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An alternative item sum technique for improved
estimators of population mean in sensitive surveys
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Abstract

The item sum technique (IST) was developed for the measurement of
quantitative sensitive variables. This method is closely related to the
unmatched count technique (UCT), which was developed to measure
the proportion of dichotomous sensitive items in a human population
surveys. In this article, �rstly, we proposed an improved IST which
has a fruitful advantage that it does not require two subsamples as
in usual IST and there is also no need of �nding optimum subsample
sizes. We derived the mean and variance of the proposed estimator
and compare it with the usual IST both theoretically and numerically.
Secondly, we suggest some alternative family of estimators of the pop-
ulation mean of sensitive variable and compare them with estimator,
based on the proposed one sample version of IST. Thirdly, we utilize
auxiliary information in estimation of population mean, say µs of sensi-
tive variable. It is established that the estimator based on the proposed
IST is always more e�cient than its usual counterpart. The estimator
using second raw moment of the auxiliary variable is observed to be
more e�cient than the other auxiliary information based estimators,
namely, the ratio, product and regression estimators. The usual and
proposed ISTs are applied to estimate the average number of classes
missed by the student during the last semester at the Quaid-i-Azam
University. Estimated average of number of missed classes and 95%
con�dence intervals are reported showing that the proposed IST yields
precise estimates compared to the usual IST.
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1. Introduction

It is well understood that survey is a major instrument in most of the applied research.
Surveys for obtaining information on sensitive or stigmatizing characteristics are plagued
by the problem of distorted responses or refusals by respondents because it is natural
tendency of humans, whenever a sensitive question is asked directly from them they hide
their information. For example, most of the people prefer to hide their income, savings,
tax wages and illegal characters (e.g. cheating or criminal behavior) from the society.
These refusals and vague answers may cause a biased estimation of unknown population
parameters, as well as increased variances of the estimates. A question arises here as
to how can we get truthful answers to a sensitive or stigmatizing characteristics from
respondents. To deal with this situation, Warner [39] introduced randomized response
technique (RRT). The main purpose of introducing this technique was to estimate the true
proportion of sensitive characteristics while protecting the privacy of respondents. This
technique reduces the evasive answering bias and increases the response rate. Horvitz et
al. [18], Greenberd [16], Kuk [24], Mangat and Singh [26], Mangat [27], [4], Kim and
Warde [23], Chang et al. [1], Gjestvang and Singh [15], Chaudhuri [2], Mehta et al. [29],
Gupta et al. [17] and many other authors suggested di�erent modi�cations and theoretical
investigations of the properties of the Warner [39] RRT. Although, RRT has been used in
many research areas such as physical and social sciences because of its advantages, there
are several di�culties and limitations associated with RRTs. Firstly, interviews that
are conducted through using RRT take more time and cost to complete, than the other
types of interviews. Geurts [13] discussed �nancial limitations of RRT. He reported that
RRT requires larger sample sizes to obtain the con�dence intervals comparable with the
direct questioning technique. Another main problem of RRTs reported by Hubbard et
al. [19] is making a decision about what kind of the randomization device would be the
best for obtaining information on sensitive or stigmatizing characteristics. Chaudhuri
and Christo�des [3] also gave a criticism on the RRTs. According to them RRT is
con�ned with the respondents' skill to understand and handling the device. An ingenious
respondent may feel or understand that his/her response can be traced back to his/her
real status, if he/she does understand the mathematical logic behind the randomization
device. Because of these di�culties and limitations, alternative techniques have been
suggested in the literature. Some of these include the Unmatched Count Technique
(Smith, Federer and Raghavarao [35]), the Nominative technique (Miller [31]), The
Three card method (Droitcour et al. [12]) and Item sum technique (Trappmann et
al. [38]). These alternatives were suggested to avoid untruthful responses on sensitive
questions particularly concerning personal issues or illegal acts. Now we give a brief
introduction of the item count technique and its recent quanti�ed version known as item
sum technique.

1.1. The unmatched count technique. The Unmatched count technique (UCT) is a
survey methodology that is designed to estimate the proportion of people in the popula-
tion bearing stigmatizing characteristic. This technique was �rstly introduced by Smith,
Federer and Raghavarao [35], they used the term �Block Total Response Technique�,
Later Miller [30] further developed and empirically tested this technique. This technique
is also known as the list experiment technique and item count technique (Dalton, Wim-
bush and Daily [7], Dalton et al. [8], Droitcour et al. [11], Coutts and Jann [6]). In this
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method, the survey respondents are divided randomly into two subsamples. Each mem-
ber of the �rst subsample is presented with the list of g non-stigmatizing (or non-key)
items only and each one of the participant of the second subsample is presented with a
list containing g + 1 items, i.e., the same g non-stigmatizing items presented in the �rst
subsample and one stigmatizing item. All stigmatizing and non-stigmatizing items have
binary outcomes (e.g., `Yes' or `No'). Respondents in both subsamples are then asked to
report only the number of `yes' answers to the investigator. The g non-sensitive items
may or may not be the same in both subsamples.

An unbiased estimator of the proportion of sensitive item(e.g. tax evasion) in the
population can be estimated by the mean di�erence of `yes' answers from the two random
subsamples. UCT have been used in numerous studies such as racial prejudice (Kuklinski,
Cobb and Gilens [25], Gilens, Sniderman and Kuklinski [14]), drug use (Droitcour et al.
[11]), hate crime victimization among college students (Rayburn, Earleywine and Davison
[33]), shoplifting (Tsuchiya, Hirai and Ono [37]), and attitude about immigration (Janus
[22]). The Unmatched count technique has a major advantage over the randomized
response technique, that no randomization device is required and the concept of counting
items is relatively simple and the procedure is easy to manage in human population
surveys. UCT has also disadvantages which are related to the protection of privacy.
In case all g + 1 items are applicable (or none) to a respondent of the second sample,
then his/her response reveals his/her status concerning the stigmatizing characteristic
and thus the issue of privacy protection arises. Coutts and Jann [6] also reported the
statistical low power as its major disadvantage. According to them the estimates obtained
from the UCT have typically large standard errors as compared to the estimates obtained
from the RRT based on the same sample size. Another limitation of UCT is that it takes
more time and cost because, in this technique, two subsamples are required to estimate
population proportion of sensitive variable. Hussain et al. [21] focused on this issue and
proposed an improved UCT which requires only single sample. Furthermore, it does not
involve �nding optimum subsample sizes. The said technique is statistically e�cient and
more attractive in terms of time and cost.

1.2. The item sum technique. Extending the usual UCT, Trappmann et al. [38] pro-
posed a quanti�ed version of UCT, named as the Item Sum Technique(IST) to estimate
mean of sensitive variable. In this technique, the survey respondents are randomly di-
vided into two independent subsamples. Each member of the �rst subsample is presented
with the list containing g+1 items, with g of those related to non-sensitive characteristics
(Ti) and one related to sensitive characteristic (S). Each one of the participant of the
second subsample is presented with a list containing only the g non-sensitive items. All
sensitive and non-sensitive items are quantitative in nature. Respondents in both sub-
samples are then requested to report the total score applicable to them, without reporting
the individual scores on each of the items. Although, in theory, there is no restriction on
the choice of number of non-key items but Trappmann et al. [38], suggested to use one
non-key(non-sensitive) item in order to improve statistical e�ciency of procedure. An
unbiased estimator of the population mean of sensitive item, say µs, from the IST data
can be estimated by the mean di�erence of answers between the two random subsamples.

let Yj be the reported total score of the jth respondent in the �rst subsample (j =
1, 2, ..., n1) and Zk be the reported total score of the kth respondent in the second sub-
sample (k = 1, 2, ..., n2). Then, an unbiased estimator of population mean of sensitive
variable is given by:

(1.1) µ̂s1 = ȳ − z̄,
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where ȳ and z̄ are the sample means of �rst and second subsamples, respectively. The
variance of µ̂s1 is given by

(1.2) V ar(µ̂s1) =
σ2
s

n1
+

n

g∑
i=1

σ2
ti

n1n2

where σ2
s is the population variance of sensitive variable and σ

2
ti is the population variance

of ith non sensitive variable. In usual IST, two subsamples are required to obtain an
unbiased estimator of population mean of stigmatizing variable and �nding optimum
subsample sizes are also required. We focus on these issues and proposed an alternative
IST which is based on one sample and does not require �nding optimum subsample sizes.
The proposed technique is a quanti�ed version of UCT proposed by Hussain et al. [21].

2. Proposed item sum technique

In this section, we propose an alternative IST, avoiding the need of two subsamples.
Let µs be the population mean of the sensitive variable of interest. Our purpose is to
estimate µs. The procedure is described as follows.

Assume that a simple random sample of size n is drawn from the population. Each one
of the participants in the sample is provided a list of g items. The ith item contains the
addition of queries about a stigmatizing sensitive (S) and non-stigmatizing (Ti) variables.
The respondents are directed to report only the total score of all items, without reporting
the individual scores of each item. Both the non-stigmatizing (Ti) and a stigmatizing
sensitive (S) variables are quantitative in nature(and preferably measured on the same
scale). For example, respondents in the sample may be presented the following items.

(1) Last digit of your cell phone number + Number of times you smoked shisha(harm-
ful type of tobacco) last month.

(2) Date on your birth day was + Number of times you smoked shisha last month.
(3) Last digit of your CNIC(Computerized National Identity Card) number + Num-

ber of times you smoked shisha last month.
(4) Number of hours you watched T.V last day + Number of times you smoked

shisha last month.

We assume that all (Ti) and (S) variables are unrelated to each other and the distribu-
tion of non-sensitive(Ti) variables are known to the interviewers. It is important that
the number of non-stigmatizing questions should be chosen wisely by the investigators.
Although according to theory there is no restriction on the choice of the number of
non-stigmatizing questions but, too short and too many questions can create a problem,
related to the privacy protection of the respondents and the statistical de�ciency of the
technique, respectively.

Let T1, ..., Tg denote the non sensitive variables and S be the sensitive variable. Let
Yj denote the total score of jth respondent in the sample (j = 1, 2, ..., n), then mathe-
matically, it can be written as:

(2.1) Yj = gS +

g∑
i=1

Ti

Taking expectation on (2.1) we have

E(Yj) = gE(S) +

g∑
i=1

E(Ti),
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= gµs +

g∑
i=1

µti ,

(2.2) µs =

E(Yj) −
g∑
i=1

µti

g
.

This suggest, de�ning an unbiased estimator of µs as

(2.3) µ̂sP =

ȳ −
g∑
i=1

µti

g
,

where µti denoting the population mean of the ith non-sensitive variable (i = 1, 2, ..., g)
and ȳ is the sample mean of reported response. The estimator µ̂sP in (2.3), obtained
through proposed IST, does not require two subsamples (as in usual IST).

The variance of the estimator µ̂sP is given by:

V ar(µ̂sP ) =
V ar(ȳ)

g2
=
V ar(y)

ng2
,

(2.4) V ar(µ̂sP ) =
σ2
s

n
+

g∑
i=1

σ2
ti

ng2
,

and when sample is drawn without replacement, the variance of µ̂sP is given by

(2.5) V ar(µ̂sP ) =
1 − f

ng2
(g2σ2

s +

g∑
i=1

σ2
ti),

where σ2
s is the population variance of sensitive variable and σ

2
ti is the population variance

of ith non sensitive variable and f = n
N
.

2.1. E�ciency comparison. Here, we present e�ciency comparison of the proposed
estimator µ̂sP with the estimator µ̂s1 based on the usual IST.

Consider

V ar(µ̂s1) − V ar(µ̂sP ) ≥ 0

σ2
s

n1
+

n

g∑
i=1

σ2
ti

n1n2
− σ2

s

n
−

g∑
i=1

σ2
ti

ng2
≥ 0

n2σ
2
s

n1n
+

(n2g2 − n1n2)

g∑
i=1

σ2
ti

nn1n2g2
≥ 0.

Since, all the quantities on right hand size of above inequality are strictly positive, the
above inequality always holds true. Hence, we can infer that the proposed estimator µ̂sP
is always more e�cient than the estimator µ̂s1 .

The Percent Relative E�ciency (PRE) of µ̂sP with respect to µ̂s1 is de�ne as

PRE(µ̂sP , µ̂s1) =
V ar(µ̂s1)

V ar(µ̂sP )
× 100.

Using the above de�nition, PRE has been worked out for the di�erent �xed values of the
parameters involved and is arranged in the Tables 1-3(see appendix). One may easily
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observe that the proposed estimator, µ̂sP is always more e�cient than the estimator,
µ̂s1 .
The proposed and usual ISTs are illustrated through a practical example of estimating
the average number of classes missed by the students during the last semester at Quaid-
i-Azam University. We set g = 4 and select a random sample of 100 students. For
collecting data through usual IST sample was randomly divided into two equal halves.
The estimate and 95 % con�dence interval through usual IST are 3.52 and [3.18, 3.85],
respectively. The estimate and 95 % con�dence interval through the proposed IST are
3.28 and [3.12, 3.43], respectively. This clearly shows that estimated variance of the
proposed estimator is smaller than the usual IST estimator.

3. Some alternative classes of estimators for µs

3.1. Searls' method of estimation. Motivated by searls [34], we de�ne a family of
estimators of the population mean of the sensitive variable µs as

(3.1) µ̂sλ = λµ̂sP ,

where λ is constant to be chosen suitably by the interviewer or researcher and µ̂sP is
the proposed estimator, de�ned in (2.3). The bias and mean square error of µ̂sλ are
respectively given as:

(3.2) Bias(µ̂sλ) = (λ− 1)µs,

and

(3.3) MSE(µ̂sλ) = λ2V ar(µ̂sP ) + (λ− 1)2µ2
s.

E�ciency comparison. The proposed estimator µ̂sλ is, relatively more e�cient than
the estimator µ̂sP if

MSE(µ̂sλ) − V ar(µ̂sP ) ≤ 0

(λ2 − 1)V ar(µ̂sP ) + (λ− 1)2µ2
s ≤ 0

It can be shown that MSE(µ̂sλ) − V ar(µ̂sP ) ≤ 0 if and only if

(3.4)
µ2
s − V ar(µ̂sP )

µ2
s + V ar(µ̂sP )

< λ ≤ 1,

where V ar(µ̂sP ) is given by (2.4)
Using (3.4) we have computed the ranges of λ in which suggested estimator µ̂sλ is,

relatively more e�cient than the proposed estimator µ̂sP for di�erent values of (n, σ2
s).

R-package is used to �nd these ranges. The ranges, so obtained, are presented in the
Tables 4 and 5 (see appendix).

3.1.1. Optimum estimator amongst the family of estimator µ̂sλ . By di�erentiating (3.3)
with respect to λ and equating to zero, we can �nd optimum value of λ which minimizes
the MSE(µ̂sλ), as:

(3.5) λopt =
µ2
s

µ2
s + V ar(µ̂sP )

.

Thus, the optimum estimator,say µ̂sλopt is given by

(3.6) µ̂sλopt = λoptµ̂sP .

Its Bias and MSE is given by

Bias(µ̂sλopt ) = (λopt − 1)µs,
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and

(3.7) MSE(µ̂sλopt ) =
µ2
sV ar(µ̂sP )

µ2
s + V ar(µ̂sP )

.

The relative e�ciency of the optimum estimatorµ̂sλopt with respect to proposed estimator

µ̂sP is given by

RE =
V ar(µ̂sP )

MSE(µ̂sλopt )
,

(3.8) RE = 1 +
V ar(µ̂sP )

µ2
s

.

From (3.8), it is obvious that optimum estimator is always more e�cient than the esti-
mator µ̂sP .

3.2. Estimation method which utilizes the priori information. It is a well known
fact that by using prior knowledge about parameter, estimation becomes more precise and
e�cient. Bayesian approach of estimation is an example of using the prior information in
the form of prior distribution. Some times, in order to have more precise and statistically
e�cient estimator, we may use prior knowledge together with the sample information.
Motivated by Thompson [36] and Mathur snd Singh [28], we de�ne another estimator
for µs. Let µs0 be the prior estimate or guessed value of the population mean of the
sensitive variable µs. Then, we de�ne a new estimator as

(3.9) µ̂sk = Kµ̂sP + (1 −K)µs0 , 0 < K ≤ 1

where K is a constant speci�ed by the investigator according to his/her belief in the prior
estimate µs0 . The value of K closer to 0 speci�es strong belief in µs0 and closer to 1
indicates strong belief in µs.

The bias and mean square error of µ̂sk are, respectively, given by:

(3.10) Bias(µ̂sk ) = (1 −K)µsw,

(3.11) MSE(µ̂sk ) = w2(1 −K)2µ2
s +K2V ar(µ̂sP ),

where w = (
µs0
µs

− 1).

E�ciency comparison. The proposed estimator µ̂sk is relatively more e�cient than
the estimator µ̂sP if
MSE(µ̂sk ) - V ar(µ̂sP )≤ 0

= w2(1 −K)2µ2
s +K2V ar(µ̂sP ) − V ar(µ̂sP ) ≤ 0.

It can be shown that MSE(µ̂sk ) − V ar(µ̂sP ) ≤ 0, if and only if

(3.12) w2 <
(1 +K)V ar(µ̂sP )

(1 −K)µ2
s

, 0 < K ≤ 1

or

(3.13)
w2µ2

s − V ar(µ̂sP )

w2µ2
s + V ar(µ̂sP )

< K ≤ 1,

where V ar(µ̂sP ) is given by (2.4)
Through R-Package, using (3.13) we have computed ranges of K in which suggested

estimator is more e�cient than the proposed estimator , for di�erent values of (n and
w). These ranges are presented in the Tables 6-10 (see appendix).
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3.2.1. Optimum estimators of µ̂sk . By di�erentiating (3.11) with respect to K and
equating to zero, we can �nd optimum value of K which minimizes the MSE(µ̂sk ) .
The optimum value of K is given by

(3.14) Kopt =
w2µ2

s

w2µ2
s + V ar(µ̂sP )

.

Thus, the optimum estimator, say µ̂skopt is given by

(3.15) µ̂skopt = Koptµ̂sP + (1 −Kopt)µs0 ,

and its MSE is given by

(3.16) MSE(µ̂skopt ) =
w2µ2

sV ar(µ̂sP )

w2µ2
s + V ar(µ̂sP )

.

The relative e�ciency of the optimum estimator µ̂skopt with respect to our proposed

estimator µ̂sP is given by

RE =
V ar(µ̂sP )

MSE(µ̂skopt )

(3.17) RE = 1 +
V ar(µ̂sP )

w2µ2
s

.

From (3.17), it can be seen that, optimum estimator µ̂skopt is always more e�cient than

the proposed IST estimator µ̂sP .

4. Some alternative family of estimators, utilizing auxiliary vari-

able

It is well known that the incorporation of auxiliary information in the estimation
procedure yields e�cient estimators. The use of such information is generally made
through ratio, product and regression methods of estimation. [5] was the �rst to show the
contribution of such known information, He introduced a ratio estimator of population
mean. Murthy [32] introduced product method of estimation. Similarly, as in usual
surveys, auxiliary information is also utilized in sensitive surveys where, our main purpose
is to estimate population proportion/mean of stigmatizing attribute/variable. There are
two ways of utilizing auxiliary information. Firstly it may be at the design stage and
secondly at estimation stage. There are few studies, which utilizes auxiliary information
in RRT at estimation stage. For example, Zaizai [40], Diana and Perri [9] and Diana
and Perri [10] used auxiliary information at estimation stage. Motivated by Zaizai [40],
Diana and Perri [10] and Hussain and Shabbir [20] we propose a class of estimators
which utilizes the known auxiliary information. From (2.2) we have

µs =

E(Yj) −
g∑
i=1

µti

g

In order to estimate µs, we can replace E(Yj) by ȳR, ȳP , ȳlr and ȳlm.
where ȳR = ȳ

x̄
X̄, ȳP = ȳ

X̄
x̄ , ȳlr = ȳ + b[X̄ − x̄], and

ȳlm = ȳ + b1[X̄ − x̄] + b2[M − m] and m = n−1 ∑n
j=1 x

2 = second raw moment of

auxiliary variable. Let q = x2, then m = n−1 ∑n
j=1 q, and ȳlm = ȳ+ b1[X̄− x̄]+ b2[Q̄− q̄]

Now, we study these methods of estimation one by one.
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4.1. Ratio method of estimation. Replacing E(Yj) by ȳR in (2.2), a new class of
estimators is given by

µ̂sP1 =

ȳR −
g∑
i=1

µti

g
.

The bias and MSE of ȳR are given by

Bias(ȳR) =
1 − f

n
Ȳ (C2

x − ρyxCyCx),

and

MSE(ȳR) =
1 − f

n
(σ2
y +R2σ2

x − 2Rρyxσyσx),

where R = Ȳ
X̄
. Now, the MSE of µ̂sP1 is given by

MSE(µ̂sP1) =
MSE(ȳR)

g2
,

MSE(µ̂sP1) =
1−f
n

[σ2
y +R2σ2

x − 2Rρyxσyσx]

g2
.

As we have σ2
y = g2σ2

s +

g∑
i=1

σ2
ti , and

ρyx =
ρsx√√√√√

1 +

g∑
i=1

σ2
ti

g2σ2
s

we can write

(4.1) MSE(µ̂sP1) =
1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2

− 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)],

where R1 = µs
X̄
.

4.2. Product method of estimation. From (2.2), Replacing E(Yj) by ȳP , a new class
of estimators is given by

µ̂sP2 =

ȳP −
g∑
i=1

µti

g
.

The bias and MSE of ȳR are given by

Bias(ȳP ) =
1 − f

n
Ȳ (C2

x + ρyxCyCx),

and

MSE(ȳP ) =
1 − f

n
(σ2
y +R2σ2

x + 2Rρyxσyσx),
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where R = Ȳ
X̄
. Now, and MSE of µ̂sP2 is given by

MSE(µ̂sP2) =
MSE(ȳP )

g2
,

MSE(µ̂sP2) =
1−f
n

[σ2
y +R2σ2

x + 2Rρyxσyσx]

g2
,

substituting σ2
y = g2σ2

s +

g∑
i=1

σ2
ti in the above equation, we get

(4.2) MSE(µ̂sP2) =
1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2

+ 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)].

4.3. Regression method of estimation. As in section 4.1 and 4.2, replacing E(Yj)
by ȳlr in (2.2) , a new family of estimators may be proposed as

µ̂sP3 =

ȳlr −
g∑
i=1

µti

g
.

It is understood, that the regression coe�cient b may either be known or unknown. We
consider both cases one by one.

Case (i): when coe�cient b is known. As ȳlr = ȳ + b[X̄ − x̄], we have bias(ȳlr) = 0 and
its variance is given by

(4.3) V ar(ȳlr) =
1 − f

n
(σ2
y + b2σ2

x − 2bρyxσyσx).

As b is a known regression coe�cient, it must be

(4.4) b =
σxy
σ2
x

.

it is interesting to see that b =
σxy
σ2
x

also minimizing the V ar(ȳlr).

Now substituting above value of b in (4.3), the minimum variance of the estimator ȳlr
is given by

V ar(ȳlr)min =
1 − f

n
σ2
y(1 − ρ2

yx),

ρyx =
ρsx√√√√√

1 +

g∑
i=1

σ2
ti

g2σ2
s

The minimum variance of µ̂sP3 is now given by

V ar(µ̂sP3)min =
V ar(ȳlr)min

g2
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V ar(µ̂sP3)min =

1−f
n

[g2σ2
s +

g∑
i=1

σ2
ti ][1 − ρ2

sxg
2σ2
s

g2σ2
s +

g∑
i=1

σ2
ti

]

g2
.

(4.5) V ar(µ̂sP3)min =
1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− ρ2
sx).

Case(ii): when b is unknown. As b is the regression coe�cient in the regression of y =
bo + bx + ε, where b0 is constant and ε is random error term, so the unbiased ordinary

least square estimator of b is b̂ =
σxy
σ2
x
, which minimizes the error sum of squares. Thus,

new class of estimators becomes

µ̂sN3 =

ˆ̄ylr −
g∑
i=1

µti

g
.

Following the same steps as in case (i), it can be shown that MSE of µ̂sN3 is given by

MSE(µ̂sN3) =
1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− ρ2
sx).

It is clear that both the variance and MSE expressions are same in case (i) and (ii), so we
do not need to consider both cases of regression coe�cient separately, since the results
in one case remain valid in other case.

4.4. Regression method of estimation, where second raw moment is used.

From (2.2), Replacing E(Yj) by ȳlm, a new family of estimators is given by

µ̂sP4 =

ȳlm −
g∑
i=1

µti

g
.

As we mentioned above that the regression coe�cients may be either known or unknown.
But the results in both cases remain same. So we do not need to consider both cases
separately. We have bias(ȳlm) = 0 and variance of ȳlm is given by

(4.6) V ar(ȳlm) =
1 − f

n
(σ2
y + b21σ

2
x + b22σ

2
q − 2b1ρyxσyσx − 2b1ρyqσyσq

+ 2b1b2ρxqσxσq),

Di�erentiating (4.6) with respect to b1 and b2, and equating to zero, we obtain

(4.7) b1 =
σ2
qσyx − σxqσyq

σ2
xσ2

q + σ2
xq

.

(4.8) b2 =
σ2
xσyq − σxqσyx
σ2
xσ2

q + σ2
xq

.

Substituting optimum values of b1 and b2 in (4.6), the minimum variance of the estimator
ȳlm is given by

V ar(ȳlm)min =
1 − f

n
σ2
y[1 −R2

y.xq],
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where

R2
y.xq =

ρ2
yx + ρ2

yq − 2ρyxρyqρxq

1 − ρ2
xq

.

Now, the minimum variance of µ̂sP4 is given by

V ar(µ̂sP4)min =
V ar(ȳlm)min

g2

V ar(µ̂sP4)min =
1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

−
ρ2
sx + ρ2

sq − 2ρsxρsqρxq

1 − ρ2
xq

),

(4.9) V ar(µ̂sP4)min =
1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

−R2
s.xq).

Now, consider

(4.10) Ψ2 + ρ2
sx =

(ρsq − ρsxρxq)
2

1 − ρ2
xq

+ ρ2
sx =

ρ2
sx + ρ2

sq − 2ρsxρsqρxq

1 − ρ2
xq

= R2
s.xq.

Thus, by (4.9) and (4.10), we get

(4.11) V ar(µ̂sP4)min =
1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− Ψ2 − ρ2
sx).

4.5. E�ciency comparison.

(1) From (2.5)and (4.1), we have

V ar(µ̂sP ) −MSE(µ̂sP1) > 0

or

1 − f

ng2
(g2σ2

s +

g∑
i=1

σ2
ti) −

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2

− 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)] > 0

(4.12) ρsx >

σx(gR1 + X̄−1

g∑
i=1

µti)

2gσs

We infer that estimator µ̂sP1 is more e�cient than estimator µ̂sP , if the inequal-
ity (4.12) is satis�ed.

(2) From (2.5)and (4.2), we have

V ar(µ̂sP ) −MSE(µ̂sP2) > 0
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or

1 − f

ng2
(g2σ2

s +

g∑
i=1

σ2
ti) −

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2

+ 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)] > 0

(4.13) ρsx < −
σx(gR1 + X̄−1

g∑
i=1

µti)

2gσs
.

We infer that estimator µ̂sP2 is more e�cient than estimator µ̂sP , if above
inequality(4.13) is satis�ed

(3) From (2.5) and (4.5), the estimator µ̂sP3 is more e�cient than the estimator
µ̂sP if

V ar(µ̂sP ) > V ar(µ̂sP3)min

1 − f

ng2
(g2σ2

s +

g∑
i=1

σ2
ti) >

1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− ρ2
sx)

(4.14) ρsx > 0.

(4) The estimator µ̂sP4 is more e�cient than the estimator µ̂sP if

V ar(µ̂sP ) > V ar(µ̂sP4)min

From (2.5) and (4.9), we have

1 − f

ng2
(g2σ2

s +

g∑
i=1

σ2
ti) >

1 − f

n
σ2
s(1 +

g∑
i=1

σ2
Ni

g2σ2
s

−R2
s.xq)

(4.15) R2
s.xq > 0.

(5) The estimator µ̂sP4 is more e�cient than the estimator µ̂sP3 if

V ar(µ̂sP3)min − V ar(µ̂sP4)min ≥ 0

From (4.5) and (4.11), we have

1 − f

n
σ2
s [1 +

g∑
i=1

σ2
ti

g2σ2
s

− ρ2
sx] − 1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− Ψ2 − ρ2
sx) ≥ 0

(4.16) Ψ2 ≥ 0,

which is always a non-negative quantity.
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(6) The estimator µ̂sP4 is more e�cient than the estimator µ̂sP2 if

MSE(µ̂sP2) ≥ V ar(µ̂sP4)min

From (4.2) and (4.11), we have

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2 + 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)]

− 1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− Ψ2 − ρ2
sx) ≥ 0

(4.17) g2σ2
sΨ

2 + (gσsρsx + σx(gR1 +

g∑
i=1

µti

X̄
))2 ≥ 0,

which is always true.
(7) The estimator µ̂sP4 is more e�cient than the estimator µ̂sP1 if

MSE(µ̂sP1) ≥ V ar(µ̂sP4)min

From (4.1) and (4.11), we have

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2 − 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)]

− 1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− Ψ2 − ρ2
sx) ≥ 0

(4.18) g2σ2
sΨ

2 + (gσsρsx − σx(gR1 +

g∑
i=1

µti

X̄
))2 ≥ 0,

which is again always true.
(8) The estimator µ̂sP3 is more e�cient than the estimator µ̂sP1 if

MSE(µ̂sP1) ≥ V ar(µ̂sP3)min.

From (4.1) and (4.5) we have

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2 − 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)]

− 1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

− ρ2
sx) ≥ 0
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(4.19) (gσsρsx − σx(gR1 +

g∑
i=1

µti

X̄
))2 ≥ 0,

which is always true.
(9) The estimator µ̂sP3 is more e�cient than the estimator µ̂sP2 if

MSE(µ̂sP2) ≥ V ar(µ̂sP3)min.

From (4.2) and (4.5), we have

1 − f

ng2
[g2σ2

s +

g∑
i=1

σ2
ti + σ2

x(gR1 +

g∑
i=1

µti

X̄
)2 + 2gρsxσsσx(gR1 +

g∑
i=1

µti

X̄
)]

− 1 − f

n
σ2
s(1 +

g∑
i=1

σ2
ti

g2σ2
s

ρ2
sx) ≥ 0

(4.20) (gσsρsx + σx(gR1 +

g∑
i=1

µti

X̄
))2 ≥ 0,

which is always true.
One may easily see that regression method of estimation which utilized higher

order moments of auxiliary variable is more e�cient than other classes of esti-
mators which utilizes auxiliary information. Furthermore, regression method of
estimation is e�cient than product and ratio methods of estimation.

5. Conclusion

In this article, we proposed one sample version of IST (alternative IST) to estimate
the mean of a sensitive variable. The proposed IST is based on the idea of combining the
sensitive item with each of the unrelated item. The main fruitful feature of this technique
is that unlike the usual IST, it does not require two subsamples and �nding optimum
subsample sizes. It is established that the proposed estimator is better than the usual
estimator of IST and it may be made more e�cient if a prior guess about the population
mean is available. In case when auxiliary information is available, ratio, product and
regression method of estimation are considered. Through algebraic comparisons, it is
concluded that the regression method of estimation utilizing the second order moment of
auxiliary variable is the most e�cient than all the estimators considered in this article.
As an overall conclusion it is stated that when studying the sensitive variable the appli-
cation of one sample version of IST (proposed estimator) is more advantageous in terms
of ease in practice and providing accurate and precise estimators. The application of
the proposed IST can be even more advantageous if some auxiliary information is avail-
able and regression method of estimation, utilizing the second raw moment of auxiliary
information, is applied.
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Appendix

Table 1. PRE of µ̂sP with respect to µ̂s1 for n = 50, n1 = 25, n2 = 25
and di�erent values of g, σ2

s and
∑g
i=1 σ

2
ti .∑g

i=1 σ
2
ti = 0.1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 327.2727 344.6809 354.3307 358.5657
0.5 266.6667 273.9130 277.7778 279.4411
1 234.1463 237.3626 239.0438 239.7602
2 217.2840 218.7845 219.5609 219.8901
3 211.5702 212.5461 213.0493 213.2622
4 208.6957 209.4183 209.7902 209.9475
5 206.9652 207.5388 207.8337 207.9584
10 203.4913 203.7736 203.9184 203.9796
20 201.7478 201.8878 201.9596 201.9899
50 200.6997 200.7554 200.7839 200.7960
100 200.3499 200.3777 200.3920 200.3980
200 200.1750 200.1889 200.1960 200.1990∑g

i=1 σ
2
ti = 1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

o.25 900.000 1246.154 1551.724 1730.769
0.5 666.6667 818.1818 925.9259 980.3922
1 480.0000 540.0000 576.9231 594.0594
2 355.5556 378.9474 392.1569 398.0100
3 307.6923 321.4286 328.9474 332.2259
4 282.3529 291.8919 297.0297 299.2519
5 266.6667 273.9130 277.7778 279.4411
10 234.1463 237.3626 239.0438 239.760
20 217.2840 218.7845 219.5609 219.8901
50 206.9652 207.5388 207.8337 207.9584
100 203.4913 203.7736 203.9184 203.9796
200 201.7478 201.8878 201.9596 201.9899∑g

i=1 σ
2
ti = 100

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

o.25 1586.139 3525.183 9423.529 32040.000
o.5 1572.549 3453.589 8911.111 26733.333
1 1546.154 3319.266 8040.000 20100.00
2 1496.296 3081.356 6733.333 13466.667
3 1450.000 2877.165 5800.000 10150.000
4 1406.897 2700.000 5100.000 8160.00
5 1366.667 2544.828 4555.556 6833.33
10 1200.000 1989.474 3000.000 3818.18
20 977.7778 1414.2857 1833.3333 2095.2381
50 666.6667 818.1818 925.9259 980.3922
100 480.0000 540.0000 576.9231 594.0594
200 355.5556 378.9474 392.1569 398.0100
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Table 2. PRE of µ̂sP with respect to µ̂s1 for n = 50, n1 = 20, n2 = 30
and di�erent values of g, σ2

s and
∑g
i=1 σ

2
ti .∑g

i=1 σ
2
ti = 0.1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 378.7879 398.9362 410.1050 415.0066

0.5 317.4603 326.0870 330.6878 332.6680

1 284.5528 288.4615 290.5046 291.3753

2 267.4897 269.3370 270.2927 270.6980

3 261.7080 262.9151 263.5375 263.8010

4 258.7992 259.6953 260.1565 260.3516

5 257.0481 257.7605 258.1268 258.2817

10 253.5328 253.8846 254.0650 254.1413

20 251.7686 251.9434 252.0329 252.0707

50 250.7080 250.7776 250.8133 250.8283

100 250.3541 250.3888 250.4067 250.4142

200 250.1771 250.1944 250.2033 250.2071∑g
i=1 σ

2
ti = 1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 958.3333 1326.9231 1652.2989 1842.9487

0.5 722.2222 886.3636 1003.0864 1062.0915

1 533.3333 600.0000 641.0256 660.0660

2 407.4074 434.2105 449.3464 456.0531

3 358.9744 375.0000 383.7719 387.5969

4 333.3333 344.5946 350.6601 353.2835

5 317.4603 326.0870 330.6878 332.6680

10 284.5528 288.4615 290.5046 291.3753

20 267.4897 269.3370 270.2927 270.6980

50 257.0481 257.7605 258.1268 258.2817

100 253.5328 253.8846 254.0650 254.1413

200 251.7686 251.9434 252.0329 252.0707∑g
i=1 σ

2
ti = 100

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 1652.640 3672.983 9818.627 33383.333

0.5 1638.889 3599.282 9287.037 27861.111

1 1612.179 3461.009 8383.333 20958.333

2 1561.728 3216.102 7027.778 14055.556

3 1514.881 3005.906 6059.524 10604.167

4 1471.264 2823.529 5333.333 8533.333

5 1430.556 2663.793 4768.519 7152.778

10 1261.905 2092.105 3154.762 4015.152

20 1037.037 1500.000 1944.444 2222.222

50 722.2222 886.3636 1003.0864 1062.0915

100 533.3333 600.0000 641.0256 660.0660

200 407.4074 434.2105 449.3464 456.0531
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Table 3. PRE of µ̂sP with respect to µ̂s1 for n = 50, n1 = 30, n2 = 20
and di�erent values of g, σ2

s and
∑g
i=1 σ

2
ti .∑g

i=1 σ
2
ti = 0.1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 303.0303 319.1489 328.0840 332.0053

0.5 238.0952 244.5652 248.0159 249.5010

1 203.2520 206.0440 207.5033 208.1252

2 185.1852 186.4641 187.1257 187.4063

3 179.0634 179.8893 180.3151 180.4954

4 175.9834 176.5928 176.9064 177.0391

5 174.1294 174.6120 174.8601 174.9650

10 170.4073 170.6437 170.7650 170.8163

20 168.5393 168.6563 168.7163 168.7416

50 167.4163 167.4628 167.4866 167.4967

100 167.0416 167.0648 167.0767 167.0817

200 166.8541 166.8657 166.8717 166.8742∑g
i=1 σ

2
ti = 1

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 916.6667 1269.2308 1580.4598 1762.8205

0.5 666.6667 818.1818 925.9259 980.3922

1 466.6667 525.0000 560.8974 577.5578

2 333.3333 355.2632 367.6471 373.1343

3 282.0513 294.6429 301.5351 304.5404

4 254.9020 263.5135 268.1518 270.1579

5 238.0952 244.5652 248.0159 249.5010

10 203.2520 206.0440 207.5033 208.1252

20 185.1852 186.4641 187.1257 187.4063

50 174.1294 174.6120 174.8601 174.9650

100 170.4073 170.6437 170.7650 170.8163

200 168.5393 168.6563 168.7163 168.7416∑g
i=1 σ

2
ti = 100

σ2
s ↓ g = 2 g = 3 g = 5 g = 10

0.25 1651.815 3671.149 9813.725 33366.667

0.5 1637.255 3595.694 9277.778 27833.333

1 1608.974 3454.128 8366.667 20916.667

2 1555.556 3203.390 7000.000 14000.000

3 1505.952 2988.189 6023.810 10541.667

4 1459.770 2801.471 5291.667 8466.667

5 1416.667 2637.931 4722.222 7083.333

10 1238.095 2052.632 3095.238 3939.394

20 1000.000 1446.429 1875.000 2142.857

50 666.6667 818.1818 925.9259 980.3922

100 466.6667 525.0000 560.8974 577.5578

200 333.3333 355.2632 367.6471 373.1343
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Table 4. Ranges of λ for di�erent values of n, µs and σ
2
s when g = 2

and

g∑
i=1

σ2
ti = 1.

µs = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0.28571 ∼ 1 0.45946 ∼ 1 0.56522 ∼ 1 0.80000 ∼ 1
0.5 0 ∼ 1 0.09091 ∼ 1 0.28571 ∼ 1 0.41176 ∼ 1 0.71429 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0.14894 ∼ 1 0.28571 ∼ 1 0.63636 ∼ 1
1 0 ∼ 1 0 ∼ 1 0.03846 ∼ 1 0.18032 ∼ 1 0.56522 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.33333 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.16129 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.02857 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.42857 ∼ 1 0.66667 ∼ 1 0.76471 ∼ 1 0.81818 ∼ 1 0.92307 ∼ 1
0.5 0.2500 ∼ 1 0.53846 ∼ 1 0.66667 ∼ 1 0.73913 ∼ 1 0.88679 ∼ 1
0.75 0.11111 ∼ 1 0.42857 ∼ 1 0.57895 ∼ 1 0.66667 ∼ 1 0.85185 ∼ 1
1 0 ∼ 1 0.33333 ∼ 1 0.50000 ∼ 1 0.60000 ∼ 1 0.81818 ∼ 1
2 0 ∼ 1 0.052632 ∼ 1 0.25000 ∼ 1 0.37931 ∼ 1 0.69492 ∼ 1
3 0 ∼ 1 0 ∼ 1 0.07143 ∼ 1 0.21212 ∼ 1 0.58730 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.08108 ∼ 1 0.49254 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.40845 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.09890 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.81818 ∼ 1 0.90476 ∼ 1 0.93548 ∼ 1 0.95122 ∼ 1 0.98019 ∼ 1
0.5 0.73913 ∼ 1 0.86046 ∼ 1 0.90476 ∼ 1 0.92771 ∼ 1 0.97044 ∼ 1
0.75 0.66667 ∼ 1 0.81818 ∼ 1 0.87500 ∼ 1 0.90476 ∼ 1 0.96078 ∼ 1
1 0.60000 ∼ 1 0.77778 ∼ 1 0.84615 ∼ 1 0.88235 ∼ 1 0.95122 ∼ 1
2 0.37931 ∼ 1 0.63265 ∼ 1 0.73913 ∼ 1 0.79775 ∼ 1 0.91388 ∼ 1
3 0.21212 ∼ 1 0.50943 ∼ 1 0.64384 ∼ 1 0.72043 ∼ 1 0.8779 ∼ 1
4 0.08108 ∼ 1 0.40351 ∼ 1 0.55844 ∼ 1 0.64948 ∼ 1 0.84331 ∼ 1
5 0 ∼ 1 0 ∼ 1 0.18812 ∼ 1 0.32231 ∼ 1 0.65975 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.42349 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 5. Ranges of λ for di�erent values of n, µsandσ
2
s when g = 5

and

g∑
i=1

σ2
ti = 1.

µs = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.26582 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.21622 ∼ 1 0.51261 ∼ 1 0.64634 ∼ 1 0.72249 ∼ 1 0.87891 ∼ 1
0.5 0 ∼ 1 0.25000 ∼ 1 0.42857 ∼ 1 0.53846 ∼ 1 0.78571 ∼ 1
0.75 0 ∼ 1 0.06509 ∼ 1 0.26168 ∼ 1 0.38996 ∼ 1 0.70132 ∼ 1
1 0 ∼ 1 0 ∼ 1 0.12971 ∼ 1 0.26761 ∼ 1 0.62455 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.37615 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.19363 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.05386 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.62338 ∼ 1 0.79211 ∼ 1 0.85644 ∼ 1 0.89035 ∼ 1 0.95465 ∼ 1
0.5 0.39665 ∼ 1 0.64474 ∼ 1 0.74825 ∼ 1 0.80505 ∼ 1 0.91717 ∼ 1
0.75 0.22549 ∼ 1 0.51976 ∼ 1 0.65198 ∼ 1 0.72712 ∼ 1 0.88111 ∼ 1
1 0.09170 ∼ 1 0.41243 ∼ 1 0.56576 ∼ 1 0.65563 ∼ 1 0.8464 ∼ 1
2 0 ∼ 1 0.10132 ∼ 1 0.29534 ∼ 1 0.42045 ∼ 1 0.71939 ∼ 1
3 0 ∼ 1 0 ∼ 1 0.10457 ∼ 1 0.24378 ∼ 1 0.60875 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.10619 ∼ 1 0.51149 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.42531 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.10914 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.71939 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

µs = 1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.89036 ∼ 1 0.94363 ∼ 1 0.96207 ∼ 1 0.97141 ∼ 1 0.98847 ∼ 1
0.5 0.80505 ∼ 1 0.89753 ∼ 1 0.93050 ∼ 1 0.94741 ∼ 1 0.97863 ∼ 1
0.75 0.72712 ∼ 1 0.85357 ∼ 1 0.89993 ∼ 1 0.92400 ∼ 1 0.96889 ∼ 1
1 0.65563 ∼ 1 0.81159 ∼ 1 0.87032 ∼ 1 0.90114 ∼ 1 0.95925 ∼ 1
2 0.42045 ∼ 1 0.66113 ∼ 1 0.76056 ∼ 1 0.81488 ∼ 1 0.92159 ∼ 1
3 0.24378 ∼ 1 0.53374 ∼ 1 0.66297 ∼ 1 0.73611 ∼ 1 0.88537 ∼ 1
4 0.10619 ∼ 1 0.424501 ∼ 1 0.57563 ∼ 1 0.66389 ∼ 1 0.85048 ∼ 1
5 0 ∼ 1 0.329787 ∼ 1 0.49701 ∼ 1 0.59744 ∼ 1 0.81686 ∼ 1
10 0 ∼ 1 0 ∼ 1 0.19809 ∼ 1 0.33156 ∼ 1 0.66556 ∼ 1
20 0 ∼ 1 0 ∼ 1 0.76056 ∼ 1 0 ∼ 1 0.42775 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 6. Ranges of K for di�erent values of n, w and σ2
s when µs = 0.1

, g = 5 and

g∑
i=1

σ2
ti = 1.

w = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.9
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 7. Ranges of K for di�erent values of n, w and σ2
s when µs =

0.5, g = 5 and

g∑
i=1

σ2
ti = 1.

w = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.21622 ∼ 1 0.59011 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.35135 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.17493 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.03926 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.0373 ∼ 1 0.36612 ∼ 1 0.52749 ∼ 1 0.62338 ∼ 1 0.83016 ∼ 1
0.5 0 ∼ 1 0.07296 ∼ 1 0.26903 ∼ 1 0.39665 ∼ 1 0.70532 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0.08538 ∼ 1 0.22549 ∼ 1 0.59642 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.09170 ∼ 1 0.50060 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.21006776 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.01378751 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.9
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.55470 ∼ 1 0.74946 ∼ 1 0.82569 ∼ 1 0.86636 ∼ 1 0.94431 ∼ 1
0.5 0.30435 ∼ 1 0.57894 ∼ 1 0.69811 ∼ 1 0.76471 ∼ 1 0.89873 ∼ 1
0.75 0.12344 ∼ 1 0.43872 ∼ 1 0.58719 ∼ 1 0.67355 ∼ 1 0.85525 ∼ 1
1 0 ∼ 1 0.32137 ∼ 1 0.48988 ∼ 1 0.59136 ∼ 1 0.81370 ∼ 1
2 0 ∼ 1 0 ∼ 1 0.19646 ∼ 1 0.33005 ∼ 1 0.66461 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.14245 ∼ 1 0.53817 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.00124 ∼ 1 0.42958 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.3353 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.00422 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 8. Range of K for di�erent values of n, w and σ2
s when µs = 1,

g = 5 and

g∑
i=1

σ2
ti = 1

w = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.26582 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.21622 ∼ 1 0.512606 ∼ 1 0.64634 ∼ 1 0.72249 ∼ 1 0.87891 ∼ 1
0.5 0 ∼ 1 0.25000 ∼ 1 0.42857 ∼ 1 0.53846 ∼ 1 0.78571 ∼ 1
0.75 0 ∼ 1 0.06509 ∼ 1 0.26168 ∼ 1 0.38996 ∼ 1 0.70132 ∼ 1
1 0 ∼ 1 0 ∼ 1 0.12971 ∼ 1 0.26761 ∼ 1 0.62455 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.37615 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.19363 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.05386 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.62338 ∼ 1 0.79211 ∼ 1 0.85644 ∼ 1 0.89036 ∼ 1 0.95465 ∼ 1
0.5 0.39665 ∼ 1 0.64473 ∼ 1 0.74825 ∼ 1 0.80505 ∼ 1 0.91718 ∼ 1
0.75 0.22549 ∼ 1 0.51976 ∼ 1 0.65198 ∼ 1 0.72712 ∼ 1 0.88111 ∼ 1
1 0.09170 ∼ 1 0.41243 ∼ 1 0.56576 ∼ 1 0.65563 ∼ 1 0.84638 ∼ 1
2 0 ∼ 1 0.10132 ∼ 1 0.29534 ∼ 1 0.42045 ∼ 1 0.71939 ∼ 1
3 0 ∼ 1 0 ∼ 1 0.10457 ∼ 1 0.24378 ∼ 1 0.60875 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.10619 ∼ 1 0.51149 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.42531 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.10913 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.9
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.86636 ∼ 1 0.93087 ∼ 1 0.95338 ∼ 1 0.96482 ∼ 1 0.98578 ∼ 1
0.5 0.76471 ∼ 1 0.87500 ∼ 1 0.91489 ∼ 1 0.93548 ∼ 1 0.97368 ∼ 1
0.75 0.67355 ∼ 1 0.82227 ∼ 1 0.87789 ∼ 1 0.90700 ∼ 1 0.96173 ∼ 1
1 0.59136 ∼ 1 0.77242 ∼ 1 0.84230 ∼ 1 0.87935 ∼ 1 0.94992 ∼ 1
2 0.33004 ∼ 1 0.59763 ∼ 1 0.71247 ∼ 1 0.77632 ∼ 1 0.90409 ∼ 1
3 0.14245 ∼ 1 0.45422 ∼ 1 0.59974 ∼ 1 0.68399 ∼ 1 0.86036 ∼ 1
4 0.00124 ∼ 1 0.33443 ∼ 1 0.50093 ∼ 1 0.60079 ∼ 1 0.81859 ∼ 1
5 0 ∼ 1 0.2328767 ∼ 1 0.41362 ∼ 1 0.5254237 ∼ 1 0.7786561 ∼ 1
10 0 ∼ 1 0 ∼ 1 0.09509 ∼ 1 ∼ 1 0.60269 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.33796 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 9. Range of K for di�erent values of n, w andσ2
s when µs = 0.1

, g = 2 and

g∑
i=1

σ2
ti = 1

w = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.9
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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Table 10. Range of K for di�erent values of n, w andσ2
s when µti = 1

, g = 2 and

g∑
i=1

σ2
ti = 1

w = 0.1
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.3
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0 ∼ 1 0.28571 ∼ 1 0.45946 ∼ 1 0.56521 ∼ 1 0.80000 ∼ 1
0.5 0 ∼ 1 0.09091 ∼ 1 0.28571 ∼ 1 0.41177 ∼ 1 0.71429 ∼ 1
0.75 0 ∼ 1 0 ∼ 1 0.14894 ∼ 1 0.28571 ∼ 1 0.63636 ∼ 1
1 0 ∼ 1 0 ∼ 1 0.03846 ∼ 1 0.18033 ∼ 1 0.56522 ∼ 1
2 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.16129 ∼ 1
3 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.02857 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.5
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.42857 ∼ 1 0.666667 ∼ 1 0.76471 ∼ 1 0.81818 ∼ 1 0.92307 ∼ 1
0.5 0.25000 ∼ 1 0.53846 ∼ 1 0.66667 ∼ 1 0.73913 ∼ 1 0.88679 ∼ 1
0.75 0.11111 ∼ 1 0.42857 ∼ 1 0.57895 ∼ 1 0.66667 ∼ 1 0.85185 ∼ 1
1 0 ∼ 1 0.33333 ∼ 1 0.50000 ∼ 1 0.60000 ∼ 1 0.81818 ∼ 1
2 0 ∼ 1 0.05263 ∼ 1 0.25000 ∼ 1 0.37931 ∼ 1 0.69492 ∼ 1
3 0 ∼ 1 0 ∼ 1 0.07143 ∼ 1 0.21212 ∼ 1 0.58730 ∼ 1
4 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.08108 ∼ 1 0.49253 ∼ 1
5 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.40845 ∼ 1
10 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.09890 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1

w = 0.9
σ2
s ↓ n = 5 n = 10 n = 15 n = 20 n = 50

0.25 0.78022 ∼ 1 0.88372 ∼ 1 0.92095 ∼ 1 0.94012 ∼ 1 0.97561 ∼ 1
0.5 0.6875 ∼ 1 0.83051 ∼ 1 0.88372 ∼ 1 0.91150 ∼ 1 0.96364 ∼ 1
0.75 0.60396 ∼ 1 0.78022 ∼ 1 0.84791 ∼ 1 0.88372 ∼ 1 0.95180 ∼ 1
1 0.52830 ∼ 1 0.73262 ∼ 1 0.81343 ∼ 1 0.85673 ∼ 1 0.94012 ∼ 1
2 0.28571 ∼ 1 0.56521 ∼ 1 0.687500 ∼ 1 0.75600 ∼ 1 0.89473 ∼ 1
3 0.10959 ∼ 1 0.42731 ∼ 1 0.57792 ∼ 1 0.66581 ∼ 1 0.85142 ∼ 1
4 0 ∼ 1 0.31174 ∼ 1 0.48171 ∼ 1 0.58435 ∼ 1 0.81006 ∼ 1
5 0 ∼ 1 0.21348 ∼ 1 0.39655 ∼ 1 0.51049 ∼ 1 0.77049 ∼ 1
10 0 ∼ 1 0 ∼ 1 0.08482 ∼ 1 0.22495 ∼ 1 0.59606 ∼ 1
20 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0.33333 ∼ 1
50 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1 0 ∼ 1
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