An alternative item sum technique for improved estimators of population mean in sensitive surveys

Zawar Hussain* ${ }^{\dagger}$, Naila Shabbir ${ }^{\ddagger}$ and Javid Shabbir ${ }^{\S}$

Abstract

The item sum technique (IST) was developed for the measurement of quantitative sensitive variables. This method is closely related to the unmatched count technique (UCT), which was developed to measure the proportion of dichotomous sensitive items in a human population surveys. In this article, firstly, we proposed an improved IST which has a fruitful advantage that it does not require two subsamples as in usual IST and there is also no need of finding optimum subsample sizes. We derived the mean and variance of the proposed estimator and compare it with the usual IST both theoretically and numerically. Secondly, we suggest some alternative family of estimators of the population mean of sensitive variable and compare them with estimator, based on the proposed one sample version of IST. Thirdly, we utilize auxiliary information in estimation of population mean, say μ_{s} of sensitive variable. It is established that the estimator based on the proposed IST is always more efficient than its usual counterpart. The estimator using second raw moment of the auxiliary variable is observed to be more efficient than the other auxiliary information based estimators, namely, the ratio, product and regression estimators. The usual and proposed ISTs are applied to estimate the average number of classes missed by the student during the last semester at the Quaid-i-Azam University. Estimated average of number of missed classes and 95% confidence intervals are reported showing that the proposed IST yields precise estimates compared to the usual IST.

Keywords: auxiliary information, item sum technique, sensitive variable, unmatched count technique.

2000 AMS Classification: 62D05

[^0]Received : 15.05.2015 Accepted: 27.09.2015 Doi: 10.15672/HJMS. 20159113160

1. Introduction

It is well understood that survey is a major instrument in most of the applied research. Surveys for obtaining information on sensitive or stigmatizing characteristics are plagued by the problem of distorted responses or refusals by respondents because it is natural tendency of humans, whenever a sensitive question is asked directly from them they hide their information. For example, most of the people prefer to hide their income, savings, tax wages and illegal characters (e.g. cheating or criminal behavior) from the society. These refusals and vague answers may cause a biased estimation of unknown population parameters, as well as increased variances of the estimates. A question arises here as to how can we get truthful answers to a sensitive or stigmatizing characteristics from respondents. To deal with this situation, Warner [39] introduced randomized response technique (RRT). The main purpose of introducing this technique was to estimate the true proportion of sensitive characteristics while protecting the privacy of respondents. This technique reduces the evasive answering bias and increases the response rate. Horvitz et al. [18], Greenberd [16], Kuk [24], Mangat and Singh [26], Mangat [27], [4], Kim and Warde [23], Chang et al. [1], Gjestvang and Singh [15], Chaudhuri [2], Mehta et al. [29], Gupta et al. [17] and many other authors suggested different modifications and theoretical investigations of the properties of the Warner [39] RRT. Although, RRT has been used in many research areas such as physical and social sciences because of its advantages, there are several difficulties and limitations associated with RRTs. Firstly, interviews that are conducted through using RRT take more time and cost to complete, than the other types of interviews. Geurts [13] discussed financial limitations of RRT. He reported that RRT requires larger sample sizes to obtain the confidence intervals comparable with the direct questioning technique. Another main problem of RRTs reported by Hubbard et al. [19] is making a decision about what kind of the randomization device would be the best for obtaining information on sensitive or stigmatizing characteristics. Chaudhuri and Christofides [3] also gave a criticism on the RRTs. According to them RRT is confined with the respondents' skill to understand and handling the device. An ingenious respondent may feel or understand that his/her response can be traced back to his/her real status, if he/she does understand the mathematical logic behind the randomization device. Because of these difficulties and limitations, alternative techniques have been suggested in the literature. Some of these include the Unmatched Count Technique (Smith, Federer and Raghavarao [35]), the Nominative technique (Miller [31]), The Three card method (Droitcour et al. [12]) and Item sum technique (Trappmann et al. [38]). These alternatives were suggested to avoid untruthful responses on sensitive questions particularly concerning personal issues or illegal acts. Now we give a brief introduction of the item count technique and its recent quantified version known as item sum technique.
1.1. The unmatched count technique. The Unmatched count technique (UCT) is a survey methodology that is designed to estimate the proportion of people in the population bearing stigmatizing characteristic. This technique was firstly introduced by Smith, Federer and Raghavarao [35], they used the term "Block Total Response Technique", Later Miller [30] further developed and empirically tested this technique. This technique is also known as the list experiment technique and item count technique (Dalton, Wimbush and Daily [7], Dalton et al. [8], Droitcour et al. [11], Coutts and Jann [6]). In this
method, the survey respondents are divided randomly into two subsamples. Each member of the first subsample is presented with the list of g non-stigmatizing (or non-key) items only and each one of the participant of the second subsample is presented with a list containing $g+1$ items, i.e., the same g non-stigmatizing items presented in the first subsample and one stigmatizing item. All stigmatizing and non-stigmatizing items have binary outcomes (e.g., 'Yes' or 'No'). Respondents in both subsamples are then asked to report only the number of 'yes' answers to the investigator. The g non-sensitive items may or may not be the same in both subsamples.

An unbiased estimator of the proportion of sensitive item(e.g. tax evasion) in the population can be estimated by the mean difference of 'yes' answers from the two random subsamples. UCT have been used in numerous studies such as racial prejudice (Kuklinski, Cobb and Gilens [25], Gilens, Sniderman and Kuklinski [14]), drug use (Droitcour et al. [11]), hate crime victimization among college students (Rayburn, Earleywine and Davison [33]), shoplifting (Tsuchiya, Hirai and Ono [37]), and attitude about immigration (Janus [22]). The Unmatched count technique has a major advantage over the randomized response technique, that no randomization device is required and the concept of counting items is relatively simple and the procedure is easy to manage in human population surveys. UCT has also disadvantages which are related to the protection of privacy. In case all $g+1$ items are applicable (or none) to a respondent of the second sample, then his/her response reveals his/her status concerning the stigmatizing characteristic and thus the issue of privacy protection arises. Coutts and Jann [6] also reported the statistical low power as its major disadvantage. According to them the estimates obtained from the UCT have typically large standard errors as compared to the estimates obtained from the RRT based on the same sample size. Another limitation of UCT is that it takes more time and cost because, in this technique, two subsamples are required to estimate population proportion of sensitive variable. Hussain et al. [21] focused on this issue and proposed an improved UCT which requires only single sample. Furthermore, it does not involve finding optimum subsample sizes. The said technique is statistically efficient and more attractive in terms of time and cost.
1.2. The item sum technique. Extending the usual UCT, Trappmann et al. [38] proposed a quantified version of UCT, named as the Item Sum Technique(IST) to estimate mean of sensitive variable. In this technique, the survey respondents are randomly divided into two independent subsamples. Each member of the first subsample is presented with the list containing $g+1$ items, with g of those related to non-sensitive characteristics $\left(T_{i}\right)$ and one related to sensitive characteristic (S). Each one of the participant of the second subsample is presented with a list containing only the g non-sensitive items. All sensitive and non-sensitive items are quantitative in nature. Respondents in both subsamples are then requested to report the total score applicable to them, without reporting the individual scores on each of the items. Although, in theory, there is no restriction on the choice of number of non-key items but Trappmann et al. [38], suggested to use one non-key(non-sensitive) item in order to improve statistical efficiency of procedure. An unbiased estimator of the population mean of sensitive item, say μ_{s}, from the IST data can be estimated by the mean difference of answers between the two random subsamples.
let Y_{j} be the reported total score of the j th respondent in the first subsample ($j=$ $\left.1,2, \ldots, n_{1}\right)$ and Z_{k} be the reported total score of the $k t h$ respondent in the second subsample ($k=1,2, \ldots, n_{2}$). Then, an unbiased estimator of population mean of sensitive variable is given by:

$$
\begin{equation*}
\hat{\mu}_{s_{1}}=\bar{y}-\bar{z}, \tag{1.1}
\end{equation*}
$$

where \bar{y} and \bar{z} are the sample means of first and second subsamples, respectively. The variance of $\hat{\mu}_{s_{1}}$ is given by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\mu}_{s_{1}}\right)=\frac{\sigma_{s}^{2}}{n_{1}}+\frac{n \sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{n_{1} n_{2}} \tag{1.2}
\end{equation*}
$$

where σ_{s}^{2} is the population variance of sensitive variable and $\sigma_{t_{i}}^{2}$ is the population variance of $i t h$ non sensitive variable. In usual IST, two subsamples are required to obtain an unbiased estimator of population mean of stigmatizing variable and finding optimum subsample sizes are also required. We focus on these issues and proposed an alternative IST which is based on one sample and does not require finding optimum subsample sizes. The proposed technique is a quantified version of UCT proposed by Hussain et al. [21].

2. Proposed item sum technique

In this section, we propose an alternative IST, avoiding the need of two subsamples. Let μ_{s} be the population mean of the sensitive variable of interest. Our purpose is to estimate μ_{s}. The procedure is described as follows.

Assume that a simple random sample of size n is drawn from the population. Each one of the participants in the sample is provided a list of g items. The $i t h$ item contains the addition of queries about a stigmatizing sensitive (S) and non-stigmatizing $\left(T_{i}\right)$ variables. The respondents are directed to report only the total score of all items, without reporting the individual scores of each item. Both the non-stigmatizing $\left(T_{i}\right)$ and a stigmatizing sensitive (S) variables are quantitative in nature(and preferably measured on the same scale). For example, respondents in the sample may be presented the following items.
(1) Last digit of your cell phone number + Number of times you smoked shisha (harmful type of tobacco) last month.
(2) Date on your birth day was + Number of times you smoked shisha last month.
(3) Last digit of your CNIC(Computerized National Identity Card) number + Number of times you smoked shisha last month.
(4) Number of hours you watched T.V last day + Number of times you smoked shisha last month.

We assume that all $\left(T_{i}\right)$ and (S) variables are unrelated to each other and the distribution of non-sensitive $\left(T_{i}\right)$ variables are known to the interviewers. It is important that the number of non-stigmatizing questions should be chosen wisely by the investigators. Although according to theory there is no restriction on the choice of the number of non-stigmatizing questions but, too short and too many questions can create a problem, related to the privacy protection of the respondents and the statistical deficiency of the technique, respectively.

Let T_{1}, \ldots, T_{g} denote the non sensitive variables and S be the sensitive variable. Let Y_{j} denote the total score of j th respondent in the sample $(j=1,2, \ldots, n)$, then mathematically, it can be written as:

$$
\begin{equation*}
Y_{j}=g S+\sum_{i=1}^{g} T_{i} \tag{2.1}
\end{equation*}
$$

Taking expectation on (2.1) we have

$$
E\left(Y_{j}\right)=g E(S)+\sum_{i=1}^{g} E\left(T_{i}\right),
$$

$$
\begin{align*}
& =g \mu_{s}+\sum_{i=1}^{g} \mu_{t_{i}} \\
& \mu_{s}=\frac{E\left(Y_{j}\right)-\sum_{i=1}^{g} \mu_{t_{i}}}{g} . \tag{2.2}
\end{align*}
$$

This suggest, defining an unbiased estimator of μ_{s} as

$$
\begin{equation*}
\hat{\mu}_{s_{P}}=\frac{\bar{y}-\sum_{i=1}^{g} \mu_{t_{i}}}{g} \tag{2.3}
\end{equation*}
$$

where $\mu_{t_{i}}$ denoting the population mean of the $i t h$ non-sensitive variable $(i=1,2, \ldots, g)$ and \bar{y} is the sample mean of reported response. The estimator $\hat{\mu}_{s_{P}}$ in (2.3), obtained through proposed IST, does not require two subsamples (as in usual IST).

The variance of the estimator $\hat{\mu}_{s_{P}}$ is given by:

$$
\begin{align*}
& \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)=\frac{\operatorname{Var}(\bar{y})}{g^{2}}=\frac{\operatorname{Var}(y)}{n g^{2}} \\
& \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)=\frac{\sigma_{s}^{2}}{n}+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{n g^{2}} \tag{2.4}
\end{align*}
$$

and when sample is drawn without replacement, the variance of $\hat{\mu}_{s_{P}}$ is given by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)=\frac{1-f}{n g^{2}}\left(g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right) \tag{2.5}
\end{equation*}
$$

where σ_{s}^{2} is the population variance of sensitive variable and $\sigma_{t_{i}}^{2}$ is the population variance of $i t h$ non sensitive variable and $f=\frac{n}{N}$.
2.1. Efficiency comparison. Here, we present efficiency comparison of the proposed estimator $\hat{\mu}_{s_{P}}$ with the estimator $\hat{\mu}_{s_{1}}$ based on the usual IST.

Consider

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\mu}_{s_{1}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \geq 0 \\
& \frac{\sigma_{s}^{2}}{n_{1}}+\frac{n \sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{n_{1} n_{2}}-\frac{\sigma_{s}^{2}}{n}-\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{n g^{2}} \geq 0 \\
& \frac{n_{2} \sigma_{s}^{2}}{n_{1} n}+\frac{\left(n^{2} g^{2}-n_{1} n_{2}\right) \sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{n n_{1} n_{2} g^{2}} \geq 0
\end{aligned}
$$

Since, all the quantities on right hand size of above inequality are strictly positive, the above inequality always holds true. Hence, we can infer that the proposed estimator $\hat{\mu}_{s_{P}}$ is always more efficient than the estimator $\hat{\mu}_{s_{1}}$.

The Percent Relative Efficiency (PRE) of $\hat{\mu}_{s_{P}}$ with respect to $\hat{\mu}_{s_{1}}$ is define as

$$
\operatorname{PRE}\left(\hat{\mu}_{s_{P}}, \hat{\mu}_{s_{1}}\right)=\frac{\operatorname{Var}\left(\hat{\mu}_{s_{1}}\right)}{\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)} \times 100
$$

Using the above definition, PRE has been worked out for the different fixed values of the parameters involved and is arranged in the Tables $1-3$ (see appendix). One may easily
observe that the proposed estimator, $\hat{\mu}_{s_{P}}$ is always more efficient than the estimator, $\hat{\mu}_{s_{1}}$.
The proposed and usual ISTs are illustrated through a practical example of estimating the average number of classes missed by the students during the last semester at Quaid-i-Azam University. We set $g=4$ and select a random sample of 100 students. For collecting data through usual IST sample was randomly divided into two equal halves. The estimate and 95% confidence interval through usual IST are 3.52 and [3.18, 3.85], respectively. The estimate and 95% confidence interval through the proposed IST are 3.28 and [3.12, 3.43], respectively. This clearly shows that estimated variance of the proposed estimator is smaller than the usual IST estimator.

3. Some alternative classes of estimators for μ_{s}

3.1. Searls' method of estimation. Motivated by searls [34], we define a family of estimators of the population mean of the sensitive variable μ_{s} as

$$
\begin{equation*}
\hat{\mu}_{s_{\lambda}}=\lambda \hat{\mu}_{s_{P}} \tag{3.1}
\end{equation*}
$$

where λ is constant to be chosen suitably by the interviewer or researcher and $\hat{\mu}_{s_{P}}$ is the proposed estimator, defined in (2.3). The bias and mean square error of $\hat{\mu}_{s_{\lambda}}$ are respectively given as:

$$
\begin{equation*}
\operatorname{Bias}\left(\hat{\mu}_{s_{\lambda}}\right)=(\lambda-1) \mu_{s} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\mu}_{s_{\lambda}}\right)=\lambda^{2} \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)+(\lambda-1)^{2} \mu_{s}^{2} \tag{3.3}
\end{equation*}
$$

Efficiency comparison. The proposed estimator $\hat{\mu}_{s_{\lambda}}$ is, relatively more efficient than the estimator $\hat{\mu}_{s_{P}}$ if

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{\mu}_{s_{\lambda}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \leq 0 \\
& \left(\lambda^{2}-1\right) \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)+(\lambda-1)^{2} \mu_{s}^{2} \leq 0
\end{aligned}
$$

It can be shown that $\operatorname{MSE}\left(\hat{\mu}_{s_{\lambda}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \leq 0$ if and only if

$$
\begin{equation*}
\frac{\mu_{s}^{2}-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{\mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}<\lambda \leq 1 \tag{3.4}
\end{equation*}
$$

where $\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)$ is given by (2.4)
Using (3.4) we have computed the ranges of λ in which suggested estimator $\hat{\mu}_{s_{\lambda}}$ is, relatively more efficient than the proposed estimator $\hat{\mu}_{s_{P}}$ for different values of (n, σ_{s}^{2}). R-package is used to find these ranges. The ranges, so obtained, are presented in the Tables 4 and 5 (see appendix).
3.1.1. Optimum estimator amongst the family of estimator $\hat{\mu}_{s_{\lambda}}$. By differentiating (3.3) with respect to λ and equating to zero, we can find optimum value of λ which minimizes the $\operatorname{MSE}\left(\hat{\mu}_{s_{\lambda}}\right)$, as:

$$
\begin{equation*}
\lambda_{o p t}=\frac{\mu_{s}^{2}}{\mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)} \tag{3.5}
\end{equation*}
$$

Thus, the optimum estimator,say $\hat{\mu}_{s_{\lambda_{o p t}}}$ is given by

$$
\begin{equation*}
\hat{\mu}_{s_{\lambda_{o p t}}}=\lambda_{o p t} \hat{\mu}_{s_{P}} \tag{3.6}
\end{equation*}
$$

Its Bias and MSE is given by

$$
\operatorname{Bias}\left(\hat{\mu}_{s_{\lambda_{o p t}}}\right)=\left(\lambda_{o p t}-1\right) \mu_{s}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\mu}_{s_{\lambda_{o p t}}}\right)=\frac{\mu_{s}^{2} \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{\mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)} . \tag{3.7}
\end{equation*}
$$

The relative efficiency of the optimum estimator $\hat{\mu}_{s_{\lambda_{o p t}}}$ with respect to proposed estimator $\hat{\mu}_{s_{P}}$ is given by

$$
\begin{aligned}
& R E=\frac{\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{\operatorname{MSE}\left(\hat{\mu}_{{\lambda^{\lambda_{o p t}}}}\right)}, \\
& R E=1+\frac{\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{\mu_{s}^{2}} .
\end{aligned}
$$

From (3.8), it is obvious that optimum estimator is always more efficient than the estimator $\hat{\mu}_{s_{P}}$.
3.2. Estimation method which utilizes the priori information. It is a well known fact that by using prior knowledge about parameter, estimation becomes more precise and efficient. Bayesian approach of estimation is an example of using the prior information in the form of prior distribution. Some times, in order to have more precise and statistically efficient estimator, we may use prior knowledge together with the sample information. Motivated by Thompson [36] and Mathur snd Singh [28], we define another estimator for μ_{s}. Let $\mu_{s_{0}}$ be the prior estimate or guessed value of the population mean of the sensitive variable μ_{s}. Then, we define a new estimator as

$$
\begin{equation*}
\hat{\mu}_{s_{k}}=K \hat{\mu}_{s_{P}}+(1-K) \mu_{s_{0}}, \quad 0<K \leq 1 \tag{3.9}
\end{equation*}
$$

where K is a constant specified by the investigator according to his/her belief in the prior estimate $\mu_{s_{0}}$. The value of K closer to 0 specifies strong belief in $\mu_{s_{0}}$ and closer to 1 indicates strong belief in μ_{s}.

The bias and mean square error of $\hat{\mu}_{s_{k}}$ are, respectively, given by:

$$
\begin{equation*}
\operatorname{Bias}\left(\hat{\mu}_{s_{k}}\right)=(1-K) \mu_{s} w, \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\mu}_{s_{k}}\right)=w^{2}(1-K)^{2} \mu_{s}^{2}+K^{2} \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \tag{3.11}
\end{equation*}
$$

where $w=\left(\frac{\mu_{s_{0}}}{\mu_{s}}-1\right)$.
Efficiency comparison. The proposed estimator $\hat{\mu}_{s_{k}}$ is relatively more efficient than the estimator $\hat{\mu}_{s_{P}}$ if

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{\mu}_{s_{k}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \leq 0 \\
& \quad=w^{2}(1-K)^{2} \mu_{s}^{2}+K^{2} \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \leq 0 .
\end{aligned}
$$

It can be shown that $\operatorname{MSE}\left(\hat{\mu}_{s_{k}}\right)-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right) \leq 0$, if and only if

$$
\begin{equation*}
w^{2}<\frac{(1+K) \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{(1-K) \mu_{s}^{2}}, \quad 0<K \leq 1 \tag{3.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{w^{2} \mu_{s}^{2}-\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{w^{2} \mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}<K \leq 1, \tag{3.13}
\end{equation*}
$$

where $\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)$ is given by (2.4)
Through R-Package, using (3.13) we have computed ranges of K in which suggested estimator is more efficient than the proposed estimator, for different values of (n and $w)$. These ranges are presented in the Tables 6-10 (see appendix).
3.2.1. Optimum estimators of $\hat{\mu}_{s_{k}}$. By differentiating (3.11) with respect to K and equating to zero, we can find optimum value of K which minimizes the $\operatorname{MSE}\left(\hat{\mu}_{s_{k}}\right)$. The optimum value of K is given by

$$
\begin{equation*}
K_{o p t}=\frac{w^{2} \mu_{s}^{2}}{w^{2} \mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)} \tag{3.14}
\end{equation*}
$$

Thus, the optimum estimator, say $\hat{\mu}_{s_{k_{o p t}}}$ is given by

$$
\begin{equation*}
\hat{\mu}_{s_{k_{o p t}}}=K_{o p t} \hat{\mu}_{s_{P}}+\left(1-K_{o p t}\right) \mu_{s_{0}} \tag{3.15}
\end{equation*}
$$

and its MSE is given by

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{\mu}_{s_{k_{o p t}}}\right)=\frac{w^{2} \mu_{s}^{2} \operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{w^{2} \mu_{s}^{2}+\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)} \tag{3.16}
\end{equation*}
$$

The relative efficiency of the optimum estimator $\hat{\mu}_{s_{k_{o p t}}}$ with respect to our proposed estimator $\hat{\mu}_{s_{P}}$ is given by

$$
R E=\frac{\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{\operatorname{MSE}\left(\hat{\mu}_{s_{k_{o p t}}}\right)}
$$

$$
\begin{equation*}
R E=1+\frac{\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)}{w^{2} \mu_{s}^{2}} \tag{3.17}
\end{equation*}
$$

From (3.17), it can be seen that, optimum estimator $\hat{\mu}_{s_{k_{o p t}}}$ is always more efficient than the proposed IST estimator $\hat{\mu}_{s_{P}}$.

4. Some alternative family of estimators, utilizing auxiliary variable

It is well known that the incorporation of auxiliary information in the estimation procedure yields efficient estimators. The use of such information is generally made through ratio, product and regression methods of estimation. [5] was the first to show the contribution of such known information, He introduced a ratio estimator of population mean. Murthy [32] introduced product method of estimation. Similarly, as in usual surveys, auxiliary information is also utilized in sensitive surveys where, our main purpose is to estimate population proportion/mean of stigmatizing attribute/variable. There are two ways of utilizing auxiliary information. Firstly it may be at the design stage and secondly at estimation stage. There are few studies, which utilizes auxiliary information in RRT at estimation stage. For example, Zaizai [40], Diana and Perri [9] and Diana and Perri [10] used auxiliary information at estimation stage. Motivated by Zaizai [40], Diana and Perri [10] and Hussain and Shabbir [20] we propose a class of estimators which utilizes the known auxiliary information. From (2.2) we have

$$
\mu_{s}=\frac{E\left(Y_{j}\right)-\sum_{i=1}^{g} \mu_{t_{i}}}{g}
$$

In order to estimate μ_{s}, we can replace $E\left(Y_{j}\right)$ by $\bar{y}_{R}, \bar{y}_{P}, \bar{y}_{l r}$ and $\bar{y}_{l m}$.
where $\bar{y}_{R}=\frac{\bar{y}}{\bar{x}} \bar{X}, \bar{y}_{P}=\frac{\bar{y}}{X} \bar{x}, \bar{y}_{l r}=\bar{y}+b[\bar{X}-\bar{x}]$, and
$\bar{y}_{l m}=\bar{y}+b_{1}[\bar{X}-\bar{x}]+b_{2}[M-m]$ and $m=n^{-1} \sum_{j=1}^{n} x^{2}=$ second raw moment of auxiliary variable. Let $q=x^{2}$, then $m=n^{-1} \sum_{j=1}^{n} q$, and $\bar{y}_{l m}=\bar{y}+b_{1}[\bar{X}-\bar{x}]+b_{2}[\bar{Q}-\bar{q}]$

Now, we study these methods of estimation one by one.
4.1. Ratio method of estimation. Replacing $E\left(Y_{j}\right)$ by \bar{y}_{R} in (2.2), a new class of estimators is given by

$$
\hat{\mu}_{s_{P 1}}=\frac{\bar{y}_{R}-\sum_{i=1}^{g} \mu_{t_{i}}}{g} .
$$

The bias and MSE of \bar{y}_{R} are given by

$$
\operatorname{Bias}\left(\bar{y}_{R}\right)=\frac{1-f}{n} \bar{Y}\left(C_{x}^{2}-\rho_{y x} C_{y} C_{x}\right),
$$

and

$$
\operatorname{MSE}\left(\bar{y}_{R}\right)=\frac{1-f}{n}\left(\sigma_{y}^{2}+R^{2} \sigma_{x}^{2}-2 R \rho_{y x} \sigma_{y} \sigma_{x}\right)
$$

where $R=\frac{\bar{Y}}{X}$. Now, the MSE of $\hat{\mu}_{s_{P 1}}$ is given by

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{\mu}_{S_{P 1}}\right)=\frac{\operatorname{MSE}\left(\bar{y}_{R}\right)}{g^{2}} \\
& \operatorname{MSE}\left(\hat{\mu}_{S_{P 1}}\right)=\frac{\frac{1-f}{n}\left[\sigma_{y}^{2}+R^{2} \sigma_{x}^{2}-2 R \rho_{y x} \sigma_{y} \sigma_{x}\right]}{g^{2}} .
\end{aligned}
$$

As we have $\sigma_{y}^{2}=g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}$, and

$$
\rho_{y x}=\frac{\rho_{s x}}{\sqrt{1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}}}
$$

we can write

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\mu}_{s_{P 1}}\right)= & \frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\mu_{t_{i}}}{\bar{X}}\right)^{2}\right. \tag{4.1}\\
& \left.-2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right]
\end{align*}
$$

where $R_{1}=\frac{\mu_{s}}{X}$.
4.2. Product method of estimation. From (2.2), Replacing $E\left(Y_{j}\right)$ by \bar{y}_{P}, a new class of estimators is given by

$$
\hat{\mu}_{s_{P 2}}=\frac{\bar{y}_{P}-\sum_{i=1}^{g} \mu_{t_{i}}}{g} .
$$

The bias and MSE of \bar{y}_{R} are given by

$$
\operatorname{Bias}\left(\bar{y}_{P}\right)=\frac{1-f}{n} \bar{Y}\left(C_{x}^{2}+\rho_{y x} C_{y} C_{x}\right),
$$

and

$$
\operatorname{MSE}\left(\bar{y}_{P}\right)=\frac{1-f}{n}\left(\sigma_{y}^{2}+R^{2} \sigma_{x}^{2}+2 R \rho_{y x} \sigma_{y} \sigma_{x}\right)
$$

where $R=\frac{\bar{Y}}{\bar{X}}$. Now, and MSE of $\hat{\mu}_{s_{P 2}}$ is given by

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right)=\frac{M S E\left(\bar{y}_{P}\right)}{g^{2}} \\
& \operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right)=\frac{\frac{1-f}{n}\left[\sigma_{y}^{2}+R^{2} \sigma_{x}^{2}+2 R \rho_{y x} \sigma_{y} \sigma_{x}\right]}{g^{2}}
\end{aligned}
$$

substituting $\sigma_{y}^{2}=g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}$ in the above equation, we get

$$
\begin{align*}
\operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right)=\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}\right.\right. & \left.+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2} \tag{4.2}\\
& \left.+2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right]
\end{align*}
$$

4.3. Regression method of estimation. As in section 4.1 and 4.2, replacing $E\left(Y_{j}\right)$ by $\bar{y}_{l r}$ in (2.2), a new family of estimators may be proposed as

$$
\hat{\mu}_{s_{P 3}}=\frac{\bar{y}_{l r}-\sum_{i=1}^{g} \mu_{t_{i}}}{g}
$$

It is understood, that the regression coefficient b may either be known or unknown. We consider both cases one by one.

Case (i): when coefficient b is known. As $\bar{y}_{l r}=\bar{y}+b[\bar{X}-\bar{x}]$, we have $\operatorname{bias}\left(\bar{y}_{l r}\right)=0$ and its variance is given by

$$
\begin{equation*}
\operatorname{Var}\left(\bar{y}_{l r}\right)=\frac{1-f}{n}\left(\sigma_{y}^{2}+b^{2} \sigma_{x}^{2}-2 b \rho_{y x} \sigma_{y} \sigma_{x}\right) . \tag{4.3}
\end{equation*}
$$

As b is a known regression coefficient, it must be

$$
\begin{equation*}
b=\frac{\sigma_{x y}}{\sigma_{x}^{2}} . \tag{4.4}
\end{equation*}
$$

it is interesting to see that $b=\frac{\sigma_{x y}}{\sigma_{x}^{2}}$ also minimizing the $\operatorname{Var}\left(\bar{y}_{l r}\right)$.
Now substituting above value of b in (4.3), the minimum variance of the estimator $\bar{y}_{l r}$ is given by

$$
\begin{aligned}
& \operatorname{Var}\left(\bar{y}_{l r}\right)_{\text {min }}=\frac{1-f}{n} \sigma_{y}^{2}\left(1-\rho_{y x}^{2}\right), \\
& \rho_{y x}=\frac{\rho_{s x}}{\sqrt{1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}}}
\end{aligned}
$$

The minimum variance of $\hat{\mu}_{s_{P 3}}$ is now given by

$$
\operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{m i n}=\frac{\operatorname{Var}\left(\bar{y}_{l l}\right)_{\min }}{g^{2}}
$$

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{\min }=\frac{\frac{1-f}{n}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right]\left[1-\frac{\rho_{s x}^{2} g^{2} \sigma_{s}^{2}}{g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}\right]}{g^{2}} . \\
& \operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{\min }=\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\rho_{s x}^{2}\right) .
\end{aligned}
$$

Case(ii): when b is unknown. As b is the regression coefficient in the regression of $y=$ $b_{o}+b x+\epsilon$, where b_{0} is constant and ϵ is random error term, so the unbiased ordinary least square estimator of b is $\hat{b}=\frac{\sigma_{x y}}{\sigma_{x}^{2}}$, which minimizes the error sum of squares. Thus, new class of estimators becomes

$$
\hat{\mu}_{s_{N 3}}=\frac{\hat{\bar{y}}_{l r}-\sum_{i=1}^{g} \mu_{t_{i}}}{g} .
$$

Following the same steps as in case (i), it can be shown that MSE of $\hat{\mu}_{s_{N 3}}$ is given by

$$
\operatorname{MSE}\left(\hat{\mu}_{s_{N 3}}\right)=\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\rho_{s x}^{2}\right) .
$$

It is clear that both the variance and MSE expressions are same in case (i) and (ii), so we do not need to consider both cases of regression coefficient separately, since the results in one case remain valid in other case.
4.4. Regression method of estimation, where second raw moment is used. From (2.2), Replacing $E\left(Y_{j}\right)$ by $\bar{y}_{l m}$, a new family of estimators is given by

$$
\hat{\mu}_{s_{P 4}}=\frac{\bar{y}_{l m}-\sum_{i=1}^{g} \mu_{t_{i}}}{g} .
$$

As we mentioned above that the regression coefficients may be either known or unknown. But the results in both cases remain same. So we do not need to consider both cases separately. We have $\operatorname{bias}\left(\bar{y}_{l m}\right)=0$ and variance of $\bar{y}_{l m}$ is given by

$$
\begin{align*}
& \operatorname{Var}\left(\bar{y}_{l m}\right)=\frac{1-f}{n}\left(\sigma_{y}^{2}+b_{1}^{2} \sigma_{x}^{2}+b_{2}^{2} \sigma_{q}^{2}-2 b_{1} \rho_{y x} \sigma_{y} \sigma_{x}-2 b_{1} \rho_{y q} \sigma_{y} \sigma_{q}\right. \tag{4.6}\\
&\left.+2 b_{1} b_{2} \rho_{x q} \sigma_{x} \sigma_{q}\right)
\end{align*}
$$

Differentiating (4.6) with respect to b_{1} and b_{2}, and equating to zero, we obtain

$$
\begin{align*}
& b_{1}=\frac{\sigma_{q}^{2} \sigma_{y x}-\sigma_{x q} \sigma_{y q}}{\sigma_{x}^{2} \sigma_{q}^{2}+\sigma_{x q}^{2}} \tag{4.7}\\
& b_{2}=\frac{\sigma_{x}^{2} \sigma_{y q}-\sigma_{x q} \sigma_{y x}}{\sigma_{x}^{2} \sigma_{q}^{2}+\sigma_{x q}^{2}} \tag{4.8}
\end{align*}
$$

Substituting optimum values of b_{1} and b_{2} in (4.6), the minimum variance of the estimator $\bar{y}_{l m}$ is given by

$$
\operatorname{Var}\left(\bar{y}_{l m}\right)_{\min }=\frac{1-f}{n} \sigma_{y}^{2}\left[1-R_{y \cdot x q}^{2}\right],
$$

where

$$
R_{y . x q}^{2}=\frac{\rho_{y x}^{2}+\rho_{y q}^{2}-2 \rho_{y x} \rho_{y q} \rho_{x q}}{1-\rho_{x q}^{2}} .
$$

Now, the minimum variance of $\hat{\mu}_{s_{P 4}}$ is given by

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{\text {min }}=\frac{\operatorname{Var}\left(\bar{y}_{l m}\right)_{\text {min }}}{g^{2}} \\
& \operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{\text {min }}=\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\frac{\rho_{s x}^{2}+\rho_{s q}^{2}-2 \rho_{s x} \rho_{s q} \rho_{x q}}{1-\rho_{x q}^{2}}\right), \\
& \text { (4.9) } \operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{\text {min }}=\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-R_{s . x q}^{2}\right) .
\end{aligned}
$$

Now, consider

$$
\begin{equation*}
\Psi^{2}+\rho_{s x}^{2}=\frac{\left(\rho_{s q}-\rho_{s x} \rho_{x q}\right)^{2}}{1-\rho_{x q}^{2}}+\rho_{s x}^{2}=\frac{\rho_{s x}^{2}+\rho_{s q}^{2}-2 \rho_{s x} \rho_{s q} \rho_{x q}}{1-\rho_{x q}^{2}}=R_{s . x q}^{2} . \tag{4.10}
\end{equation*}
$$

Thus, by (4.9) and (4.10), we get
(4.11) $\operatorname{Var}\left(\hat{\mu}_{S_{P 4}}\right)_{\text {min }}=\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\Psi^{2}-\rho_{s x}^{2}\right)$.

4.5. Efficiency comparison.

(1) From (2.5) and (4.1), we have
$\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)-\operatorname{MSE}\left(\hat{\mu}_{s_{P 1}}\right)>0$
or

$$
\begin{aligned}
& \frac{1-f}{n g^{2}}\left(g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right)-\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}\right. \\
&\left.-2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right]>0
\end{aligned}
$$

$\rho_{s x}>\frac{\sigma_{x}\left(g R_{1}+\bar{X}^{-1} \sum_{i=1}^{g} \mu_{t_{i}}\right)}{2 g \sigma_{s}}$
We infer that estimator $\hat{\mu}_{s_{P 1}}$ is more efficient than estimator $\hat{\mu}_{s_{P}}$, if the inequality (4.12) is satisfied.
(2) From (2.5) and (4.2), we have
$\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)-\operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right)>0$
or

$$
\begin{array}{r}
\frac{1-f}{n g^{2}}\left(g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right)-\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}\right. \\
\left.+2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right]>0
\end{array}
$$

$\rho_{s x}<-\frac{\sigma_{x}\left(g R_{1}+\bar{X}^{-1} \sum_{i=1}^{g} \mu_{t_{i}}\right)}{2 g \sigma_{s}}$.
We infer that estimator $\hat{\mu}_{s_{P 2}}$ is more efficient than estimator $\hat{\mu}_{s_{P}}$, if above inequality(4.13) is satisfied
(3) From (2.5) and (4.5), the estimator $\hat{\mu}_{s_{P 3}}$ is more efficient than the estimator $\hat{\mu}_{s_{P}}$ if
$\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)>\operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{\text {min }}$
$\frac{1-f}{n g^{2}}\left(g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right)>\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\rho_{s x}^{2}\right)$
$\rho_{s x}>0$.
(4) The estimator $\hat{\mu}_{s_{P 4}}$ is more efficient than the estimator $\hat{\mu}_{s_{P}}$ if
$\operatorname{Var}\left(\hat{\mu}_{s_{P}}\right)>\operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{\text {min }}$
From (2.5) and (4.9), we have
$\frac{1-f}{n g^{2}}\left(g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}\right)>\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{N_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-R_{s . x q}^{2}\right)$
(4.15) $\quad R_{s . x q}^{2}>0$.
(5) The estimator $\hat{\mu}_{s_{P 4}}$ is more efficient than the estimator $\hat{\mu}_{S_{P 3}}$ if
$\operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{m i n}-\operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{\text {min }} \geq 0$
From (4.5) and (4.11), we have

$$
\frac{1-f}{n} \sigma_{s}^{2}\left[1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\rho_{s x}^{2}\right]-\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\Psi^{2}-\rho_{s x}^{2}\right) \geq 0
$$

$\Psi^{2} \geq 0$,
which is always a non-negative quantity.
(6) The estimator $\hat{\mu}_{s_{P 4}}$ is more efficient than the estimator $\hat{\mu}_{s_{P 2}}$ if $\operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right) \geq \operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{m i n}$

From (4.2) and (4.11), we have

$$
\begin{array}{r}
\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}+2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right] \\
\\
-\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\Psi^{2}-\rho_{s x}^{2}\right) \geq 0
\end{array}
$$

$g^{2} \sigma_{s}^{2} \Psi^{2}+\left(g \sigma_{s} \rho_{s x}+\sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right)^{2} \geq 0$,
which is always true.
(7) The estimator $\hat{\mu}_{s_{P 4}}$ is more efficient than the estimator $\hat{\mu}_{s_{P 1}}$ if $\operatorname{MSE}\left(\hat{\mu}_{s_{P 1}}\right) \geq \operatorname{Var}\left(\hat{\mu}_{s_{P 4}}\right)_{m i n}$

From (4.1) and (4.11), we have

$$
\begin{gathered}
\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}-2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right] \\
-\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\Psi^{2}-\rho_{s x}^{2}\right) \geq 0
\end{gathered}
$$

$g^{2} \sigma_{s}^{2} \Psi^{2}+\left(g \sigma_{s} \rho_{s x}-\sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right)^{2} \geq 0$,
which is again always true.
(8) The estimator $\hat{\mu}_{s_{P 3}}$ is more efficient than the estimator $\hat{\mu}_{s_{P 1}}$ if $M S E\left(\hat{\mu}_{s_{P 1}}\right) \geq \operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{\min }$.

From (4.1) and (4.5) we have

$$
\begin{array}{r}
\frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}-2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right] \\
\\
-\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}}-\rho_{s x}^{2}\right) \geq 0
\end{array}
$$

$\left(g \sigma_{s} \rho_{s x}-\sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right)^{2} \geq 0$,
which is always true.
(9) The estimator $\hat{\mu}_{s_{P 3}}$ is more efficient than the estimator $\hat{\mu}_{s_{P 2}}$ if

$$
\operatorname{MSE}\left(\hat{\mu}_{s_{P 2}}\right) \geq \operatorname{Var}\left(\hat{\mu}_{s_{P 3}}\right)_{\min }
$$

From (4.2) and (4.5), we have

$$
\begin{align*}
& \frac{1-f}{n g^{2}}\left[g^{2} \sigma_{s}^{2}+\sum_{i=1}^{g} \sigma_{t_{i}}^{2}+\sigma_{x}^{2}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)^{2}+2 g \rho_{s x} \sigma_{s} \sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right] \\
& \\
& -\frac{1-f}{n} \sigma_{s}^{2}\left(1+\frac{\sum_{i=1}^{g} \sigma_{t_{i}}^{2}}{g^{2} \sigma_{s}^{2}} \rho_{s x}^{2}\right) \geq 0 \tag{4.20}\\
& \left(g \sigma_{s} \rho_{s x}+\sigma_{x}\left(g R_{1}+\frac{\sum_{i=1}^{g} \mu_{t_{i}}}{\bar{X}}\right)\right)^{2} \geq 0
\end{align*}
$$

which is always true.
One may easily see that regression method of estimation which utilized higher order moments of auxiliary variable is more efficient than other classes of estimators which utilizes auxiliary information. Furthermore, regression method of estimation is efficient than product and ratio methods of estimation.

5. Conclusion

In this article, we proposed one sample version of IST (alternative IST) to estimate the mean of a sensitive variable. The proposed IST is based on the idea of combining the sensitive item with each of the unrelated item. The main fruitful feature of this technique is that unlike the usual IST, it does not require two subsamples and finding optimum subsample sizes. It is established that the proposed estimator is better than the usual estimator of IST and it may be made more efficient if a prior guess about the population mean is available. In case when auxiliary information is available, ratio, product and regression method of estimation are considered. Through algebraic comparisons, it is concluded that the regression method of estimation utilizing the second order moment of auxiliary variable is the most efficient than all the estimators considered in this article. As an overall conclusion it is stated that when studying the sensitive variable the application of one sample version of IST (proposed estimator) is more advantageous in terms of ease in practice and providing accurate and precise estimators. The application of the proposed IST can be even more advantageous if some auxiliary information is available and regression method of estimation, utilizing the second raw moment of auxiliary information, is applied.

References

[1] Chang, H.-J., Wang, C.-L., Huang, K.-C. Using randomized response to estimate the proportion and truthful reporting probability in a dichotomous finite population, Journal of Applied Statistics 31 (5), 565-573, 2004.
[2] Chaudhuri, Arijit.Randomized response and indirect questioning techniques in surveys, CRC Press, 2010..
[3] Chaudhuri, A. and Christofides, T. C. Item count technique in estimating the proportion of people with a sensitive feature, Journal of Statistical Planning and Inference 137 (2), 589-593, 2007.
[4] Christofides, T.C. A generalized randomized response technique. Metrika, 57 (2), 195-200, 2003.
[5] Cochran,W.G. The Estimation of the Yields of the Cereal Experiments by Sampling for the Ratio of Grain to Total Produce, The Journal of Agric Science 30(2), 262275, 1940.
[6] Coutts, E. and Jann, B. Sensitive questions in online surveys: Experimental results for the randomized response technique and the unmatched count technique (UCT), Sociological Methods \& Research 40 (1), 169-193, 2011.
[7] Dalton, D.R., Wimbush, J.C. and Daily, C.M. Using the unmatched count technique (UCT) to estimate base rates for sensitive behavior, Personnel Psychology 47 (4), 817-829, 1994.
[8] Dalton, D.R., Daily, C.M. and Wimbush, J.C. Collecting sensitive data in business ethics research: A case for the unmatched count technique (UCT), Journal of Business Ethics 16(10), 1049-1057, 1997.
[9] Diana, G., \& Perri, P. F. Estimating a sensitive proportion through randomized response procedures based on auxiliary information, Statistical Papers 50 (3), 661672, 2009.
[10] Diana, G. and Perri, P. F. New Scrambled response models for estimating the mean of a sensitive character, Journal of Applied Statistics 37 (11), 1875-1890, 2010.
[11] Droitcour, J., Caspar, R. A., Hubbard, M. L., Parsley, T. L., Visscher, W., \& Ezzati, T. M. The item count technique as a method of indirect questioning: A review of its development and a case study application, Measurement errors in surveys, 185-210, 1991.
[12] Droitcour, Judith A., Eric M. Larson, and Fritz J. Scheuren. The three card method: Estimating sensitive survey items with permanent anonymity of response, in Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, Virginia 2001.
[13] Geurts, M. D. Using a randomized response research design to eliminate nonresponse and response biases in business research, Journal of the Academy of Marketing Science 8 (1-2), 83-91, 1980.
[14] Gilens, M., Sniderman, P.M. and Kuklinski, J.H. . Affirmative action and the politics of realignment, British Journal of Political Science 28 (1), 159-183, 1998.
[15] Gjestvang, C. R., \& Singh, S. A new randomized response model, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68 (3), 523-530, 2006.
[16] Greenberg, B. G., Abul-Ela, A. L. A., Simmons, W. R., \& Horvitz, D. G. The unrelated question randomized response model: Theoretical framework, Journal of the American Statistical Association 64 (326), 520-539, 1969.
[17] Gupta, S., Mehta, S., Shabbir, J., \& Dass, B. K. Generalized scrambling in quantitative optional randomized response models, Communications in Statistics-Theory and Methods 42 (22), 4034-4042, 2013.
[18] Horvitz, D.G., Shah, B.V., Simmons,W.R. (1967). The unrelated question RR model, in Proceedings of the Social Statistics Section of the American Statistical Association (pp. 65-72). Alexandria, VA: ASA.
[19] Hubbard, M. L., Casper, R. A. \& Lessler, J. T. Respondents' reactions to item count lists and randomized response, in Proceedings of the Survey Research Section, American Statistical Association, Washington, D. C., pp. 544-448, 1989.
[20] Hussain, Z., Shabbir, J. An estimation of sensitive proportion utilizing higher order moments of auxiliary variable, International Journal of Business and Social Science 2 (2), 121-125, 2011.
[21] Hussain, Z., Shah, E. A. and Shabbir, J. An alternative item count technique in sensitive surveys, Revista Colombiana de Estadistica 35 (1), 39-54, 2012.
[22] Janus, A.L. The influence of social desirability pressures on expressed immigration attitudes, Social Science Quarterly 91 (4), 928-946, 2010.
[23] Kim, J. M., and Warde, W. D. A stratified Warner's randomized response model, Journal of Statistical Planning and Inference 120 (1), 155-165, 2004.
[24] Kuk, A.Y.C. Asking sensitive questions indirectly, Biometrika 77 (2), 436-438, 1990.
[25] Kuklinski, J.H., Cobb, M.D. and Gilens, M. Racial attitudes and the "new south", Journal of Politics 59 (2), 323-349, 1997.
[26] Mangat, N.S., \& Singh, R. An alternative randomized response procedure, Biometrika 77 (2), 439-442, 1990.
[27] Mangat, N. S. An improved randomized response strategy, Journal of the Royal Statistical Society. Series B (Methodological), 93-95, 1994.
[28] Mathur, N. and Singh, H.P . Estimation of population mean with prior information using scrambled response technique, Brazilian Journal of Probability and Statistics 22 (2), 165-181, 2008.
[29] Mehta, S., Dass, B. K., Shabbir, J., \& Gupta, S. N. A three-stage optional randomized response model, Journal of Statistical Theory and Practice 6 (3), 417-427, 2012.
[30] Miller, J. D. A new survey technique for studying deviant behavior. University Microfilms, 1984.
[31] Miller, J. D. The nominative technique: A new method of estimating heroin prevalence, NIDA Research Monograph 54, 104-124, 1985.
[32] Murthy, M.N . Product method of estimation, Sankhy d, A, 26, 69-74, 1964.
[33] Rayburn, N.R., Earleywine, M. and Davison, G.C. Base rates of hate crime victimization among college students, Journal of Interpersonal Violence 18 (10), 1209-1221, 2003.
[34] Searls, D. T. The utilization of a known coefficient of variation in the estimation procedure, Journal of the American Statistical Association 59(308), 1225-1226, 1964.
[35] Smith, L. L., Federer, W. T., \& Raghavarao, D. A comparison of three techniques for eliciting truthful answers to sensitive questions, In Proceedings of the Social Statistics Section, American Statistical Association (pp. 447-52), 1974.
[36] Thompson, J. R. Some shrinkage techniques for estimating the mean, Journal of the American Statistical Association 63 (321), 113-122, 1968.
[37] Tsuchiya, T., Hirai, Y. and Ono, S. A study of the properties of the item count technique, Public Opinion Quarterly 71 (2), 253-272, 2007.
[38] Trappmann, M., Krumpal, I., Kirchner, A., \&Jann, B. Item sum-A new technique for asking quantitative sensitive questions, Journal of Survey Statistics and Methodology 2 (1), 58-77, 2014.
[39] Warner, S. L. Randomized response: A survey technique for eliminating evasive answer bias, Journal of the American Statistical Association 60(309), 63- 69, 1965.
[40] Zaizai, Y. Ratio method of estimation of population proportion using randomized device technique, Model Assisted Statistics and Application 1 (2), 125-130, 2006.

Appendix

Table 1. PRE of $\hat{\mu}_{s_{P}}$ with respect to $\hat{\mu}_{s_{1}}$ for $n=50, n_{1}=25, n_{2}=25$ and different values of g, σ_{s}^{2} and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}$.

$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=0.1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	327.2727	344.6809	354.3307	358.5657
0.5	266.6667	273.9130	277.7778	279.4411
1	234.1463	237.3626	239.0438	239.7602
2	217.2840	218.7845	219.5609	219.8901
3	211.5702	212.5461	213.0493	213.2622
4	208.6957	209.4183	209.7902	209.9475
5	206.9652	207.5388	207.8337	207.9584
10	203.4913	203.7736	203.9184	203.9796
20	201.7478	201.8878	201.9596	201.9899
50	200.6997	200.7554	200.7839	200.7960
100	200.3499	200.3777	200.3920	200.3980
200	200.1750	200.1889	200.1960	200.1990
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	900.000	1246.154	1551.724	1730.769
0.5	666.6667	818.1818	925.9259	980.3922
1	480.0000	540.0000	576.9231	594.0594
2	355.5556	378.9474	392.1569	398.0100
3	307.6923	321.4286	328.9474	332.2259
4	282.3529	291.8919	297.0297	299.2519
5	266.6667	273.9130	277.7778	279.4411
10	234.1463	237.3626	239.0438	239.760
20	217.2840	218.7845	219.5609	219.8901
50	206.9652	207.5388	207.8337	207.9584
100	203.4913	203.7736	203.9184	203.9796
200	201.7478	201.8878	201.9596	201.9899
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=100$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	1586.139	3525.183	9423.529	32040.000
o. 5	1572.549	3453.589	8911.111	26733.333
1	1546.154	3319.266	8040.000	20100.00
2	1496.296	3081.356	6733.333	13466.667
3	1450.000	2877.165	5800.000	10150.000
4	1406.897	2700.000	5100.000	8160.00
5	1366.667	2544.828	4555.556	6833.33
10	1200.000	1989.474	3000.000	3818.18
20	977.7778	1414.2857	1833.3333	2095.2381
50	666.6667	818.1818	925.9259	980.3922
100	480.0000	540.0000	576.9231	594.0594
200	355.5556	378.9474	392.1569	398.0100

Table 2. PRE of $\hat{\mu}_{s_{P}}$ with respect to $\hat{\mu}_{s_{1}}$ for $n=50, n_{1}=20, n_{2}=30$ and different values of g, σ_{s}^{2} and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}$.

$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=0.1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	378.7879	398.9362	410.1050	415.0066
0.5	317.4603	326.0870	330.6878	332.6680
1	284.5528	288.4615	290.5046	291.3753
2	267.4897	269.3370	270.2927	270.6980
3	261.7080	262.9151	263.5375	263.8010
4	258.7992	259.6953	260.1565	260.3516
5	257.0481	257.7605	258.1268	258.2817
10	253.5328	253.8846	254.0650	254.1413
20	251.7686	251.9434	252.0329	252.0707
50	250.7080	250.7776	250.8133	250.8283
100	250.3541	250.3888	250.4067	250.4142
200	250.1771	250.1944	250.2033	250.2071
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	958.3333	1326.9231	1652.2989	1842.9487
0.5	722.2222	886.3636	1003.0864	1062.0915
1	533.3333	600.0000	641.0256	660.0660
2	407.4074	434.2105	449.3464	456.0531
3	358.9744	375.0000	383.7719	387.5969
4	333.3333	344.5946	350.6601	353.2835
5	317.4603	326.0870	330.6878	332.6680
10	284.5528	288.4615	290.5046	291.3753
20	267.4897	269.3370	270.2927	270.6980
50	257.0481	257.7605	258.1268	258.2817
100	253.5328	253.8846	254.0650	254.1413
200	251.7686	251.9434	252.0329	252.0707
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=100$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	1652.640	3672.983	9818.627	33383.333
0.5	1638.889	3599.282	9287.037	27861.111
1	1612.179	3461.009	8383.333	20958.333
2	1561.728	3216.102	7027.778	14055.556
3	1514.881	3005.906	6059.524	10604.167
4	1471.264	2823.529	5333.333	8533.333
5	1430.556	2663.793	4768.519	7152.778
10	1261.905	2092.105	3154.762	4015.152
20	1037.037	1500.000	1944.444	2222.222
50	722.2222	886.3636	1003.0864	1062.0915
100	533.3333	600.0000	641.0256	660.0660
200	407.4074	434.2105	449.3464	456.0531

Table 3. PRE of $\hat{\mu}_{s_{P}}$ with respect to $\hat{\mu}_{s_{1}}$ for $n=50, n_{1}=30, n_{2}=20$ and different values of g, σ_{s}^{2} and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}$.

$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=0.1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	303.0303	319.1489	328.0840	332.0053
0.5	238.0952	244.5652	248.0159	249.5010
1	203.2520	206.0440	207.5033	208.1252
2	185.1852	186.4641	187.1257	187.4063
3	179.0634	179.8893	180.3151	180.4954
4	175.9834	176.5928	176.9064	177.0391
5	174.1294	174.6120	174.8601	174.9650
10	170.4073	170.6437	170.7650	170.8163
20	168.5393	168.6563	168.7163	168.7416
50	167.4163	167.4628	167.4866	167.4967
100	167.0416	167.0648	167.0767	167.0817
200	166.8541	166.8657	166.8717	166.8742
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	916.6667	1269.2308	1580.4598	1762.8205
0.5	666.6667	818.1818	925.9259	980.3922
1	466.6667	525.0000	560.8974	577.5578
2	333.3333	355.2632	367.6471	373.1343
3	282.0513	294.6429	301.5351	304.5404
4	254.9020	263.5135	268.1518	270.1579
5	238.0952	244.5652	248.0159	249.5010
10	203.2520	206.0440	207.5033	208.1252
20	185.1852	186.4641	187.1257	187.4063
50	174.1294	174.6120	174.8601	174.9650
100	170.4073	170.6437	170.7650	170.8163
200	168.5393	168.6563	168.7163	168.7416
$\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=100$				
$\sigma_{s}^{2} \downarrow$	$g=2$	$g=3$	$g=5$	$g=10$
0.25	1651.815	3671.149	9813.725	33366.667
0.5	1637.255	3595.694	9277.778	27833.333
1	1608.974	3454.128	8366.667	20916.667
2	1555.556	3203.390	7000.000	14000.000
3	1505.952	2988.189	6023.810	10541.667
4	1459.770	2801.471	5291.667	8466.667
5	1416.667	2637.931	4722.222	7083.333
10	1238.095	2052.632	3095.238	3939.394
20	1000.000	1446.429	1875.000	2142.857
50	666.6667	818.1818	925.9259	980.3922
100	466.6667	525.0000	560.8974	577.5578
200	333.3333	355.2632	367.6471	373.1343

Table 4. Ranges of λ for different values of n, μ_{s} and σ_{s}^{2} when $g=2$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$.

$\mu_{s}=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$\mu_{s}=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$	$0.28571 \sim 1$	$0.45946 \sim 1$	$0.56522 \sim 1$	$0.80000 \sim 1$
0.5	$0 \sim 1$	$0.09091 \sim 1$	$0.28571 \sim 1$	$0.41176 \sim 1$	$0.71429 \sim 1$
0.75	$0 \sim 1$	$0 \sim 1$	$0.14894 \sim 1$	$0.28571 \sim 1$	$0.63636 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0.03846 \sim 1$	$0.18032 \sim 1$	$0.56522 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.33333 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.16129 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.02857 \sim 1$
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$\mu_{s}=0.5$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.42857 \sim 1$	$0.66667 \sim 1$	$0.76471 \sim 1$	$0.81818 \sim 1$	$0.92307 \sim 1$
0.5	$0.2500 \sim 1$	$0.53846 \sim 1$	$0.66667 \sim 1$	$0.73913 \sim 1$	$0.88679 \sim 1$
0.75	$0.11111 \sim 1$	$0.42857 \sim 1$	$0.57895 \sim 1$	$0.66667 \sim 1$	$0.85185 \sim 1$
1	$0 \sim 1$	$0.33333 \sim 1$	$0.50000 \sim 1$	$0.60000 \sim 1$	$0.81818 \sim 1$
2	$0 \sim 1$	$0.052632 \sim 1$	$0.25000 \sim 1$	$0.37931 \sim 1$	$0.69492 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0.07143 \sim 1$	$0.21212 \sim 1$	$0.58730 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.08108 \sim 1$	$0.49254 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.40845 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.09890 \sim 1$
20	$0 \sim 1$				
50	$0 \sim 1$				
$\mu_{s}=1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.81818 \sim 1$	$0.90476 \sim 1$	$0.93548 \sim 1$	$0.95122 \sim 1$	$0.98019 \sim 1$
0.5	$0.73913 \sim 1$	$0.86046 \sim 1$	$0.90476 \sim 1$	$0.92771 \sim 1$	$0.97044 \sim 1$
0.75	$0.66667 \sim 1$	$0.81818 \sim 1$	$0.87500 \sim 1$	$0.90476 \sim 1$	$0.96078 \sim 1$
1	$0.60000 \sim 1$	$0.77778 \sim 1$	$0.84615 \sim 1$	$0.88235 \sim 1$	$0.95122 \sim 1$
2	$0.37931 \sim 1$	$0.63265 \sim 1$	$0.73913 \sim 1$	$0.79775 \sim 1$	$0.91388 \sim 1$
3	$0.21212 \sim 1$	$0.50943 \sim 1$	$0.64384 \sim 1$	$0.72043 \sim 1$	$0.8779 \sim 1$
4	$0.08108 \sim 1$	$0.40351 \sim 1$	$0.55844 \sim 1$	$0.64948 \sim 1$	$0.84331 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0.18812 \sim 1$	$0.32231 \sim 1$	$0.65975 \sim 1$
20	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.42349 \sim 1$
50	$0 \sim 1$				

Table 5. Ranges of λ for different values of n, μ_{s} and σ_{s}^{2} when $g=5$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$.

$\mu_{s}=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.26582 \sim 1$
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$\mu_{s}=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.21622 \sim 1$	$0.51261 \sim 1$	$0.64634 \sim 1$	$0.72249 \sim 1$	$0.87891 \sim 1$
0.5	$0 \sim 1$	$0.25000 \sim 1$	$0.42857 \sim 1$	$0.53846 \sim 1$	$0.78571 \sim 1$
0.75	$0 \sim 1$	$0.06509 \sim 1$	$0.26168 \sim 1$	$0.38996 \sim 1$	$0.70132 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0.12971 \sim 1$	$0.26761 \sim 1$	$0.62455 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.37615 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.19363 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.05386 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	\sim
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$\mu_{s}=0.5$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.62338 \sim 1$	$0.79211 \sim 1$	$0.85644 \sim 1$	$0.89035 \sim 1$	$0.95465 \sim 1$
0.5	$0.39665 \sim 1$	$0.64474 \sim 1$	$0.74825 \sim 1$	$0.80505 \sim 1$	$0.91717 \sim 1$
0.75	$0.22549 \sim 1$	$0.51976 \sim 1$	$0.65198 \sim 1$	$0.72712 \sim 1$	$0.88111 \sim 1$
1	$0.09170 \sim 1$	$0.41243 \sim 1$	$0.56576 \sim 1$	$0.65563 \sim 1$	$0.8464 \sim 1$
2	$0 \sim 1$	$0.10132 \sim 1$	$0.29534 \sim 1$	$0.42045 \sim 1$	$0.71939 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0.10457 \sim 1$	$0.24378 \sim 1$	$0.60875 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.10619 \sim 1$	$0.51149 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.42531 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.10914 \sim 1$
20	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.71939 \sim 1$
50	$0 \sim 1$				
$\mu_{s}=1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.89036 \sim 1$	$0.94363 \sim 1$	$0.96207 \sim 1$	$0.97141 \sim 1$	$0.98847 \sim 1$
0.5	$0.80505 \sim 1$	$0.89753 \sim 1$	$0.93050 \sim 1$	$0.94741 \sim 1$	$0.97863 \sim 1$
0.75	$0.72712 \sim 1$	$0.85357 \sim 1$	$0.89993 \sim 1$	$0.92400 \sim 1$	$0.96889 \sim 1$
1	$0.65563 \sim 1$	$0.81159 \sim 1$	$0.87032 \sim 1$	$0.90114 \sim 1$	$0.95925 \sim 1$
2	$0.42045 \sim 1$	$0.66113 \sim 1$	$0.76056 \sim 1$	$0.81488 \sim 1$	$0.92159 \sim 1$
3	$0.24378 \sim 1$	$0.53374 \sim 1$	$0.66297 \sim 1$	$0.73611 \sim 1$	$0.88537 \sim 1$
4	$0.10619 \sim 1$	$0.424501 \sim 1$	$0.57563 \sim 1$	$0.66389 \sim 1$	$0.85048 \sim 1$
5	$0 \sim 1$	$0.329787 \sim 1$	$0.49701 \sim 1$	$0.59744 \sim 1$	$0.81686 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0.19809 \sim 1$	$0.33156 \sim 1$	$0.66556 \sim 1$
20	$0 \sim 1$	$0 \sim 1$	$0.76056 \sim 1$	$0 \sim 1$	$0.42775 \sim 1$
50	$0 \sim 1$				

Table 6. Ranges of K for different values of n, w and σ_{s}^{2} when $\mu_{s}=0.1$
,$g=5$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$.

$w=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.5$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.9$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				

Table 7. Ranges of K for different values of n, w and σ_{s}^{2} when $\mu_{s}=$ $0.5, g=5$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$.

$w=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.3$					
w					

$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.21622 \sim 1$	$0.59011 \sim 1$
0.5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.35135 \sim 1$
0.75	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.17493 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.03926 \sim 1$
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.5$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.0373 \sim 1$	$0.36612 \sim 1$	$0.52749 \sim 1$	$0.62338 \sim 1$	$0.83016 \sim 1$
0.5	$0 \sim 1$	$0.07296 \sim 1$	$0.26903 \sim 1$	$0.39665 \sim 1$	$0.70532 \sim 1$
0.75	$0 \sim 1$	$0 \sim 1$	$0.08538 \sim 1$	$0.22549 \sim 1$	$0.59642 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.09170 \sim 1$	$0.50060 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.21006776 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.01378751 \sim 1$
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.9$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.55470 \sim 1$	$0.74946 \sim 1$	$0.82569 \sim 1$	$0.86636 \sim 1$	$0.94431 \sim 1$
0.5	$0.30435 \sim 1$	$0.57894 \sim 1$	$0.69811 \sim 1$	$0.76471 \sim 1$	$0.89873 \sim 1$
0.75	$0.12344 \sim 1$	$0.43872 \sim 1$	$0.58719 \sim 1$	$0.67355 \sim 1$	$0.85525 \sim 1$
1	$0 \sim 1$	$0.32137 \sim 1$	$0.48988 \sim 1$	$0.59136 \sim 1$	$0.81370 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0.19646 \sim 1$	$0.33005 \sim 1$	$0.66461 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.14245 \sim 1$	$0.53817 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.00124 \sim 1$	$0.42958 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.3353 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.00422 \sim 1$
20	$0 \sim 1$				
50	$0 \sim 1$				

Table 8. Range of K for different values of n, w and σ_{s}^{2} when $\mu_{s}=1$, $g=5$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$

$w=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.55	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.26582 \sim 1$
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
					$w=03$

$w=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.21622 \sim 1$	$0.512606 \sim 1$	$0.64634 \sim 1$	$0.72249 \sim 1$	$0.87891 \sim 1$
0.5	$0 \sim 1$	$0.25000 \sim 1$	$0.42857 \sim 1$	$0.53846 \sim 1$	$0.78571 \sim 1$
0.75	$0 \sim 1$	$0.06509 \sim 1$	$0.26168 \sim 1$	$0.38996 \sim 1$	$0.70132 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0.12971 \sim 1$	$0.26761 \sim 1$	$0.62455 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.37615 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.19363 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.05386 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	0 $0 \sim 1$
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				

$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.62338 \sim 1$	$0.79211 \sim 1$	$0.85644 \sim 1$	$0.89036 \sim 1$	$0.95465 \sim 1$
0.5	$0.39665 \sim 1$	$0.64473 \sim 1$	$0.74825 \sim 1$	$0.80505 \sim 1$	$0.91718 \sim 1$
0.75	$0.22549 \sim 1$	$0.51976 \sim 1$	$0.65198 \sim 1$	$0.72712 \sim 1$	$0.88111 \sim 1$
1	$0.09170 \sim 1$	$0.41243 \sim 1$	$0.56576 \sim 1$	$0.65563 \sim 1$	$0.84638 \sim 1$
2	$0 \sim 1$	$0.10132 \sim 1$	$0.29534 \sim 1$	$0.42045 \sim 1$	$0.71939 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0.10457 \sim 1$	$0.24378 \sim 1$	$0.60875 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.10619 \sim 1$	$0.51149 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.42531 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.10913 \sim 1$
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.9$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.86636 \sim 1$	$0.93087 \sim 1$	$0.95338 \sim 1$	$0.96482 \sim 1$	$0.98578 \sim 1$
0.5	$0.76471 \sim 1$	$0.87500 \sim 1$	$0.91489 \sim 1$	$0.93548 \sim 1$	$0.97368 \sim 1$
0.75	$0.67355 \sim 1$	$0.82227 \sim 1$	$0.87789 \sim 1$	$0.90700 \sim 1$	$0.96173 \sim 1$
1	$0.59136 \sim 1$	$0.77242 \sim 1$	$0.84230 \sim 1$	$0.87935 \sim 1$	$0.94992 \sim 1$
2	$0.33004 \sim 1$	$0.59763 \sim 1$	$0.71247 \sim 1$	$0.77632 \sim 1$	$0.90409 \sim 1$
3	$0.14245 \sim 1$	$0.45422 \sim 1$	$0.59974 \sim 1$	$0.68399 \sim 1$	$0.86036 \sim 1$
4	$0.00124 \sim 1$	$0.33443 \sim 1$	$0.50093 \sim 1$	$0.60079 \sim 1$	$0.81859 \sim 1$
5	$0 \sim 1$	$0.2328767 \sim 1$	$0.41362 \sim 1$	$0.5254237 \sim 1$	$0.7786561 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0.09509 \sim 1$	~ 1	$0.60269 \sim 1$
20	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.33796 \sim 1$
50	$0 \sim 1$				

Table 9. Range of K for different values of n, w and σ_{s}^{2} when $\mu_{s}=0.1$
,$g=2$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$

$w=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.5$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.9$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				

Table 10. Range of K for different values of n, w and σ_{s}^{2} when $\mu_{t_{i}}=1$,$g=2$ and $\sum_{i=1}^{g} \sigma_{t_{i}}^{2}=1$

$w=0.1$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$				
0.5	$0 \sim 1$				
0.75	$0 \sim 1$				
1	$0 \sim 1$				
2	$0 \sim 1$				
3	$0 \sim 1$				
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.3$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0 \sim 1$	$0.28571 \sim 1$	$0.45946 \sim 1$	$0.56521 \sim 1$	$0.80000 \sim 1$
0.5	$0 \sim 1$	$0.09091 \sim 1$	$0.28571 \sim 1$	$0.41177 \sim 1$	$0.71429 \sim 1$
0.75	$0 \sim 1$	$0 \sim 1$	$0.14894 \sim 1$	$0.28571 \sim 1$	$0.63636 \sim 1$
1	$0 \sim 1$	$0 \sim 1$	$0.03846 \sim 1$	$0.18033 \sim 1$	$0.56522 \sim 1$
2	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.16129 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.02857 \sim 1$
4	$0 \sim 1$				
5	$0 \sim 1$				
10	$0 \sim 1$				
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.5$					
σ_{s}^{2}	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.42857 \sim 1$	$0.666667 \sim 1$	$0.76471 \sim 1$	$0.81818 \sim 1$	$0.92307 \sim 1$
0.5	$0.25000 \sim 1$	$0.53846 \sim 1$	$0.66667 \sim 1$	$0.73913 \sim 1$	$0.88679 \sim 1$
0.75	$0.11111 \sim 1$	$0.42857 \sim 1$	$0.57895 \sim 1$	$0.66667 \sim 1$	$0.85185 \sim 1$
1	$0 \sim 1$	$0.33333 \sim 1$	$0.50000 \sim 1$	$0.60000 \sim 1$	$0.81818 \sim 1$
2	$0 \sim 1$	$0.05263 \sim 1$	$0.25000 \sim 1$	$0.37931 \sim 1$	$0.69492 \sim 1$
3	$0 \sim 1$	$0 \sim 1$	$0.07143 \sim 1$	$0.21212 \sim 1$	$0.58730 \sim 1$
4	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.08108 \sim 1$	$0.49253 \sim 1$
5	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.40845 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.09890 \sim 1$
20	$0 \sim 1$				
50	$0 \sim 1$				
$w=0.9$					
$\sigma_{s}^{2} \downarrow$	$n=5$	$n=10$	$n=15$	$n=20$	$n=50$
0.25	$0.78022 \sim 1$	$0.88372 \sim 1$	$0.92095 \sim 1$	$0.94012 \sim 1$	$0.97561 \sim 1$
0.5	$0.6875 \sim 1$	$0.83051 \sim 1$	$0.88372 \sim 1$	$0.91150 \sim 1$	$0.96364 \sim 1$
0.75	$0.60396 \sim 1$	$0.78022 \sim 1$	$0.84791 \sim 1$	$0.88372 \sim 1$	$0.95180 \sim 1$
1	$0.52830 \sim 1$	$0.73262 \sim 1$	$0.81343 \sim 1$	$0.85673 \sim 1$	$0.94012 \sim 1$
2	$0.28571 \sim 1$	$0.56521 \sim 1$	$0.687500 \sim 1$	$0.75600 \sim 1$	$0.89473 \sim 1$
3	$0.10959 \sim 1$	$0.42731 \sim 1$	$0.57792 \sim 1$	$0.66581 \sim 1$	$0.85142 \sim 1$
4	$0 \sim 1$	$0.31174 \sim 1$	$0.48171 \sim 1$	$0.58435 \sim 1$	$0.81006 \sim 1$
5	$0 \sim 1$	$0.21348 \sim 1$	$0.39655 \sim 1$	$0.51049 \sim 1$	$0.77049 \sim 1$
10	$0 \sim 1$	$0 \sim 1$	$0.08482 \sim 1$	$0.22495 \sim 1$	$0.59606 \sim 1$
20	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0 \sim 1$	$0.33333 \sim 1$
50	$0 \sim 1$				

[^0]: * Department of Statistics, Quaid-i-Azam University, Pakistan, Email: zhlangah@yahoo.com ${ }^{\dagger}$ Corresponding Author.
 \ddagger Department of Statistics, Quaid-i-Azam University, Pakistan, Email: naila048@gmail.com
 § Department of Statistics, Quaid-i-Azam University, Pakistan, Email: jsqau@edu.pk

