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Abstract

Let n be a fixed positive integer. A ring R is called left n-I1- coherent if every n-
generated torsionless left R-module is finitely presented, some characterizations
and applications of n-II-coherent rings are obtained.
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1. Introduction

Recall that a left R-module M is called torsionless if M can be embedded into some direct
product of gxR, or equivalently, if the natural map i : M — M** is monic, where M* denotes
Homg(M, R). A ring R is called left [1-coherent [2] if every finitely generated torsionless left R-
module is finitely presented. Clearly, a left left I1- coherent ring is left coherent, so, in [14], II-
coherent rings are also called strongly coherent rings. II- coherent rings have been studied by a
series of authors (see, for example, [2, 5, 9, 10, 14, 19]).

In this article, we extend the concept of left I1- coherent rings to left n-I1- coherent rings, we call
aring R left n-I1- coherent if every n-generated torsionless left R-module is finitely presented.

In section 2, we give a series of characterizations of left n-IT-coherent rings. As corollaries,
some characterizations of left I1- coherent rings are obtained. To characterize left n-I1- coherent
rings, we shall study n-projective modules, this concept was introduced in [22]. Moreover, by using
the concept of 1-II-coherent rings, we give a new characterization of Quasi-Frobenius rings.

In Section 3, we call a ring R right n-GF if every n-generated right R-module embeds in a free
module. n-GF rings are characterized by n-projective modules, conditions under which left n-I1-
coherent rings are right n-GF rings are given. As corollaries, conditions under which left [1-coherent
(resp., left 1-IT-coherent) rings are right FGF (resp., right CF) rings are given.

A ring R is called right n-semihereditary [23] if every n-generated right ideal of R is projective.
By [23, Theorem 1], a ring R is right n-semihereditary if and only if every n-generated submod-
ule of a projective right R-module is projective. In Section 4 , we call a ring R right strongly
n-semihereditary if every n-generated torsionless right R-module is projective. n-semihereditary
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rings are characterized by n-projective modules, conditions under which right IF rings are right
strongly n-semihereditary rings are given, and conditions under which left n-I1- coherent rings are
right n-semihereditary rings are given too. As corollaries, some new characterizations of PP rings
and semihereditary rings are given, conditions under which left [1-coherent (resp., left 1-I1- coher-
ent) rings are right semihereditary (resp., right PP) rings are given. Furthermore , by using n-I1-
coherent rings and n-projective modules, we give a series characterization of commutative strongly
n-semihereditary rings.

Throughout this paper, n is a positive integer, R is an associative ring with identity, and all mod-
ules considered are unitary. In general, for a set S, we write S” for the set of all formal 1 X n
matrices whose entries are elements of S, and S, for the set of all formal n X 1 matrices whose
entries are elements of §. Let N be a left R-module, X € N, and A C R". Then we denote
ry,(A) ={u €N, :au=0,Yac Ay andIzp:(X) ={a € R" : ax = 0,Vx € X}.

2. n-II- coherent rings

Recall that a right R-module M is called finitely projective (resp., singly projective) [1] if for
every epimorphism f : N — M and any homomorphism g : C — M with C finitely generated
(resp., cyclic) right R-module, there exists 4 : C — N such that g = fh . In [22], Zhu extended the
two concepts to n-projective modules. Following [22], a right R-module M is called n-projective
if for any epimorphism f : N — M and for every n-generated submodule M, of M, there exists a
homomorphism g : My — N such that fg is the identity map of M,.

The following Theorem will be used frequently in the sequel.

2.1. Theorem. The following are equivalent for a right R-module M:

(1) M is n-projective.

(2) For every epimorphism f : N — M and any homomorphism g : C — M with C an n-
generated right R-module, there exists h : C — N such that g = fh.

(3) For any n-generated right R-module N and any homomorphism f : N — M, f factors
through a finitely generated free right R-module F, that is, there exist g : N —» Fandh : F - M
such that f = hg.

(4) For any n-generated submodule N of M, the inclusion map « : N — M factors through a
finitely generated free right R-module F.

(5) For any n-generated submodule N of M, the inclusion map ¢ : N — M factors through a free
right R-module F.

(6) For any n-generated submodule N of M, the inclusion map t : N — M factors through a
finitely projective right R-module F.

(7) For any n-generated submodule N of M, the inclusion map « : N — M factors through an
n-projective right R-module P.

Proof. (1) & (2). Itis obvious.

(2) = (3). Let F; be afree module and 7 : F; — M be an epimorphism. Since M is n-projective,
there exists a homomorphism g : N — F such that f = ng. Note that N is n-generated, Im(g) is
finitely generated , so there is a finitely generated free module F such that Im(g) € F C F. Let
t: F — F, be the inclusion map and & = m.. Then 4 is a homomorphism from F to M and f = hg.

B)=4) e (5 = (6) = (7). It is obvious.

(4) = (2). Let f : N - M be an epimorphism and g : C — M be any homomorphism, where C
is an n-generated right R-module. Then Im(g) is n-generated. By (4), the inclusion ¢ : Im(g) - M
factors through a finitely generated free right R-module F, i.e., there exist ¢ : Im(g) — F and
Y 1 F — M such that ¢ = . Since F is projective, there exists a homomorphism 6 : F — N such
that ¢ = f6. Now write h = Oypg, then h is a homomorphism from C to N, and g = (g = Ypg =
(f60)¢g = fh. Thus (2) holds.
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(7) = (5). Let N be an n-generated submodule of M, and ¢ : N — M be the inclusion map. By
(7), there exist an n-projective right R-module P, a homomorphism @ : N — P and a homomor-
phism 8 : P — M such that: = Ba. Let 7 : F — P be an epimorphism, here F is a free module.
Since P is n-projective, there exists a homomorphism g : N — F such that « = ng. Now write
h = Br. Then h € Homg(F, M) and ¢ = hg. m]

2.2. Corollary. Every n-generated n-projective module is projective.

2.3. Corollary. The following are equivalent for a right R-module M:

(1) M is finitely projective.

(2) For any epimorphism f : N — M and for every finitely generated submodule M of M, there
exists a homomorphism g : My — N such that fg is the identity map of M.

(3) For any finitely generated right R-module N and any homomorphism f : N — M, f factors
through a finitely generated free right R-module F, that is, there exist g : N - Fandh: F - M
such that f = hg.

(4) For any finitely generated submodule N of M, the inclusion map « : N — M factors through
a finitely generated free right R-module F.

(5) For any finitely generated submodule N of M, the inclusion map ¢ : N — M factors through
a free right R-module F.

(6) For any finitely generated submodule N of M, the inclusion map « : N — M factors through
a finitely projective right R-module P.

2.4. Proposition. Every pure submodule of an n-projective module is n-projective.

Proof. Let M be an n-projective right R-module and M’ a pure submodule of M. Let C be an
n-generated right R-module and f be a homomorphism from C to M’. Write ¢ : M’ — M be the
inclusion map. Since M is n-projective, by Theorem 2.1, ¢f factor through a finitely generated free
right R-module F, that is, there exist g : C — F and ¢ : F — M such that ¢f = ¢g. So we have a
commutative diagram with exact rows:

c — 5 F — F/Imig) —— 0
% L [+
0 M — M = MM’

, where m; and m, are the natural epimorphisms, and ¥(x + Im(g)) = m¢(x). Since M’ is pure in
M and F/Im(g) is finitely presented, there exists a homomorphism @ : F/Im(g) — M such that
Y = mpa. Thus, by Diagram Lemma (see [18], page 53), there exists a homomorphism 4 from F to
M’ such that f = hg. Therefore, M’ is n-projective. O

2.5. Corollary. [1, Proposition 14] Every pure submodule of a finitely (or singly) projective module
is finitely (or singly) projective.

Let F be a class of right R-modules and M a right R-module. Following [11], we say that
a homomorphism ¢ : M — F where F € J is an J-preenvelope of M if for any morphism
f:M — F’ with F/ € J, thereisa g : F — F’ such that g = f. An F-preenvelope ¢ : M — F is
said to be an F-envelope if every endomorphism g : F — F such that gg = ¢ is an isomorphism. It
is easy to see that an epic JF-preenvelope is an F-envelope.

2.6. Theorem. Let F be a class of right R-modules closed under pure submodules and isomor-
phisms. Then the following statements are equivalent:

(1) F is closed under direct product.

(2) Every right R-module has an F-preenvelope.



878

Proof. (1) = (2). Let N be any right R-module. By [11, Lemma 5.3.12], there is a cardinal number
N, dependent on Card(N) and Card(R) such that for any homomorphism f : N —» F with F € F,
there is a pure submodule S of F such that f(N) € S and Card S < N,. Thus f has a factorization
N — § — F with § € J since J is closed under pure submodules. Now let {¢g}se5 be the family of
all such homomorphisms @3 : N — Sz with Card Sg < X, and Sz € . Then any homomorphism
N — F with F € J has a factorization N — S; — F for some i € B. Thus the homomorphism
N — Tlges S g induced by all g is an F-preenvelope since [5 Sp € F by (1).

(2) = (1). For any family {F},; of right R-modules in F, by hypothesis, [],; F; has an F-
preenvelope ¢ : [1,; Fi — F. Let p; : [1;e; Fi — F; be the projective. Then there exists f; : F — F;
such that p; = fip. Define ¢ : F — [];¢; Fi by ¥(x) = (fi(x)) for each x € F, then it is easy to check
that ¢ = 1. Hence [];c; F; is isomorphic to a direct summand of F, and so [[;;; F; € F . m)

2.7. Proposition. If M is an n-generated right R-module, then every projective preenvelope of M is
an n-projective preenvelope of M .

Proof. Let f : M — P be a projective preenvelope of M. Then P is clearly n-projective. And for
any n-projective right R-module P’ and any homomorphism g : M — P’, by Theorem 2.1, g factors
through a finitely generated free right R-module F, that is, there exista : M — Fandf: F — P’
such that g = B . Since f : M — P is a projective preenvelope of M, there exists a homomorphism
y: P — Fsuchthata = yf. Now let h = By. Then g = hf. So f is an n-projective preenvelope of
M. O

2.8. Corollary. (1) If M is a finitely generated right R-module, then every projective preenvelope
of M is a finitely projective preenvelope of M .

(2) If M is a cyclic right R-module, then every projective preenvelope of M is a singly projective
preenvelope of M .

Proof. (1). By a similar way to the proof of Proposition 2.7.
(2). It follows immediately from Proposition 2.7. O

Inspired by the concept of I1- coherent rings, we have the following definition.

2.9. Definition. A ring R is called left n-I1- coherent if every n-generated torsionless left R-module
is finitely presented.

Similarly, we have the concept of right n-IT-coherent rings. Clearly, a ring R is left II-coherent
if and only if it is left n-II-coherent for every positive integer n. A left (n + 1)-II-coherent ring is
left n-I1-coherent, but the converse does not hold in general.

2.10. Lemma. Let X = {«; : i € I} be a subset of R,. Then 1g:(X) = P*, where P = R,/ }ic; @iR.

Proof. Define o : 1gi(X) — P* by o(B) = fz , where f3(y) = By. Then it is easy to check that o is
a left R- isomorphism. O

Now we characterize left n-II-coherent rings as follows.

2.11. Theorem. The following statements are equivalent for a ring R:
(1) R is left n-I1-coherent.

(2)If0 - K ER M S T is an exact sequence of left R-modules, where M is n-generated and T
is torsionless, then K is finitely generated.

(3) Ign(X) is a finitely generated submodule of gR" for any subset X of R,,.

(4 For any n-generated right R-module M, the dual module M* is a finitely generated left R-
module.
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Proof. (1) = (2). Since R is left n-I1-coherent and Im(g) is an n-generated torsionless left R-
module, Im(g) is finitely presented. Note that the sequence 0 — Ker(g) » M — Im(g) — O is
exact, we have that Ker(g) is finitely generated. Thus K = Im(f) = Ker(g) is finitely generated.

(2) > (3). Let X = {a; : i € I}. Then we have an exact sequence of left R-modules 0 —
Iz (X) — R" LR , where g(B) = (Ba))ic;- By (2), Izg:(X) is a finitely generated left R-module.

(3) = (1). Let T = Rt; + - - - + Rt, be an n-generated submodule of R/, where t; = (a;j)ier. Write

a; = (ajy,++ ,ap),i € 1, X = {a; | i € I}. Then we have an exact sequence of left R-modules
00— lg(X) > R" > T — 0. By (3), Iz:(X) is finitely generated, so T is finitely presented.
(3) © (4) follows from Lemma 2.10. O

2.12. Corollary. The following statements are equivalent for a ring R:
(1) R is left I1-coherent.

(2)If0 - K i) M 5 T is an exact sequence of left R-modules, where M is finitely generated,
T is torsionless, then K is finitely generated.

(3) 1z (X) is a finitely generated submodule of gRR" for any positive integer n, any subset X of R,,.

(4) For any finitely generated right R-module M, the dual module M* is a finitely generated left
R-module.

We note that the equivalence of (1), (3) and (4) in Corollary 2.12 was shown in [2, Theorem
1], but the method we use in the proof of our Theorem 2.11 is different from that of [2, Theorem
1]. Following [10], a ring R is said to be a right x-ring provided that every finitely generated right
R-module has finitely generated dual, so, by Corollary 2.12, right x-rings are identified with left
[1-coherent rings.

2.13. Corollary. Let R be a right coherent left n-I1-coherent ring. Then it is a right n-I1-coherent
ring.

Proof. Let M be an n-generated torsionless right R-module. Since R is left n-II-coherent, by Theo-
rem 2.11, M* is a finitely generated left R-module, and so there exists a finitely generated free left
R-module F such that F — M* — 0 is exact, which induces an exact sequence 0 — M™ — F* .
But M is torsionless, the natural map i : M — M™ is monic, and so the sequence 0 - M — F*
is exact, it shows that M is a finitely generated submodule of a free right R-module. Note that R
is right coherent, we have that M is finitely presented by [4, Theorem 2.1]. Therefore, R is a right
n-Il-coherent ring. o

2.14. Corollary. [10, Corollary 2.5B] A right coherent left I1-coherent ring is right I1-coherent.

Following [20], a ring R is called left (m,n)-coherent if every n-generated submodule of the left
R-module R™ is finitely presented.

2.15. Example. Let K be a field , and x,y,,y,, ... be commuting indeterminates, S = K[x,y1,y2, ...]
and R = K[x?, x3,y1,y2, vees XV1, X2, ...). Then R is a subring of the domain S, so R is 1-11-coherent.
But by [20, Example 5.8], R is not (1,2)-coherent and so it is not 2-I1-coherent.

2.16. Theorem. The following are equivalent for a ring R:
(1) R is a left n-I1-coherent ring.
(2) Every n-generated right R-module has a projective preenvelope.
(3) Every n-generated right R-module has an n-projective preenvelope.
(4) Every direct product of n-projective right R-modules is n-projective.
(5) Any direct product of copies of Ry is n-projective.
(6) Every right R-module has an n-projective preenvelope.

Proof. (1) = (2). Let M be an n-generated right R-module. Since M* is finitely generated, there ex-
ists a generating set{f; € M* : j=1,2,...,m}. Define f : M — R" ; x = (fi(x), fo(x),- -+, fiu(x)), x €
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M. We shall show that f is a projective preenvelope. It is enough to show that for any positive in-

teger k and any homomorphism g : M — RF, there exists a homomorphism 4 : R” — R* such that

g = hf. Letm; : R* — R be the ith projection, i = 1,2, ..., k. Then there exist r,] €ER,j=1,2,.

such that m;g = i rijfj. Define h : R" — R*(ai,az, -+ ,am) = (Z rija;, Z rajdj, - Z rkjaj)
= 1

Then g = hf. " "

(2) = (3). By Proposition 2.7.

(3) = (4). Let {M;};c; be a family of n-projective right R-modules and N any n-generated
submodule of [[,; M;. Lett : N — [],; M; be the inclusion map and x; : [],c; M; — M, be the ith
projection. Let i € I. Since M; is n-projective, there exist a finitely generated free right R-module
F;, homomorphisms g; : N — F; and h; : F; — M, such that m;t = h;g; by Theorem 2.1(3). Note
that N has an n-projective preenvelope f : N — P by (3), and so there is ¢; : P — F; such that
gi = ¢if. Define g : P — []ie; M; by g(x) = ((hi;)(x)) . Then ¢ = gf. Thus [],; M; is n-projective
by Theorem 2.1(7).

(4) © (6). By Proposition 2.4 and Theorem 2.6.

4) = (5). Itis clear.

(5) = (1). Let M be an n-generated right R-module. For every index set /, there is a canonical
homomorphism 7 : R ® M* — (M*)! defined by 7((r;}) ® @) = (r;r). We shall show that 7 is
epic. Indeed, let (f;) € (M*)!. Define f : M — (Rg)' by f(x) = (fi(x)). Then f is a right R-
homomorphism. By (5), (Rg) is n-projective. So by Theorem 2.1, there exist a finitely generated
free right R-module R™, a homomorphism g : M — R™ and a homomorphism 4 : R™ — R! such that
f =hg. Letm : R" — R be the ith projection, p; : R" — R be the jth projection and ¢; : R — R™
the jth injection, j = 1,2,---,m. Puta; = th(l) and g; = pjg Then for anyl € [ and any

x € M, we have fi(x) = 7,f(x) = mihg(x) = n,h(z LP () = 2 hip;g(x) = ; z hj(8;(x)) =

T Z he(1)(gj(x) = m; Z aj(gj(x)), so f; = Z ni(a;)gj, and thus (f;) = T(Z a; ® g;). This shows

that T is an eplmorphlsm and so M* is a ﬁmtely generated left R-module by [11, Lemma 3.2.21].
Therefore, by Theorem 2.11, R is a left n-II-coherent ring. O

2.17. Corollary. The following are equivalent for a ring R:
(1) R is a left I1-coherent ring.
(2) Every finitely generated right R-module has a projective preenvelope.
(3) Every finitely generated right R-module has a finitely projective preenvelope.
(4) Any direct product of finitely projective right R-modules is finitely projective.
(5) Any direct product of copies of Ry is finitely projective.
(6) Every right R-module has a finitely projective preenvelope.

Proof. By a similar way to the proof of Theorem 2.16. O

We note that the equivalence of (1), (2), (3), (4) and (6) in Corollary 2.17 was shown in [9,
Corollary 3.6, Corollary 3.12 ], Corollary 3.6 and Corollary 3.12 in [9] follow from [9, Proposition
3.4] and [9, Theorem 3.10] respectively, but the way we use in the proof of our Theorem 2.16 is
different from that of [9, Proposition 3.4, Theorem 3.10].

Recall that a ring R is called Quasi-Frobenius if it is right or left self-injective and right or left
artinian, or equivalently, if it is right or left self-injective and right or left noetherian; a ring R is
called left Kasch if every simple left R-module embeds in R. At the end of this section, we give a
new characterization of Quasi-Frobenius rings by 1-II-coherent rings.

2.18. Theorem. The following are equivalent for a ring R:
(1) R is a Quasi-Frobenius ring.
(2) R is a left self-injective, left 1-11-coherent left Kasch ring.



Proof. (1) = (2) is obvious.

(2) = (1). Since R is left self-injective and left Kasch, by [17, Proposition 1.44], R = E(zR)
is a cogenerator, and so R/T is torsionless for every left ideal T of R. Note that R is left 1-II-
coherent, R/T is finitely presented, and hence T is finitely generated. Thus, R is a left noetherian
left self-injective ring, and so it is a Quasi-Frobenius ring. O

3. n-GF-rings

Recall that a ring R is called right CF [17] if every cyclic right R-module embeds in a free
module, a ring R is called right FGF [10] if every finitely generated right R-module embeds in a
free module, a ring R is called right 2-GF [7, 15] if every 2-generated right R-module embeds in
a free module. These rings have important role in the studies of Quasi-Frobenius rings. Now we
extend these concepts as follows.

3.1. Definition. A ring R is called a right n-GF ring if every n-generated right R-module embeds
in a free module.

3.2. Proposition. The following are equivalent for a ring R:
(1) R is a right n-GF ring.
(2) Every injective right R-module is n-projective.
(3) The injective envelope of any n-generated right R-module is n-projective.

Proof. (1) = (2) . Let E be an injective right R-module. Then for every epimorphism f : N — E
and any homomorphism g : C — E with C being an n-generated right R-module. By (1), there
exists a free module F and a monomorphism ¢ : C — F. So there exists a & : ' — E such that
g = I, and hence there exists a ¢ : F — N such that 1 = f¢. Thus, ¢t is a homomorphism from C
to N and g = f(¢). By Theorem 2.1, E is n-projective.

2) = (3) . Itis clear.

(3) = (1) . Let N be an n-generated right R-module. Let ¢ : N — E(N) be the inclusion map
and 7 : F — E(N) be an epimorphism, where F is a free module. Since E(N) is n-projective, there
exists a homomorphism f : N — F such that ¢ = f. It is easy to see that f is monic, and so (1)
follows. O

3.3. Corollary. The following are equivalent for a ring R:
(1) R is a right CF ring.
(2) Every injective right R-module is singly projective.
(3) The injective envelope of any cyclic right R-module is singly projective.

3.4. Corollary. [14, Theorem 2.10] The following are equivalent for a ring R:
(1) Ris a right FGF ring.
(2) Every injective right R-module is finitely projective.
(3) The injective envelope of any finitely generated right R-module is finitely projective.

Recall that a ring R is called a right dual ring if rglg(T) = T for every right ideal T'.

3.5. Definition. A ring R is called a right n-dual ring if rg Ig:(T) = T for every submodule T of
the right R-module R,. A ring R is called a right strongly dual ring if it is a right n-dual ring for
each positive integer n.

It is easy to see that a ring R is a right n-dual ring if and only if R,/T is torsionless for every
submodule T of the right R-module R,. The following theorem is partly inspired by [9, Corollary
4.3].

3.6. Theorem. The following are equivalent for a left n-I1-coherent ring R:
(1) R is a right n-GF ring.
(2) Every right R-module has a monic n-projective preenvelope.



(3) Every n-generated right R-module has a monic n-projective preenvelope.
(4) Every n-generated right R-module has a monic projective preenvelope.
(5) R is a right n-dual ring.

Proof. (1) = (2). Let M be any right R-module. Since R is left n-II-coherent, by Theorem 2.16,
M has an n-projective preenvelope f : M — P. Since R is a right n-GF ring, by Proposition 3.2,
E(M) is n-projective. Let ¢ : M — E(M) be the inclusion map. Then there exists a homomorphism
g : P — E(M) such that ¢ = gf, and hence f is monic.

(2) = (3) is trivial.

(3) = (4). Let M be an n-generated right R-module. Then M has a monic n-projective preen-
velope f : M — P by (3). Thus, by Theorem 2.1(4), there exist a finitely generated free right
R-module F, a monomorphism g : M — F and a homomorphism & : F — P such that f = hg.
Now let P’ be a projective right R-module and ¢ be a homomorphism from M to P’. Then there
exists a homomorphism 6 : P — P’ such that ¢ = f. Thus, 6k is a homomorphism from F to P’
and ¢ = (6h)g. Therefore, g : M — F is a monic projective preenvelope of M.

(4) = (5). Let T be any submodule of the right R-module R,. Then by (4), R,/T embeds in a
projective module, so it is torsionless, and thus rg 1z (T) = T.

(5) = (1). Let M be an n-generated right R-module. Then there is an exact sequence 0 —
M — R’ for some index set I by (5). Note that R is n-projective by Theorem 2.16 since R is left
n-I1-coherent, M embeds in a finitely generated free right R-module by Theorem 2.1(4), that is, R
is a right n-GF ring. O

3.7. Corollary. The following are equivalent for a left 1-I1-coherent ring R:
(1) R is a right CF ring.
(2) Every right R-module has a monic singly projective preenvelope.
(3) Every cyclic right R-module has a monic singly projective preenvelope.
(4) Every cyclic right R-module has a monic projective preenvelope.
(5) R is a right dual ring.

3.8. Corollary. The following are equivalent for a left I1-coherent ring R:
(1) R is a right FGF ring.
(2) Every right R-module has a monic finitely projective preenvelope.
(3)Every finitely generated right R-module has a monic finitely projective preenvelope.
(4) Every finitely generated right R-module has a monic projective preenvelope.
(5) R is a right strongly dual ring.

Proof. By a similar way to the proof of Theorem 3.6. O

4. n-semihereditary rings and strongly n-semihereditary rings

Recall that a ring R is called right semihereditary ([3], p.14) if every finitely generated right ideal
of R is projective, a ring R is called right PP [13] if every principal right ideal of R is projective.
Following [21, 23], aring R is called right n-semihereditary if every n-generated right ideal of R is
projective. By [23, Theorem 1], a ring R is right n-semihereditary if and only if every n-generated
submodule of a projective right R-module is projective, so a ring R is right PP if and only if every
cyclic submodule of a projective right R-module is projective . In [22], n-semihereditary rings
are also called n-hereditary rings. Here we characterize right n-semihereditary rings in terms of
n-projective modules.

4.1. Theorem. The following are equivalent for a ring R:
(1) R is a right n-semihereditary ring.
(2) Any submodule of an n-projective right R-module is n-projective.



883

Proof. (1) = (2). Suppose that N is a submodule of an n-projective right R-module P, and K be
an n-generated submodule of N. Let A : N — Pand ¢ : K — N be the inclusion maps. Since P is
n-projective, by Theorem 2.1(4), A factors through a finitely generated free right R-module F, and
so K embeds in F, it follows that K is projective since R is right n-semihereditary. Therefore, N is
n-projective by Theorem 2.1(6).

(2) = (1). It follows from the fact that every n-generated n-projective module is projective. O

4.2. Corollary. The following are equivalent for a ring R:
(1) R is a right PP ring.
(2) Any submodule of a singly projective right R-module is singly projective.

4.3. Corollary. The following are equivalent for a ring R:
(1) R is a right semihereditary ring.
(2) Any submodule of a finitely projective right R-module is finitely projective.

Note that a ring R is right n-semihereditary if and only every n-generated submodule of a projec-
tive right R-module is projective, a ring R is right semihereditary if and only every finitely generated
submodule of a projective right R-module is projective, and observe that every submodule of a pro-
jective right R-module is torsionless, we have naturally the following definition.

4.4. Definition. A ring R is called right strongly n-semihereditary if every n-generated torsionless
right R-module is projective. A ring R is called right strongly semihereditary if every finitely gen-
erated torsionless right R-module is projective. A ring R is called right strongly PP if every cyclic
torsionless right R-module is projective.

It is easy to see that a right strongly n-semihereditary ring is both right n-semihereditary and
right n-I1-coherent.

4.5. Proposition. The following are equivalent for a ring R:
(1) R is a semisimple Artinian ring.
(2) R is a right strongly PP and right dual ring.

Proof. (1) = (2). Itis obvious.

(2) = (1). Let I be a right ideal of R. Since R is right dual, by [17, Lemma 1.40], R/I is
torsionless. Since R is right strongly PP, R/I is projective, and so [ is a direct summand. It follows
that R is a semisimple Artinian ring. O

Recall that a ring R is called left P-injective [16], if every R-homomorphism from a principal left
ideal of R to R extends to a endomorphism of R.

4.6. Proposition. Let R be a right strongly PP and left P-injective ring. Then it is a von Neumann
regular ring.

Proof. Leta € R. Since R is left P-injective, by [16, Lemma 1.1], we have rglg(aR) = aR. So, by
[17, Lemma 1.40], R/aR is torsionless. But R is right strongly PP, R/aR is projective, and thus aR
is a direct summand. It follows that R is a von Neumann regular ring. O

4.7. Remark. In [6, Example 1], Chen and Ding constructed a ring R which is left hereditary and
right P-injective, but it is not von Neumann regular. Similarly, we can construct a ring which is
right hereditary and left P-injective, but it is not von Neumann regular. So, by Proposition 4.6, we
see that right hereditary rings need not be right strongly PP, and hence right n-semihereditary rings
need not be right strongly n-semihereditary in general.

Recall that a ring R is said to be a right IF ring [12] if every injective right R-module is flat. A
ring R is said to be a right FGTF ring [10] if every finitely generated torsionless right R-module
embeds in a projective, or equivalently, in a free right R-module. We call a ring R a right n-GTF
ring if every n-generated torsionless right R-module embeds in a free right R-module. It is easy to
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see that a ring R is a right n-GTF ring if and only if every n-generated torsionless right R-module
embeds in a projective right R-module.

4.8. Theorem. The following are equivalent for a ring R :
(1) R is a right strongly n-semihereditary ring.
(2) R is right n-semihereditary and right n-GTFE.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right n-semihereditary and right n-11-coherent.

Proof. (1) & (2); and (1) = (3) are obvious.

(3) = (1). Let M be an n-generated torsionless right R-module. Since R is right n-I1-coherent,
M is finitely presented. Note that R is a right IF ring, by [8, Theorem 1], M is a submodule of a free
module. Since R is right n-semihereditary, every n-generated submodule of a free right R-module
is projective, so M is projective. And (1) follows. O

4.9. Corollary. The following are equivalent for a ring R :
(1) R is a right strongly PP ring.
(2) R is right PP and right 1-GTF.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right PP and right 1-I1-coherent.

4.10. Corollary. The following are equivalent for a ring R :
(1) R is a right strongly semihereditary ring.
(2) R is right semihereditary and right FGTF.
Furthermore, if R is a right IF ring, then the above conditions are equivalent to:
(3) R is right semihereditary and right I1-coherent.

4.11. Theorem. The following are equivalent for a left n-11-coherent ring R:
(1) R is a right strongly n-semihereditary ring.
(2) R is a right n-semihereditary ring.
(3) Any submodule of an n-projective right R-module is n-projective.
(4) Every right R-module has an epic n-projective preenvelope.
(5) Every torsionless right R-module is n-projective.
(6) Every n-generated right R-module has an epic projective preenvelope.
(7) Every n-generated right R-module has an epic n-projective preenvelope.

Proof. (1) = (2) is obvious.

(5) = (1) . By Corollary 2.2.

(2) = (3). By Theorem 4.1.

(3) = (4). Let M be any right R-module. Since R is left n-II-coherent, by Theorem 2.16, M
has an n-projective preenvelope f : M — P. Note that im(f) is n-projective by (3), so M — im(f)
is an epic n-projective preenvelope. Note that for any class of right R-modules J , each epic -
preenvelope is an envelope, we have (4).

(4) = (5). Let M be a torsionless right R-module. Then there is a monomorphism i : M — Rﬁe
for some index set /. Since R is left n-Il-coherent, by Theorem 2.16, Rl is n-projective. Let
f: M — P be an epic n-projective envelope. Then there exists a homomorphism g : P — R such
that i = gf. Thus f is an isomorphism, and so M is n-projective.

(3) = (6). Let M be any n-generated right R-module. Since R is left n-I1-coherent, by Theorem
2.16, M has an n-projective preenvelope f : M — P. Note that im(f) is n-projective by (3), and
n-generated n-projective module is projective, so M — im(f) is an epic projective preenvelope, and
therefore it is an epic projective envelope.

(6) = (7). By Proposition 2.7.

(7) = (1). Let M be an n-generated torsionless right R-module. Then there is a monomorphism
i : M — R} for some index set /. Since R is left n-I1-coherent, by Theorem 2.16, RY, is n-projective.
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By (7), there is an epic n-projective envelope f : M — P. So there exists a homomorphism
g: P — R} suchthati = gf. Thus f is an isomorphism, and hence M is n-projective. Noting that
an n-generated n-projective module is projective, we have that M is projective. O

4.12. Corollary. The following are equivalent for a left I1-coherent ring R:
(1) R is a right strongly semihereditary ring.
(2) R is a right semihereditary ring.
(3) Any submodule of a finitely projective right R-module is finitely projective.
(4) Every right R-module has an epic finitely projective envelope.
(5) Every torsionless right R-module is finitely projective.
(6) Every finitely generated right R-module has an epic projective envelope.
(7) Every finitely generated right R-module has an epic finitely projective envelope.

Proof. By a similar way to the proof of Theorem 4.11. O

4.13. Corollary. The following are equivalent for a left 1-11-coherent ring R:
(1) R is a right strongly PP ring.
(2) R is a right PP ring.
(3) Any submodule of a singly projective right R-module is singly projective.
(4) Every right R-module has an epic singly projective envelope.
(5) Every torsionless right R-module is singly projective.
(6) Every cyclic right R-module has an epic projective envelope.
(7) Every cyclic right R-module has an epic singly projective envelope.

4.14. Theorem. The following are equivalent for a commutative ring R:
(1) R is a strongly n-semihereditary ring.
(2) R is n-I1-coherent and n-semihereditary.
(3) R is n-I1-coherent and every submodule of an n-projective R-module is n-projective.
(4) R is n-I1-coherent and every ideal is n-projective.
(5) R is n-I1-coherent and every finitely generated ideal is n-projective.
(6) Every R-module has an epic n-projective envelope.
(7) Every n-generated R-module has an epic finitely generated projective envelope.
(8) Every n-generated R-module has an epic projective envelope.
(9) Every n-generated R-module has an epic n-projective envelope.
(10) Every torsionless R-module is n-projective.

Proof. (1) = (2); 3) = (4) = (5); and (7) = (8) are obvious.

(2) = (1). By Theorem 4.11.

(2) = (3). By Theorem 4.1.

(5) = (2). By Corollary 2.2.

(3) = (6). By Theorem 4.11.

(6)=(7). Let M be an n-generated right R-module. Then by (6), M has an epic n-projective
envelope f : M — P. By Theorem 2.1, f factors through a finitely generated free right R-module
F, that is, there exist g : M — F and h : F — P such that f = hg. Since F is n-projective, there
exists ¢ : P — F such that g = ¢f. So f = (hy)f, and hence hy = 1p since f is epic. Hence, P is
isomorphic to a direct summand of F, and thus P is finitely generated projective.

(8) = (9). By Proposition 2.7.

9)=(1). Assume (9). Then it is clear that R is n-IlI-coherent by Theorem 2.16 (3). So, by
Theorem 4.11(7), R is a strongly n-semihereditary ring.

(2),(6) = (10). By Theorem 4.11.

(10) = (1). By Corollary 2.2. O

Acknowledgments: The author is very grateful to the referee for the helpful comments. This re-
search was supported by the Natural Science Foundation of Zhejiang Province, China (LY 18A010018).



886

References

[1]1 Azumaya, G. Finite splitness and finite projectivity, J. Algebra 106 (1) , 114-134, 1987.
[2] Camillo, V. Coherence for polynomial rings, J. Algebra 132 (1) , 72-76, 1990.
[3] Cartan, H. and Eilenberg, S. Homological algebra, Princeton : Princeton University Press 1956.
[4] Chase, S. U. Direct products of modules, Trans. Amer. Math. Soc. 97 , 457-473, 1960.
[5] Chen, J. L., Ding, N. Q. A note on existence of envelopes and covers, Bull. Austral. Math. Soc. 54 (3),
383-390, 1996.
[6] Chen, J. L., Ding, N. Q. On regularity of rings, Algebra colloq. 8 (3), 267-274, 2001.
[7]1 Chen, J. L., Li, W. X. On artiness of right CF rings, Comm. Algebra 32 (11), 4485-4494, 2004.
[8] Colby, R. R. Rings which have flat injective modules, J. Algebra 35, 239-252, 1975.
[9] Ding, N. Q., Chen, J. L. Relative coherence and preenvelopes, Manuscripta Math. 81 (3-4), 243-262, 1993.
[10] Faith, C. Embedding torsionless modules in projectives, J. Publ. Mat. 34 (2), 379-387, 1990.
[11] Enochs, E. E., Jenda, O. M. G. Relative Homological Algebra, Berlin-New York: Walter de Gruyter 2000.
[12] Jain, S. Flat and FP-injectivity, Proc. Amer. Math. Soc. 41 (2), 437-442, 1973.
[13] Jgndrup, S. p.p.rings and finitely generated flat ideals, Proc. Amer. Math. Soc. 28 (2), 431-435, 1971.
[14] Jones, M. F. Flatness and f-projectivity of torsion free modules and injective modules, Lecture Notes in
Math. 951, 94-116, 1982.
[15] Li, W. X., Chen J. L. When CF rings are artinian, J. Algebra Appl, 12 (4), 1250059, 7 pp., 2013.
[16] Nicholson, W. K., Yousif, M. E. Principally injective rings, J. Algebra 174 (1), 77-93, 1995.
[17] Nicholson, W. K., Yousif, M. F. Quasi-Frobenius Rings, Cambridge: Cambridge University Press 2003.
[18] Wisbauer, R. Foundations of Module and Ring Theory, London-Tokyo: Gordon and Breach 1991.
[19] Wang, M.Y. Some studies on I1-coherent rings, Proc. Amer. Math. Soc. 119 (1) , 71-76, 1993.
[20] Zhang , X. X., Chen, J. L. and Zhang, J. On (m, n)-injective modules and (m, n)-coherent rings, Algebra
Collog. 12 (1) , 149-160, 2005.
[21] Zhang, X. X., Chen, J. L. On n-semihereditary and n-coherent rings, Int. Electron. J. Algebra 1 (2007),
1-10.
[22] Zhu, S. L. On rings over which every flat left module is finitely projective, J. Algebra 139 (2), 311-321,
1991.
[23] Zhu, Z. M., Tan, Z. S. On n-semihereditary rings. Scientiae Mathematicae Japonicae, 62 (3), 455-459,
2005.



