-module has an epic projective envelope.
(7) Every finitely generated right R-module has an epic finitely projective envelope.

Proof. By a similar way to the proof of Theorem 4.11. �

4.13. Corollary. The following are equivalent for a left 1-Π-coherent ring R:
(1) R is a right strongly PP ring.
(2) R is a right PP ring.
(3) Any submodule of a singly projective right R-module is singly projective.
(4) Every right R-module has an epic singly projective envelope.
(5) Every torsionless right R-module is singly projective.
(6) Every cyclic right R-module has an epic projective envelope.
(7) Every cyclic right R-module has an epic singly projective envelope.

4.14. Theorem. The following are equivalent for a commutative ring R:
(1) R is a strongly n-semihereditary ring.
(2) R is n-Π-coherent and n-semihereditary.
(3) R is n-Π-coherent and every submodule of an n-projective R-module is n-projective.
(4) R is n-Π-coherent and every ideal is n-projective.
(5) R is n-Π-coherent and every finitely generated ideal is n-projective.
(6) Every R-module has an epic n-projective envelope.
(7) Every n-generated R-module has an epic finitely generated projective envelope.
(8) Every n-generated R-module has an epic projective envelope.
(9) Every n-generated R-module has an epic n-projective envelope.
(10) Every torsionless R-module is n-projective.

Proof. (1)⇒ (2); (3)⇒ (4)⇒ (5); and (7)⇒ (8) are obvious.
(2)⇒ (1). By Theorem 4.11.
(2)⇒ (3). By Theorem 4.1.
(5)⇒ (2). By Corollary 2.2.
(3)⇒ (6). By Theorem 4.11.
(6)⇒(7). Let M be an n-generated right R-module. Then by (6), M has an epic n-projective

envelope f : M → P. By Theorem 2.1, f factors through a finitely generated free right R-module
F, that is, there exist g : M → F and h : F → P such that f = hg. Since F is n-projective, there
exists ϕ : P → F such that g = ϕ f . So f = (hϕ) f , and hence hϕ = 1P since f is epic. Hence, P is
isomorphic to a direct summand of F, and thus P is finitely generated projective.

(8)⇒ (9). By Proposition 2.7.
(9)⇒(1). Assume (9). Then it is clear that R is n-Π-coherent by Theorem 2.16 (3). So, by

Theorem 4.11(7), R is a strongly n-semihereditary ring.
(2), (6)⇒ (10). By Theorem 4.11.
(10)⇒ (1). By Corollary 2.2. �
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