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Bayesian inference for the Pareto lifetime model in
the presence of outliers under progressive
censoring with binomial removals
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Abstract

Here we have used Type II progressive censoring with random removal
for the Pareto lifetime model in the presence of outliers. The number
of units removed at each failure time follows a Binomial distribution.
The analysis is based on Bayesian approach. In the last, we have given
examples with real data.
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1. Introduction

Amin [2] developed Bayesian procedures in the context of parameter estimation and
prediction of future observations from the classical Pareto distribution. Bayes estimators
as well as Bayesian credible regions are derived for the parameters of the density function,
as well as the survival probability and hazard rate. Also she has illustrated derivation
of the predictive distribution of individual future observations. Inferences are based on
the progressive Type II censored data with random removals where the number of units
removed at each failure time follow a Binomial distribution. Analysis is carried out using
the natural conjugate prior. For more details see Arnold and Press [3] and [4], Dunsmore
and Amin [15] and [16] and Nigm and Hamdy [21].

Pareto distribution has found widespread use as a model for various socioeconomic phe-
nomena. The Pareto has also been used in reliability and lifetime modeling (see for
example Berger and Mandelbrot [6], Davis and Feldstein [8], Freiling [17] and Harris
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[18]).
We assume that the random variables (X1, X, ..., X») are such that any m of them are
distributed with probability density function

a(po)”

(1.1) fo(z;0,8,0) = sl 0<po<z, a>0,>1,0>0,
and remaining (n — m) random variables are distributed as

ca,0) = 0 <
(1.2) fi(z;000) = perr 0<0<z, a>0.

In this paper, we have derived the Bayesian estimators of parameters of the Pareto
distribution in the presence of outliers under progressive Type II censoring with random
removals where the number of units removed at each failure time follow a Binomial
distribution. At the end, we have given the examples of real data.

2. Model
The joint distribution of (X1, X2, ..., X») in the presence of m outliers is given by
f(ﬂ?l,.’lfz, "7xn;a7ﬁ’0)

ananaﬁma n n—m+1 n—m+2 n m
—(a+1
R anm | CORED DEED DRI DI | L GOk
’ i=1 A1=1 Ax=A14+1 Ap=A,,_1+1 j=1

where C(n,m) = 7 and I is the indicator function defined as

n!
m!l(n—m)
_J 1 y>0
I(y) = { 0 otherwise.

Note that from (1) and (2), marginal distribution of X is
a(B0)” - alf”
zotT I(z; — B0) + b;r‘?‘“

(3

(22)  f(zi50,8,0)=0b

I(z; —0), a>0,8>1,0>0,

where b = ™, b=1-band (X1, Xs,..., X,) are not independent (For more details see
Dixit [9], Dixit et al. [10], Dixit et al. [13], Dixit and Nasiri [14] and Dixit and Jabbari
Nooghabi [11, 12]).

Also, the survival functions respect to (1) and (2) are

(2.3)  So(z;,8,0) = <%)al(m —-p0), a>0,8>10>0,
and
(24)  Si(z;0,0) = (g)a I(x —0), a>0,0>0.

A natural joint conjugate prior for («,f) was first suggested by Lwin [20] and later
generalized by Arnold and Press [3]. The prior, called the Power Gamma prior (or
modified Lwin prior), denoted by PG(v, A, p, €) is described as follows.

(0, 0) = ﬁ(ln(u) A ()6 ey, a>0,0<0<e
(2.5) v, A\, € >0, O<6A<u.
Then
(2.6) g(a) = (In(p) — Mn(e)) au—le—a(ln(p)—)\ln(e))7 a>0,
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and

(2.7) g(0la) = xa0** e 0<f<e

Also we assume the following prior density function for parameter .

(2.8) g(ﬁ):ﬁli(d), l<B<d d>1.

Therefore

g(a, B,0) = m(ln(u) —Aln(e))Y0* a8 a>0,0<0<e 1< 8<d,
(2.9) v pe>00< e <p, d>1.

Under progressive Type II censoring, a group of n individuals are observed from time
0 and the test is terminated at the time of the rth failure. When the ith item fails (i=
1, 2,..., r — 1), k; of the surviving items are removed from the experiment (k1=0, 1,...,
n—rand k;=0, 1,...., n —r — 23;11 k;). When the rth failure is observed, the remaining
kr =n—7r— Z;;i k; surviving units are all removed. Here, we assume that when the ith
item fails (= 1, 2,..., r — 1), t; and u; of the surviving items are removed from the 'no-
outliers’ and outliers observations, respectively. Also, when the rth failure is observed,
the remaining t, = n—m — (r — s) — ;;Tl tj and up =m — s — Zj;} u; surviving
units are all removed from the ’no-outliers’ and outliers observations, respectively. So
ki = u; +t; for i=1, 2,..., r. For progressive Type II censoring with predetermined k;’s,
the extension version of the likelihood in the presence of outliers can be defined as

L(z|K=k)

rostt - 2 fa(@a)[Sa(wa)] "

@10 = S ] AeSi@ol Y - 3

ta.
Ai=1  Ag=A, 141 j=1 Ji(@a;)[S1(za;))] A

’

where the realized values are denoted by X = (X (1), X(2), ..., X)),
K= (T, U)=((T\,U1),(T>,U2), ..., (Tr—1,Ur—1)), s is the number of outliers observation
out of r, C(r,s) = #—'7«)' and the constant C is

r—1
C1 :n(n—kl—l)(n—kl —k2—2)... (n—Zkl—r—Fl) .

i=1
One should note that if we put m = 0 and s = 0, then the likelihood is reduced to
homogeneous case as in Amin [2] and Cohen [7].
Expression (12) is derived from conditioning on k; , however, in some practical situa-
tions these numbers of k; may occur at random as a result of the unexpected dropout
of experimental units. Under random removals, at the failure of an item, each of the
remaining live items will either be dropped out of the test or will continue. Each unit
acting independently of the others with a probability for each to be dropped out equal
to p. Thus, following Tse et al. [22], we assume that K; (i = 1,2,...,7 — 1), the number
of items dropped out at time X(;), assumes the following distributions:
The random variable T} follows the binomial distribution with parameters n—m— (r—s)
and p (denoted as Bin(n —m — (r — s),p)), whereas the variables T;|t1, to, ..., t;—1 follow
the Bin(n —m — (r —s) — Z;:l tj,p) distributions for ¢ = 2,3, ..., — 1, respectively.
Also, The random variable U; follows the Bin(m — s,p), whereas the variables
U;|ui,uz, ..., u;—1 follow the Bin(m — s — Z;;ll u;, p) distributions for i = 2,3,...,7 — 1,
respectively.
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Furthermore, we assume that K; is independent of X;. The likelihood function of X and
K = (T,U) can be found as

(2.11) L(z, (t,u)) = L(z|K=k) Ao,

where

Ay = P(T1 = tl) H P(Ti = t¢|T1 = t1,T2 = ta, ...,Tifl = t¢71)

r—1
X P(U1 = U1) H P(U, = ul|U1 = ul, U2 = U2, ..., U¢71 = uifl).

Therefore after substituting the values in (12) and (13) and using some algebra, we get

_ Ch rpaspga(r+37_1 t;) - —a(t;+1)—1
L Ko $,0) = Aoy 5867 O [
aYjoiua;ga i (ua;—ta;) _a(“A —ta; )
(2.12) X Z B =1 A g 2= H
Aq,...,As 7j=1
where

r—s+1

Z > X

..... Ay A1=1  A,=A,_1+1

3. Posterior distributions

In the previous section, we found the likelihood under progressive type II censoring
with binomial removals as in (14). Now, we obtain the posterior density of (a, 8, 6).
3.1. Theorem.

Posterior densities of o, 8 and 0 are

h(a, B,0|z, k)
o T —a(ti+1) - Bs—1 gaBg—1 T . —*(ua;—ta;)
31 =——"— zo Q73 e T,y T,
Bol(r +v) |[£17® A1;As El (43)
h(az, k)
—o(ua; —ta;) | 4By [ jaBg
ar+u—2u—a (6 +1) * Hg 1 ‘T(AJ) w (d - 1)
32) =2 F _ATTar o™ 7
(32) Bol(r+v) [£17® AE:,AS BsBs
a >0,
(B, k)
_ r uA;—tA; —rev
(3.3) 1 i [—Bg In(w) + In (uﬁ Bs | 1 T >+1HHJ 1w(A ) })]
' Bop ApyAs Bs ’

1< B <d,



and
h(0|z, k)
(3.4) —309 Z —{ [~Bsn(0) + B1) """ — [~BsIn(6) + B2) "7}, 0<0<w,
where
(33) Bo= Y o {[-Baln() + BT - [ Bylnw) + Ba] T,

BgBz(r+v—1)

@) = (e [Tt [0 ).

) = [t [0 ).

=1 j=1
(3.9) Bs =5+Zu,4j,
j=1

and w = min(z),€).

Proof. Applying the joint prior density of the parameters (e, 3,0) in (11) and using

(14), we have
w %) d
o k) = /0 /0 / L(z, Ko, 3, 8)g(cv B, 0)dBdads,

d
gz, ko, 0) = / L(z, kla, 8,0)g(a, 8,0)dB
1

So

<

AoCri 20! ) -
- W(ln(ﬂ)—)\ln(e)) ( x@))

i=1
- rtv -B - ti+1 2w, —ta, o aBg—1
x Y« o~ B3 Hgg(;) sl /ﬁ 6143
A1, As o1 L
H -1
T
1

( 1x(A) >:| [dans_”-

Il
—

<

o ACINTE
= Tl s (@) W) AlU)(
t+1>

o~ (

* —
y ar+u 1
Z Bg

Ay, A
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Then integrating respect to «, we get

g(z, k, 0)

/oo g(z7 k7 a’ e)da
0
AgCi A0~ 1
= Gl @ ) T A" (H”w)

1 o r uA;—ta; -
r+v—1 —B3 j—B 173 +1
3—6{/(; «a |:,u9 3d 6<|| >(|Ix(A) ):| da
=1

X
Aq,...,Ag
_ /°° o1 [ 9—Bs (H St +1> <H$(A ) >:| o
0
AgCiAT(r + v)
EﬁgﬁgggﬂMu — Xln(e)) (Hﬁ )
X Z B;el {[—B3 n(0) + B1]~""" — [~ B3 In(0) + Bg]‘*‘”} |

Ay, As

Now integrating respect to 6 imply that

g(=, k) = /Owg(m,kﬂ)d@

-~ AoCl)\F(’I’ + l/) - 1
= W(ln(u)—)ln(e)) (];[le)

*

1 “ o1 P @ o1 —r—v
X > 5376{/0 6~ " [~ B3 In() + Bi] def/o 6~ [-B3In(0) + Bs] dG}

_ ACi AT (r +v) A
- m(ln(u)—mn(e)) (1:[11(>>
1

X Z Bng(’l“Jerl)

{P*len(W)4f£h]_T_"+l**[7fhln(w)%f£h]_r_”+l}-
Ap,e, As

We know that

L(w7 k‘a7 67 9)g(a, B’ 0) )

h(a,ﬂ,0|:1:, k) = g(m k)

Thus using some elementary algebra, joint posterior density of («, 3,6) is obtained.
Also we have

d
h(a, 0l k) = /h(a,ﬁ,ewz,hw
1

S ﬁx—a(ti+1)
Bol'(r+v) |2 (i) n

1 1 r ) uA;—tA; “
r4v—1 —Bgp—B t;+1 7
= —_— E —A{a d 69 3 | | -t | |
Bol(r + v)6 BG{ {“ < KO ) ( Fa; ) )}

1, A i=1

r up . —t -«
rtv—1 -B i1 A; A
- o |:M9 3(“ (z) ><||Z<A) ]>:| -

* —o(ua;—tag)| rd
aB 1 aBg—1
S 0oBs- [H Ty }/1 pBolag
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Then
halz, k) = /h(a,é)\a:,k)d&
0
Q" | —a(ti+1) - 1 2 —a(ua;—ta;) aBg
= Bre o |0 2 5 (e, (2 =)
0 i=1 ApoAs T8 G5

X / 9°B3=1qg9.
0

So we get the marginal posterior density of « as in (16).
Further

h(0|z, k) = / h(a, 0|z, k)do
0

1 & 1 > r+v—1_ —a(—Bs3In(6)+Bj1)
= — A —_ (e} e da
BOF(r + I/)(g AlZA Bs {/0

_ /OO a7‘+1/7167a(733 1n(9)+32)da}.
0
So by evaluating the above integrals, we get the marginal posterior density of 6 as in
(18).
Finally for posterior density of 3, we have
nole k) = [ hla,s0le b
0

*

1

*

—r—v—1
r+v _ T . s up—ta.
= 520 ST |=Bsn(d) +1n | up~ 7o fo;jl | J EDI :
0B0 4 Ag i=1 j=1 7

So

*

melek) = [ nole R = T
Al A,

—r—v—1
@ — _ r . hd up.—ta.
/O 0! |:—B31n(0)+ln <u5 Bs [Hle)“} [Hlx(A;) ]]ﬂ do.
1= =

Therefore, we can obtain the posterior density of 8 as in (17).

X

4. Bayes estimators

If our loss function is squared error loss, then the posterior means of a, 8 and
0 using (16), (17) and (18) represent the appropriate Bayes estimators. Results will be
derived under Progressive Type II censoring with Binomial removals. Bayes estimators
and credible region for homogenous case of Pareto distribution (ie. m = 0 and 8 = 1)
under progressive Type II censoring and squared error loss and absolute error loss are
given in Amin [2]. Some of this material for homogenous case of Pareto distribution
was derived earlier for the particular case of Type II censoring, that is when k; = 0 for
t=1,2,...,7r—1and k, = n —r in Arnold and Press [3], [4], Dunsmore and Amin [15],
[16] and Nigm and Hamdy [21].
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4.1. Under squared error loss function. The squared loss function for parameter «
and decision rule ¢ is defined by

(4.1) L(a,0) = (6 — a)Q.
4.1. Theorem.

A) Bayes estimator of « is

R 1 B57T7V _ B477‘7V
(4.2) 6=g > ,

B) Bayes estimator of j3 is

By
s 1 *. Bg "VePBo By By
4. - 26 (—r—v1,—1 En B IO N (I
“.8) £ BOAZA B3 {(r v n(d)+B6) (T V+’B6)}’
C) Bayes estimator of 0 is
~ 1 * B37 Y
(4.4) =5 > B
Al As
B B
eBs T —7“—V—|—1,—ln(o.1)—&-E BT —r—u—i—l,—ln(w)—l—% ,
Bg B3

where By, B1, B2, Bs and Bg are defined as in (19), (20), (21), (22) and (23), respectively,
— - . ° upg.—ta .
(4.5) Bi=In (uw . [H 2y } {H z(a) D !
i=1 j=1

r

— — . : upg. —ta.
(4.6) Bs =l (uw PodPe {Hwiéf ] [Hm; D
j=1

i=1

F(a,y):/ t*" e tdt,
y

is the incomplete Gamma function (for more details see Abramowitz and Stegun [1]).
Proof.
The proof is given in the appendix.

4.2. Under Linex loss function. In this subsection, we will obtain the Bayes
estimator of the parameters o, § and 6 under Linex loss function. We know that the
Linex loss function for parameter o and decision rule ¢ is

(4.7) L(a,8) = e —¢(6—a) =1, —o0<c< oo

For ¢ > 0, the loss function L(«,d) is quite asymmetric about 0 with overestimation
being more costly than under-estimation. As |§ — a] — oo, the loss L(a,d) increases
almost exponentially when 6 — a > 0 and almost linearly when § — a < 0. For ¢ < 0, the
linearity-exponentiality phenomenon is reversed. Also, when |6 — «/| is very small, L(«, d)

. c(5—a)?
Is near ————.

4.2. Theorem.
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A) Bayes estimator of « is

1 1 * 1
4. v = ——1 _— B —r—v+1l B —r—v+1
W e e <BO(T +v-1) Alz.:A B3 B¢ [(C + Bs) (¢ + Ba) ] )

B) Bayes estimator of 3 is

=1 1 «— B
(4.9) 5—01n<BO ZA Bg),

;o1 1 <~ Br—Bs
(4.10) e—cln<BOAZA e )
JEEEEE) s
where
o —r—v - (_C)J r+v—1 EESN . ]Bl
(4.11) By = B3 ZT] eB I'|—r—v+1,—jln(w )—&—B—3 ,

—r—v = (_C)] r+rv—1 iBg
(4.13) By = Bsg —) e Be

e i JBa\ _p(_,_ JBa
{1"( r—v+1, jln(d)+BG> F( r y+1,B )}

and By, Bi, B2, Bs, Ba, Bs and Bg are defined as in (19), (20), (21), (22), (28), (29)
and (23), respectively.

Proof.

For proof refer to the appendix.

Note: One should note that Amin [2] had not found the Bayes estimator of a and 6 for
the homogenous case of the Pareto distribution under progressive censoring with binomial
removals and Linex loss function. So we can obtain them as follows.

4.3. Theorem.

A) Bayes estimator of « for homogenous case of the Pareto distribution is

- r+v Bio

4.14 =- 1

(114) a= =T (5,

B) Bayes estimator of 0 for homogenous case of the Pareto distribution is

~ 1 (n+ A)(r+v)Bi1

4.1 01 =—-1

(415) b=t (A ,
where

Bio = In(p) + Z(k + 1) In(z@)) — (n+ ) In(w),

and

o~ (n A S (=1)’TG+1)
Bll—z( B10 ) T+V+.]J Z ] |: Ja+1 .

Proof.
The proof is given in the appendix.
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4.3. Credible regions. In this subsection, we will obtain 100(1 —~)% symmetric cred-
ible region for the parameters «, 5 and 6.

4.4. Theorem.

A) By using Newton-Raphson method, the lower («r) and upper (ay) bounds of
100(1 — v)% symmetric credible region for « are obtained as follows.

1 * 1 o —r—
i 1 _ B r—v+2 B r—v+2
(4.16) Bolr+v—1) Z B3B6{ 5 4
A, As
<l By By >
and

1 * 1 r4+rv—2 1
4.17 _ -
( ) BQ(T+I/7 1) A1ZA5 B3 Bg ; I

,,,,,

T
2

)

(ayBs)'e *UPs (aUB4)l€_aUB4]
) T2
BIT By

B) By using Newton-Raphson method, the lower (1) and upper (8v) bounds of
100(1 — v)% symmetric credible region for 8 are found as follows.

1 - 1
418) — - Bi — Bgl —revtl _ gerevbl) 0
(4.18) Bo(r+v—1) AIZA B3 Bg [[ * o In(AL)] 4 ] 2’

and

*

1 —r—v —r—v
(4.19) Botrtv—1) AIZ s Babe [[Ba — Bs In(d)] 1 —[Bs— BsIn(By)] =7

2
A
C) By using Newton-Raphson method, the lower (6r) and upper (y) bounds of
100(1 — v)% symmetric credible region for 6 are obtained as follows.
1 . 1 - v ol
120)  pTTy 2, BBy (B BT By = Bl T = 5
and
. S L B Byln() " — [Br — BIn(p)] !
Bo(r+v—1) B3Bs 3 1 3 U
Al Ag
(4.21) + [Ba— BsIn(w)] " — [By — BsIn(fy)] "V} = %

where By, B1, B2, B3, Bs, Bs and Bg are defined as in (19), (20), (21), (22), (28), (29)
and (23), respectively.

Proof.

To proof see the appendix.

5. Numerical study

5.1. Simulation data. Assume that a lifetimes of n parts of electronic instruments
followed the Pareto distribution in the presence of outliers as in (1) and (2). They
are put on the test simultaneously. We observed that the first rth items are failed
and the times of failure (in hours) including the number of surviving items removed
from the process at the failure of each item named as t; (for 'no-outlier’ data) and u;
(for outliers data). At first, we have simulated the values of «, 8 and 6 from the (8),
(9) and (10), respectively, by using the following fixed values as: v = 7, p = 100,
e =50, A = 0.2 and d = 3. The simulated parameters from (8), (9) and (10) by using
1000 replications are o = 1.836382, f§ = 1.825401 and 6§ = 12.781246. Then the data
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were generated from the Pareto distribution in the presence of outliers with parameters
a = 1.836382, § = 1.825401 and 6 = 12.781246 for different values of n, m, s and
r = 6. Also data for dropouts ¢; and u; were generated from Binomial distribution as:
Ty ~ Bin(n—m—(r—s),p = 0.05), Ti[t1,t2, ..., ti-1 ~ Bin(n—m—(r—s)—>'_ t;,0.05),
Ui ~ Bin(m — s,0.05) and Uj|u1,uz,...,ui—1 ~ Bin(m — s — 23;11 u;,0.05) for i =
2,3,...,7 — 1. Therefore, repeating 1000 times, the Bayesian estimators and determinant
of the covariance matrix of estimate of the parameters are derived and shown in Table
1. The determinant is calculated from the following formula.

Var(é) Cov(d, ) Cou(a,0)

Generalized variance =| Cov(a,3) Var(3)  Cou(B,0)

Cov(a,0) Cov(B,0) Var(d)
Further, a 95% symmetric two-sided Bayes probability interval of the parameters «,
and 0 are shown in Table 2.

Table 1. Bayes estimators and the determinant
n,m,s) & B8 0 determinant a B [4 determinant
) | 2.798 | 2.270 | 1.417e+01 | 7.503e-07 5.692 | 2.394 | 1.437e+01 | 2.814e-06
) | 3.278 | 2.328 | 1.337e+01 | 4.833e-08 6.319 | 2.442 | 1.346e+01 | 2.091e-07
) | 3.433 | 2.346 | 1.313e+01 | 8.051e-09 6.529 | 2.456 | 1.318e+01 | 3.664e-08
) | 3.482 | 2.351 | 1.301e+01 | 1.678e-09 6.594 | 2.460 | 1.305e+01 | 7.937e-09
) | 3.301 | 2.507 | 1.553e+01 | 2.125e-03 6.433 | 2.586 | 1.571e+01 | 3.431e-03
) | 4.236 | 2.604 | 1.417e+01 | 7.388e-04 7.774 | 2.660 | 1.423e+01 | 1.210e-03
) | 4.503 | 2.621 | 1.366e+01 | 2.442e-04 8.198 2.673 | 1.370e+01 | 4.254e-04
) | 4.673 | 2.629 | 1.344e+01 | 8.966e-05 8.474 | 2.679 | 1.346e+01 | 1.643e-04
) | 2.948 | 2.531 | 1.580e+01 | 4.230e-04 5.919 | 2.602 | 1.608e+01 | 8.373e-04
) | 3.200 | 2.562 | 1.435e+01 | 1.138e-04 6.277 2.626 | 1.451e+01 | 2.322e-04
30,2,2) | 3.321 | 2.575 | 1.384e+01 | 4.507e-05 6.455 | 2.637 | 1.395e+01 | 9.192¢-05
)
)
)
)
)
)
)
)
)

3.421 | 2.585 | 1.357e+01 | 3.150e-05 6.608 | 2.644 | 1.364e+01 | 6.642e-05

3.163 | 2.571 | 1.703e+01 | 4.597e-03 6.270 | 2.634 | 1.733e+01 | 1.119e-02
3.486 | 2.599 | 1.502e+01 | 2.511e-03 6.801 2.657 | 1.518e+01 | 8.164e-03
3.621 | 2.616 | 1.432e+01 | 1.182e-03 7.008 | 2.669 | 1.442e+01 | 3.974e-03
3.762 | 2.627 | 1.393e+01 | 8.696e-04 7.283 | 2.679 | 1.400e+01 | 4.967e-04
4.441 | 2.752 | 1.735e-+01 | 5.183e-03 8.485 | 2.779 | 1.756e+01 | 3.468¢-02
5.017 | 2.773 | 1.497e+01 | 1.508¢-03 9.757 | 2.797 | 1.509e+01 | 8.896e-03
5.583 | 2.800 | 1.434e+01 | 5.281e-04 11.470 | 2.818 | 1.441e+01 | 2.800e-03
6.277 | 2.821 | 1.402e+01 | 4.769e-04 13.491 | 2.836 | 1.406e+01 | 2.495e-03
’hat’ is to estimate under square error loss and ’tilde’ for under Linex loss.

Again, assuming that the prior parameters for the joint prior density are v = 10,
w="T75 ¢ =100, A = 0.5 and d = 3. The simulated parameters from the joint prior
density are o = 5.018414, 8 = 2.491183 and 6§ = 69.665391. Same as the previous
procedure, we have obtained the Bayesian estimates and the determinant. The results
for different values of n, m, s and r = 6 are inserted in Table 3. Also, the 95% symmetric
two-sided Bayes probability interval for the parameters are shown in Table 4 for different
values of n, m and s.



Table 2. 95% symmetric two-sided Bayes probability interval for the parameters

(n,m,s) ar ay BL BU 0r, 6'U

(10,1,1) | 0.979 | 4.114 || 1.137 | 2.956 || 10.862 | 14.051

(20,1,1) | 0.948 | 4.181 || 1.105 | 2.969 || 10.995 | 13.712

(30,1,1) | 0.957 | 4.218 || 1.106 | 2.969 || 11.321 | 13.642

(40,1,1) | 0.939 | 4.149 || 1.104 | 2.968 || 11.521 | 14.125

(10,2,1) | 1.041 | 4.335 || 1.372 | 2.967 || 11.230 | 14.027

(20,2,1) | 1.005 | 4.475 || 1.313 | 2.981 || 11.285 | 13.714

(30,2,1) | 1.009 | 4.490 || 1.311 | 2.981 || 11.526 | 13.574

(40,2,1) | 1.004 | 4.472 || 1.309 | 2.981 || 11.721 | 14.153

(10,2,2) | 1.255 | 5.469 || 1.497 | 2.986 || 13.183 | 16.493

(20,2,2) | 1.346 | 5.897 || 1.550 | 2.987 || 12.510 | 14.948

(30,2,2) | 1.436 | 6.275 || 1.600 | 2.988 || 12.850 | 14.316

(40,2,2) | 1.483 | 6.480 || 1.627 | 2.989 || 14.167 | 13.979

(10,3,2) | 1.245 | 5.390 || 1.536 | 2.987 || 14.200 | 17.624

(20,3,2) | 1.140 | 5.130 || 1.487 | 2.986 || 13.040 | 16.027

(30,3,2) | 1.061 | 4.866 || 1.444 | 2.985 || 12.782 | 15.362

(40,3,2) | 0.974 | 4.571 || 1.400 | 2.984 || 12.588 | 15.002

(10,3,3) | 1.840 | 6.608 || 2.034 | 2.993 || 14.903 | 17.638

(20,3,3) | 2.223 | 6.307 || 2.103 | 2.995 || 13.728 | 15.990

(30,3,3) | 2.299 | 5.849 || 2.126 | 2.991 || 13.568 | 15.366

(40,3,3) | 2.212 | 5.437 || 2.146 | 2.973 || 13.638 | 15.089

Table 3. Bayes estimators and the determinant

(n,m,s) a B8 0 determinant a 8 7] determinant
(10,1,1) | 10.201 | 2.711 | 8.590e+01 | 4.175e-04 5.105 | 2.637 | 3.118e+01 | 4.498e-05
(20,1,1) | 11.570 | 2.745 | 7.899e+01 | 1.500e-05 5.816 | 2.686 | 3.463e+01 | 1.247e-05
(30,1,1) | 12.073 | 2.755 | 7.620e+01 | 1.194e-06 6.062 | 2.702 | 3.700e+01 | 3.727e-06
(40,1,1) | 12.167 | 2.757 | 7.465e+01 | 1.014e-06 6.111 | 2.704 | 3.869e+01 | 2.532e-06
(10,2,1) | 11.640 | 1.896 | 9.514e+01 | 1.387e-02 5.732 | 1.886 | 3.265e+01 | 4.157e-02
(20,2,1) | 13.767 | 1.907 | 8.552e+01 | 3.656e-03 6.745 | 1.898 | 3.677e+01 | 2.457e-03
(30,2,1) | 14.259 | 1.907 | 8.133e+01 | 1.380e-03 6.954 | 1.898 | 3.904e+01 | 1.828e-03
(40,2,1) | 14.660 | 1.910 | 7.895e+01 | 7.044e-04 7.125 | 1.902 | 4.094e+01 | 1.139e-03
(10,2,2) | 10.051 | 1.893 | 9.532e+01 | 1.195e-03 5.052 | 1.883 | 3.019e+01 | 1.802e-04
(20,2,2) | 10.571 | 1.899 | 8.601e+01 | 6.466e-04 5.276 | 1.890 | 3.181e+01 | 5.057e-05
(30,2,2) | 11.043 | 1.904 | 8.184e+01 | 2.646e-04 5.485 | 1.895 | 3.352e+01 | 4.666e-05
(40,2,2) | 11.311 | 1.906 | 7.932e+01 | 1.039e-04 5.606 | 1.899 | 3.527e+01 | 3.914e-05
(10,3,2) | 15.022 | 1.919 | 9.124e+01 | 2.668e-01 6.681 | 1.912 | 3.393e+01 | 4.055e-03
(20,3,2) | 14.437 | 1.916 | 9.131e+01 | 2.105e-01 6.497 | 1.909 | 3.364e+01 | 3.832¢-03
(30,3,2) | 14.661 | 1.920 | 8.609e+01 | 9.803e-02 6.653 | 1.914 | 3.530e+01 | 3.726e-03
(40,3,2) | 14.348 | 1.921 | 8.298e+01 | 1.444e-02 6.619 | 1.915 | 3.673e+01 | 1.952e-03
(10,3,3) | 12.501 | 1.744 | 9.854e+01 | 3.207e-02 6.041 | 1.741 | 3.131e+01 | 9.068e-04
(20,3,3) | 17.324 | 1.759 | 9.141e+01 | 1.140e-02 7.820 | 1.757 | 3.466e+01 | 6.981e-04
(30,3,3) | 18.730 | 1.762 | 8.604e+01 | 8.963e-03 8.285 | 1.761 | 3.620e+01 | 4.294e-04
(40,3,3) | 19.364 | 1.764 | 8.301e+01 | 1.128e-03 8.528 | 1.763 | 3.761e+01 | 1.845e-04

’hat’ is to estimate under square error loss and ’tilde’ for under Linex loss.

Further, to investigate how the value of p (the removal probability) can affect on the
variability of the model parameter estimate, we have used three points of p as 0.15, 0.50
and 0.80. Then, the simulation study is used to estimate the parameters respect to p.
Estimate of the parameters and the determinant are derived for the prior parameters
a = 1.836382, § = 1.825401 and 0 = 12.781246 and different values of n, m, s and r = 6.



The results are shown in Table 5.

From the Tables 1 and 3, it has been seen that the determinant of covariance matrix of
the Bayesian estimators of the parameters «, § and 6 are decreased as n increased.

Also, according to Table 5, when 7 is fixed, in some of the cases the generalized variance
is increasing when removal probability p, increases; but when n increases the generalized

variance is always decreasing.

Table 4. 95% symmetric two-sided Bayes probability interval for the parameters

(n,m,s) ar ay ﬂL ﬂU GL HU

(10,1,1) | 4.282 | 10.899 || 3.353 | 4.225 || 78.671 | 88.076
(20,1,1) | 3.606 | 9.952 2.599 | 3.625 || 75.857 | 85.175
(30,1,1) | 3.068 | 8.798 2.201 | 3.253 || 73.985 | 86.655
(40,1,1) | 2.736 | 7.986 2.004 | 3.104 || 72.978 | 87.221
(10,2,1) | 5.743 | 7.767 3.914 | 4.067 || 93.489 | 97.060
(20,2,1) | 5.597 | 10.403 || 4.337 | 4.696 || 78.463 | 90.247
(30,2,1) | 4.596 | 9.816 4.536 | 4.971 || 78.052 | 88.568
(40,2,1) | 4.016 | 9.125 4.590 | 5.099 || 76.757 | 88.261
(10,2,2) | 6.861 | 9.416 3.539 | 3.685 || 93.867 | 97.142
(20,2,2) | 6.523 | 8.772 3.817 | 3.929 || 90.899 | 92.360
(30,2,2) | 6.255 | 9.025 3.857 | 3.979 || 90.500 | 91.402
(40,2,2) | 5.859 | 8.714 3.774 | 3.936 || 89.955 | 90.935
(10,3,2) | 6.518 | 8.911 3.487 | 3.620 || 95.849 | 99.231
(20,3,2) | 6.598 | 8.708 3.733 | 3.800 || 92.209 | 93.657
(30,3,2) | 6.255 | 8.235 3.801 | 3.878 || 91.745 | 92.594
(40,3,2) | 5.798 | 8.738 3.790 | 3.884 || 91.105 | 91.837
(10,3,3) | 6.044 | 7.882 3.191 | 3.193 || 94.936 | 95.357
(20,3,3) | 5.532 | 8.309 3.179 | 3.174 || 89.987 | 89.974
(30,3,3) | 5.247 | 6.997 3.365 | 3.372 || 87.987 | 88.016
(40,3,3) | 4.980 | 7.842 3.491 | 3.500 || 87.338 | 87.381
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Table 5. Bayes estimators and the determinant

(n,m, s, p) a B [4 determinant & B 0 determinant
(20,1,1,0.15) | 2.912 | 2.284 | 1.350e+01 | 1.804e-07 5.843 | 2.406 | 1.356e+01 | 6.634e-07
(40,1,1,0.15) | 3.068 | 2.303 | 1.312e+01 | 2.162e-08 6.046 | 2.421 | 1.314e+01 | 8.386e-08
(20,1,1,0.50) | 2.364 | 2.212 | 1.347e+01 | 3.126e-07 5.125 | 2.346 | 1.353e+01 | 1.049e-06
(40,1,1,0.50) | 2.411 | 2.219 | 1.312e+01 | 5.728e-08 5.187 | 2.351 | 1.314e+01 | 1.873e-07
(20,1,1,0.80) | 2.263 | 2.198 | 1.338e+01 | 3.908e-07 4.994 | 2.334 | 1.349e+01 | 1.291e-06
(40,1,1,0.80) | 2.278 | 2.200 | 1.302e+01 | 6.485e-08 5.014 | 2.336 | 1.307e+01 | 2.015e-07
(20,2,1,0.15) | 3.382 | 2.465 | 1.420e+01 | 6.045e-04 6.535 | 2.551 | 1.425e+01 | 8.741e-04
(40,2,1,0.15) | 3.670 | 2.491 | 1.348e+01 | 1.335e-04 6.938 | 2.571 | 1.349e+01 | 2.082e-04
(20,2,1,0.50) | 2.682 | 2.383 | 1.415e+01 | 9.150e-05 5.596 | 2.489 | 1.422e-+01 | 1.544e-04
(40,2,1,0.50) | 2.679 | 2.378 | 1.347e+01 | 2.140e-05 5.586 | 2.485 | 1.349e+01 | 3.581e-05
(20,2,1,0.80) | 2.700 | 2.426 | 1.403e+01 | 7.289e-05 5.621 | 2.523 | 1.414e-+01 | 1.315e-04
(40,2,1,0.80) | 2.717 | 2.438 | 1.333e+01 | 1.611e-05 5.630 | 2.532 | 1.338e+01 | 2.428e-05
(20,2,2,0.15) | 3.303 | 2.573 | 1.426e+01 | 2.906e-05 6.432 | 2.635 | 1.435e+01 | 5.818e-05
(40,2,2,0.15) | 3.623 | 2.605 | 1.353e+01 | 5.066¢-06 6.908 | 2.660 | 1.355e+01 | 1.079¢-05
(20,2,2,0.50) | 3.078 | 2.549 | 1.415e+01 | 3.254e-05 6.102 | 2.616 | 1.4226+01 | 4.287e-05
(40,2,2,0.50) | 3.275 | 2.570 | 1.347e+01 | 3.934e-06 6.389 | 2.633 | 1.349e+01 | 7.628e-06
(20,2,2,0.80) | 2.868 | 2.522 | 1.399e+01 | 3.266e-05 5.805 | 2.594 | 1.412e-+01 | 4.810e-05
(40,2,2,0.80) | 2.950 | 2.533 | 1.327e+01 | 5.386e-06 5.917 | 2.604 | 1.336e+01 | 9.274e-06
(20,3,2,0.15) | 4.228 | 2.685 | 1.493e+01 | 2.815e-03 8.233 | 2.726 | 1.500e+01 | 2.411e-02
(40,3,2,0.15) | 4.579 | 2.705 | 1.389e+01 | 4.850e-04 8.836 | 2.742 | 1.391e+01 | 2.863e-03
(20,3,2,0.50) | 4.295 | 2.725 | 1.484e+01 | 7.479e-04 8.267 | 2.759 | 1.489¢+01 | 4.048e-03
(40,3,2,0.50) | 4.457 | 2.736 | 1.382e+01 | 1.109e-04 8.533 | 2.767 | 1.384e+01 | 4.748e-04
(20,3,2,0.80) | 3.889 | 2.710 | 1.470e+01 | 4.985e-04 7.490 | 2.746 | 1.481e+01 | 3.025e-03
(40,3,2,0.80) | 4.145 | 2.727 | 1.364e+01 | 1.231e-04 7.934 | 2.759 | 1.371e+01 | 6.751e-04
(20,3,3,0.15) | 3.493 | 1.811 | 1.480e 101 | 8.369¢-06 6.713 | 1.825 | 14926101 | 2.551e-05
(40,3,3,0.15) | 3.858 | 1.827 | 1.382e 101 | 1.198¢-06 7.272 | 1.839 | 1.386e+01 | 4.356¢06
(20,3,3,0.50) | 3.197 | 1.796 | 1.468¢ 101 | 4.435¢-06 6.281 | 1.812 | 1.479¢+01 | 1.171e-05
(40,3,3,0.50) | 3.453 | 1.808 | 1.374e+01 | 1.198¢-06 6.664 | 1.823 | 1.378¢+01 | 3.017¢-06
(20,3,3,0.80) | 2.862 | 1.777 | 1.453¢ 101 | 4.464¢-06 5.791 | 1.796 | 1.471e+01 | 1.008¢-05
(40,3,3,0.80) | 2.920 | 1.781 | 1.349¢+01 | 1.373¢-06 5.880 | 1.799 | 1.362e+01 | 3.006e-06

’hat’ is to estimate under square error loss and ’tilde’ for under Linex loss.

All the programs and the simulation codes are written by using R software.

5.2. Illustrative examples. Here we consider an example from Amin [2].

Example 1: HIV+data
Hosmer and Lemeshow [19] produced data describing the survival experience of a group
of 100 HIV+ members of a large health maintenance organization. Subjects were enrolled
in the study from 1 January 1989 to 31 December 1991. The study was completed on 31
December 1995. After a confirmed diagnosis of HIV+ members were followed until death
because of acquired immunodeficiency syndrome (AIDS) or AIDS-related complications,
until the end of the study or until the subject was lost to follow-up. According to Amin,
the data follows the Pareto distribution. We know that the HIV+ members dead by
affecting AIDS or AIDS-related problems, then it is clear that data follows the Pareto
distribution in the presence of outliers. Here the AIDS-related factors are shown the
outlier’s data. Survival times (in months) are given below. Quantities indicated with
asterisk denoted censored observations (For more details see Amin [2]).

17 17 17 17 1, 17 17 17 17 17 17 17 17 17 17 1*7 1*72727 27 27272*7 2*,2*72*72*73, 37 37 37 37 37 37 37
3,3,3%,3%,4,4,4,4,4",5,5,5,5,5,5,5,6,6,67,7,7,7,7,7,7,77,8,8,8,8,9,9,9,
10,10,10,10%, 11,11, 11,12, 12,12%, 12*, 13, 14, 15, 15, 19%, 22, 24*, 30, 31, 32, 34,

35, 36,43, 53, 54, 56*, 57, 58, 60*, 60*.
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Forn =100,m=1,r=80,s =1,u; =0, (i = 1,2,...,12) and t = (2,5,2,1,1,1,1,2,1, 1,
2,1), Bayes estimates and 95% symmetric two-sided Bayes probability interval of the
parameters are derived under the prior specification for v = 7, 4 =8, ¢ = 5, A = 1,
d = 3 and ¢ = 4 are given in Table 6 (upper value). Also, under the non-informative
prior demnsity (or v = —1, u = 1, € = 00, A = 0) for o and 0 and specified prior for S,
d = 3 and ¢ = 4, the corresponding values are given in Table 6 (lower value).

Table 6. Bayes estimator and 95% symmetric
two-sided Bayes probability interval for the parameters (m =1,s = 1)

& & ar | au B B B | Bu 0 0 0. | 6u
0.826 | 0.765 | 0.610 | 0.872 || 1.317 | 1.899 | 1.000 | 2.657 || 0.926 | 0.971 | 0.812 | 1.025
0.721 | 0.661 | 0.541 | 0.869 || 1.177 | 1.913 | 1.000 | 2.431 || 0.899 | 0.935 | 0.801 | 0.995

Upper value in each cell refers to the specified prior and lower value to the
non-informative prior, ’hat’ notation is indicated the estimation under square error loss
and ’tilde’ for estimation under Linex loss.

Further, for n = 100, m = 2, r =80, s = 1, u; = 0, (: = 1,2,...,11), w12 = 1 and
t=(2,5,2,1,1,1,1,2,1,1,1,1) Bayes estimates and 95% symmetric two-sided credible
regions of the parameters are derived under the prior specification for v = 7, p = 8§,
e =5 A=1,d =3 and ¢ = 4 are shown in Table 7 (upper value). Also, under the
non-informative prior density for o and 0 and specified prior for 8, d = 3 and ¢ = 4 the
corresponding values are given in Table 7 (lower value).

Table 7. Bayes estimator and 95% symmetric
two-sided Bayes probability interval for the parameters (m = 2,s = 1)

& & aL au B 8 8L Bu 0 0 0L 0y
0.956 | 0.816 | 0.611 | 0.986 || 1.568 | 1.873 | 1.000 | 2.203 || 0.935 | 0.981 | 0.901 | 1.103
0.905 | 0.954 | 0.712 | 0.996 || 1.669 | 1.604 | 1.000 | 2.511 || 0.595 | 0.644 | 0.315 | 1.002

Upper value in each cell refers to the specified prior and lower value to the
non-informative prior, ’hat’ notation is indicated the estimation under square error loss
and ’tilde’ for estimation under Linex loss.

Example 2:

A life test for a new insulating material used 25 specimens. The specimens were tested
simultaneously at 30 KV (considerably higher than the rated voltage of 20 KV). Fur-
ther, it is also observed that there is some noise in the voltage rate. So the data is
in the presence of outliers. The test was run until 15 of the specimens failed (under
Type II progressive censoring). In other hand, when any specimen (from first to 15th)
failed, according to the binomial distribution of dropout random variables, the corre-
sponding number of surviving items are removed from the observations (same as the pro-
cedure which is described in section 2, pages 3 and 4). The failure times were recorded
as 1.08,12.20,17.80,19.10,26.00,27.90,28.20, 32.20,35.90,43.50,44.00,45.20,45.70,46.30 and
47.80 hours.

Hereforn =25, m=1,r=15,s=1,u4; =0, (1= 1,2,...,15) and t = (0,1,1,1,1,0,1, 1,
0,0,1,1,1,0,1), we can obtain the Bayes estimates under squared and Linex loss func-
tion and 95% symmetric two-sided Bayes probability interval. The results under specified
prior density for v =7, u=8,e="5, A=1,d =3 and ¢ = 4 are given in Table 8 (upper
value). The corresponding results under the non-informative prior density for o and 6
and specified prior for 3, d = 3 and ¢ = 4 are shown in Table 8 (lower value).

Table 8. Bayes estimator and 95% symmetric
two-sided Bayes probability interval for the parameters (m =1,s = 1)
& a ar ay B B Br Bu 0 0 22 Ou
4.365 | 4.253 | 0.124 | 5.419 || 2.052 | 2.172 | 1.038 | 2.939 || 3.687 | 1.399 | 0.677 | 3.757
1.780 | 1.734 | 0.045 | 3.568 || 1.642 | 1.718 | 1.030 | 2.925 || 3.386 | 0.805 | 0.256 | 3.461
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Upper value in each cell refers to the specified prior and lower value to the
non-informative prior, ’hat’ notation is indicated the estimation under square error loss
and ’tilde’ for estimation under Linex loss.

Also, for n = 25, m = 2, r =15, s =1, u3 = 0, (: = 1,2,...,14), w15 = 1 and
t=(0,0,2,0,1,1,0,1,0,0,1,1,0,1, 1), the Bayes estimates under squared and Linex loss
function and the 95% symmetric two-sided Bayes probability interval under specified
prior density for v =7, 4y =8, =5, A=1,d =3 and ¢ = 4 are shown in Table 9 (upper
value). The corresponding values under the non-informative prior density for o and 6

and specified prior for 8, d = 3 and ¢ = 4 are inserted in Table 9 (lower value).

Table 9. Bayes estimator and 95% symmetric
two-sided Bayes probability interval for the parameters (m = 2,s = 1)

& & ar au B 8 8L Bu 0 0 0L, 0y
3.129 | 3.047 | 0.124 | 5.419 || 1.357 | 1.523 | 1.038 | 2.939 || 2.570 | 2.180 | 0.339 | 3.777
2.035 | 1.981 | 0.063 | 4.032 || 1.313 | 1.511 | 1.034 | 2.933 || 2.841 | 2.270 | 0.210 | 3.716

Upper value in each cell refers to the specified prior and lower value to the
non-informative prior, ’hat’ notation is indicated the estimation under square error loss
and ’tilde’ for estimation under Linex loss.

Further, for n = 25, m = 2, r = 15, s = 2, u; = 0, (1 = 1,2,..,15) and t =

(2,0,2,0,1,0,0,1,0,0,

1,1,0,1,1), we can obtain the Bayes estimates under squared and Linex loss function
and the 95% symmetric two-sided Bayes probability interval. The values under specified
prior density for v =7, u =8, e =5, A =1, d =3 and ¢ = 4 are shown in Table 10
(upper value). Also, the corresponding results under the non-informative prior density
for a and 6 and specified prior for 3, d = 3 and ¢ = 4 are given in Table 10 (lower value).

Table 10. Bayes estimator and 95% symmetric
two-sided Bayes probability interval for the parameters (m = 2,s = 2)

e a ar au B B BL Bu 0 0 0r, Ou
3.218 | 3.131 | 0.130 | 5.675 || 1.666 | 1.561 | 1.056 | 2.954 || 2.565 | 2.804 | 0.340 | 3.774
2.093 | 2.036 | 0.066 | 4.218 || 1.638 | 1.535 | 1.043 | 2.945 || 2.853 | 2.256 | 0.211 | 3.771

Upper value in each cell refers to the specified prior and lower value to the
non-informative prior, ’hat’ notation is indicated the estimation under square error loss
and ’tilde’ for estimation under Linex loss.
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7. Appendix

Proof of Theorem 4.1:
Case A: According to definition of squared error loss function we should find the mean
of the estimator. So

& = E(a|z, k)

_ 1 z*: 1 |:/oo ar+y—1e—aB5da _ /oo ar+u—le—aB4da
BQF(’I’ + l/) AyrA BgBG 0 0

Hence by evaluating the integrals, we get the Bayes estimator of a.
Cases B:

B

E(Blz, k)

*

1 1 ey
gOAlZASg /1 [ Be n(8) + Ba) """ dB.

yeeny

By using the following transformation
y = —Bg ln(ﬁ) + Ba

Bg ’
we have
—r—v By By
5 - 1 z*: Bs exp (36) Be vy
- BO B3 . By y ya
Ap,As —In(d)+ 55
and the Bayes estimator of 3 is obtained as in (26).
Case C:
6 = E@b|zk)
I U e o [ L
= > [~ B3 In(6) + Bi] de [—Bs In(6) + Bs] do
Bo Aq,. A Bg Lo 0
* —r—v B [eS] B oS}
= L Z Bs 637;’/ Yy~ "TVe Ydy — 6375 z7 "TYe ?dz| ,
Bo Al As Bg —ln(w)+g—é —ln(w)+g—§

using the following transformations.
—Bs31n(0) + B

Y= B,
and

L —Bs1n(0) + Bs
Therefore Bayes estimator of 6 can be easily obtained and the proof is complete.
Proof of Theorem 4.2:
Case A: According to definition of Linex loss function we have

6(0) = B(L(a,0)) = /0 ~ L(a, )h(a|, k)da

— o [T halz Rda— s e [ ab(al Bda 1.
0 0

Differentiating ¢(d) respect to §, we get

9909) _ ce® / e ““h(alz, k)da —c=0.
a5 )



905

Hence by solving the above equation respect to §, the Byes estimator of « is given by

1 oo
a = —-In (/ e ““h(ale, k)da)
c Jo

o 1 ) 1 {/OO o =2 —aletBs) g /°° a'r'+V72efa(u+B4)da} )
c BoT'(r +v) AT A, B3 Bg LJo 0

By evaluating the above integrals, the Bayes estimator of « is given in (31).

Case B:
1 a
—Eln</l e Bh(ﬂ|m,k)dﬂ>

im(Bo Z /5 (—BsIn(8) + Ba] ™" ”ecﬁcw).

.....

™
Il

By evaluating the integral, we can get the Bayes estimator of 3 in (32).

Case C:
6 = _11n</ e_cgh(0|w,k)d9)
c 0

N S 5 /e “ByIn(0) + B " Ve " do
BG

/9 —BsIn(0) + Bs] " Ve ?d0)).

Similarly, we get the Bayes estimator of 6 in (33) and the proof is finished.
Proof of Theorem 4.3:

Case A:
= flln </ e_mh(a\m,k:)da)
¢ 0

= —lln 7BIJV /O<> ot tem et Bo) gy
c L(r+v) J, ’

After evaluating, we get the Bayes estimator of « in (37).
Case B:

6, LS (/ e h(0)z, k)da)
c 0

w —r—v—1
1 In ((n +A)(r+ V)BT+V/ 6" {Bm —1In (g)} e_ced9> .
c o w
Since

0 —r—v—1 v [e%s) o n+A 9 j
[310*(n+/\)1n (;)} = By ZC(”"+V+]7J) { Bio In (;)} )

7=0

by = %m ((n+)\)(r+y)Bl_01 f: (HBJZO)\>jC(T+V+j7j) /Ow o [m (Zﬂje—cﬁde) .

Jj=0

Let 2 = In(£), we get

e J 0 .
Z(n—’_)\) C(T+V+j,j)/ 2e—c wexp(z)dz> .
‘ Bio —

1
6, = —cln<(n+)\)(r+u)3101
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Set
emesents) _ g (Ca)'e”
I
Then the Bayes estimator of 6 is given in (38) and the proof is complete.
Proof of Theorem 4.4:
Case A: The symmetric 100(1 — )% two-sided Bayes probability interval for o could be
easily derived from the following integrals.

ag, _ l (oo} _ l
h(a|z, k)da = 5 and h(a|z, k)do = 5"
0 ay

Hence

1 - 1 L r+v—2 —aBj /aL r+v—2 —abB
E « e do — « e ‘dalt =
BoF(T+V) AA B3 Bg {/0 0 }

We know that
ar, _ r4v—-2 l —ap Bs
/ ar+u—26—aB5da — F(T’ +v 1) |:1 _ (O[LB5) €
0

012

r+v—2 |
B5 1=0 i

So by using simple algebra, we can get (39). Also, we can find (40) by using the following
relation

/OO ar+u—2e—a35da — F(T +v— 1) T§2 (O‘UB5)le_aUB5

r+v—2 |
v B —~ I

Case B:

1 . 1 Ar —1 —r—v _
o ZA E[ B [Bs— BsIn(B)] "V dp = 2.

0
Aty Ag
Let z = B4 — BgIn(8). Then we can get (41). Also

*

=2

1 [ . —
e = / 871 [Ba— Boln(B)] " dB = 7,
0 3.Jg

Aq,...,Ag g

then similarly we can get (42).
Case C:

*

1 L[ [% - g}
= > = / 0~'[B, — BsIn(0)] " ""do —/ 0~'[By — BsIn(0)] " "Vdo| = L.
Bo , =, Bo Lo o 2

yeeey

Let z1 = B1 — B3In(f) and 22 = B2 — B3 In(6). So

1 1 B1—B3In(0r,) o Bo—Bs In(0p,) o ~
— 21 delf/ 2Zy ' Vdz| = <.
Bo , ZA' —BgBs /0 ! 0 2 2

Then, we can get (43). Also

i . i « —1 _ —r—v _ « —1 _ —r—v 71
B AlZAS B Ugue [B1 — BsIn(0)] """ d6 9,]9 (B2 — BsIn(0)] d@}_?

With the same transformation in (43), we can find (44) and the proof is finished.



