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Abstract

Distributional properties of continuous future lifetime of an individual
aged x have been studied. The expressions for moments, coe�cients of
skewness and kurtosis have been derived when newborn's lifetime fol-
lows di�erent distributions. The maximum likelihood (ML) estimation
of the parameters of future lifetime's distributions has been explored for
whole life and term assurance contracts. Simulations have been carried
out to �nd the ML estimates and the corresponding root mean square
errors.
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1. Introduction

Financial and actuarial models are built around the future lifetime random variable of
individuals. The distribution of future lifetime is required for statistical measurements,
analysis and inference. There are two approaches for modeling this distribution. In
the �rst approach, a theoretical statistical distribution is assumed for the future lifetime
associated with a stochastic status. In the second, empirical or observed survival and
mortality data are used for constructing life mortality tables [1, 3, 4, 12].
In Actuarial Science, the future lifetime of a life aged x plays a signi�cant role. The
importance of its distribution is highlighted when dealing with continuous whole life and
term assurance contracts where the death bene�t is paid at the moment of death. It also
plays a role while studying continuous n-year temporary and n-year deferred whole life
annuities. The distribution of future lifetime and its properties are utilized for �nding the
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expected present values (Actuarial values) and the variances of the present value random
variables for bene�ts or payments in case of continuous life annuities/assurances. The
force of mortality, alternatively known as failure rate/hazard rate function in reliability
is de�ned through its density function [1, 2, 3]. Let X be the new born's age at death
and f(x), F (x) and S(x) be the corresponding probability density function (pdf), cumu-
lative distribution function (cdf) and survival function (sf) respectively. (x) symbolizes
an individual aged x and T (x) denotes the future lifetime of (x) at the inception of an
insurance contract. The survival function of T (x) is written as

(1.1) tpx = P [T (x) > t] = P (X > x+ t | X > x) =
S(x+ t)

S(x)
.

tpx gives the survival probability that (x) survives for more than t years.
For t ≥ 0, tqx = 1− tpx gives the distribution function of T (x) and represents the prob-
ability that (x) does not survive beyond age t. The force of mortality is an important
and fundamental concept in modelling future lifetime and is de�ned as

(1.2) µx+t = limdt→0+
1

dt
P [t < T (x) ≤ t+ dt | T (x) > t] =

f(x+ t)

S(x+ t)
.

In reliability theory, µx is known as failure rate or hazard rate function and T (x) is
termed as residual life. One can refer to [2, 5] for the notations given above.
If the policies are not surrendered or do not lapse as in case of whole life assurance,
then the observed future lifetimes are uncensored. The censored observations arise if
the policyholders surrender the policy before the expiry of the contract. In some cases,
the policy lapses due to non-payment of regular premium amount. In term assurance
contract or n-year temporary policy, the death bene�t is paid only if the insured dies
within the term of the contract. In this case, the future lifetime of those individuals who
survive the term of the policy, will not be known to the company. The same is true for
an n-year temporary life annuity where annuity payments stop when an individual dies
within or after n years, whichever is earlier.
In literature, many authors have explored the ageing properties of T (x) [11]. The dis-
tributional and ageing properties of curtate future lifetime K(x), the greatest integer
less than or equal to T (x) have been already studied [6]. To the best of our knowledge,
the distributional properties of T (x) have not been studied so far. Hence, we study the
distributional forms of T (x) for di�erent distributions of X and explore the Maximum
Likelihood Estimation (MLE) for uncensored and censored cases. The distributions cho-
sen for X are Gompertz, exponential, Weibull, Pareto Type I, exponentiated exponential
and burr [7, 8]. Gompertz and Weibull are considered to be very good models for study-
ing human life-length. Pareto is a particular case of Benktander Gibrat distribution [9]
and Burr distribution is considered since Pareto type II is its special case.
The expressions for pdfs, nth order moments, coe�cients of skewness and kurtosis of
di�erent distributions of T (x) are derived in Section 2. In Sections 3 and 4, we discuss
the maximum likelihood (ML) estimation of parameters future lifetime's distributions
for uncensored and censored observations in case of whole life and n-year term assurance
contracts. Section 5 consists of simulation results for ML estimation using numerical
techniques. The root mean square errors (RMSEs) are also reported.

2. Distributional properties of future lifetime

In this section, we derive the nth order moment of T (x) which helps in �nding its
expectation, variance, coe�cients of skewness and kurtosis. The probability density
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function of T (x) is given by

(2.1) fT (x)(t) = − d

dt
tpx = tpxµx+t.

The cdf of T (x) is tqx =
∫ t
0 s
pxµx+s ds [2].

If we assume that the nth order moment of T (x) ,that is, E[(T (x))n] exists, then

E[(T (x))n] =

∫ ∞
0

tntpxµx+t dt

=

∫ t

0

ynypxµx+y dy +

∫ ∞
t

ynypxµx+y dy

≥
∫ t

0

ynypxµx+y dy + (tn)

∫ ∞
t

ypxµx+y dy

This implies that

E[(T (x))n]−
∫ t

0

ynypxµx+y dy ≥ (tn)

∫ ∞
t

ypxµx+y dy

≥ (tn)tpx(2.2)

As t→∞, LHS of (2.2) tends to zero if E[(T (x))n] exists and is �nite.
Hence limt→∞t

n
tpx ≤ 0.

On the other hand, tntpx ≥ 0. Therefore 0 ≤ limt→∞t
n
tpx ≤ 0.

This gives that limt→∞t
n
tpx = 0. Hence

E[(T (x))n] =

∫ ∞
0

tn d(−tpx) =

∫ ∞
0

ntn−1
tpx dt.(2.3)

For n = 1, if the expected value of T (x) is assumed to exist, then

E[T (x)] =

∫ ∞
0

tpxdt

as the existence of E[T (x)] implies that limt→∞ t(−tpx) = 0. ([2], Chapter 3, pp 68).

E[T (x)] is called the complete expectation of life and is denoted by e̊x. In reliability
theory, this is termed as the mean residual life function.
We also get

V [T (x)] = 2

∫ ∞
0

t(tpx) dt−
(∫ ∞

0
tpx

)2

.(2.4)

The expectation and variance of T (x) are same as derived in [2, 3].
If µk denotes the kth order central moment of T (x), then coe�cient of skewness is

γ1 =
µ3

µ
3/2
2

where µ2 = V [T (x)] and

µ3 =

∫ ∞
0

3t2tpx dt− 3

∫ ∞
0

tpx dt

∫ ∞
0

2ttpx dt+ 2

(∫ ∞
0

tpx dt

)3

.(2.5)

A measure of kurtosis is given by γ2 =
µ4

µ2
2

where

µ4 =

∫ ∞
0

4t3tpx dt− 4

(∫ ∞
0

tpx dt

)(∫ ∞
0

3t2tpx dt

)
+ 6

(∫ ∞
0

2ttpx dt

)(∫ ∞
0

tpx dt

)2

− 3

(∫ ∞
0

tpx dt

)4

.(2.6)



938

Using (1.1) and (2.1), we can �nd the probability density function (pdf) and force of
mortality of T (x) for di�erent distributions of X. For x, t > 0, the expressions for
survival probability (tpx) and force of mortality (µx+t) are listed in Table 1.

Table 1: Survival function and force of mortality of T (x)

Distribution of X tpx µx+t

Exp(λ),

λ > 0 e−λt λ

Gompertz (α, λ),

α > 0, λ > 1 e−(αλx(λt−1))/logλ αλ(x+t)

Weibull (α, λ),

α > 0, λ > 0
e−(λ(x+t))α

e−(λx)α
αλα(x+ t)α−1

Pareto (θ),

θ > 0
xθ

(x+ t)θ
θ

(x+ t)

Burr (γ, θ),

γ > 0, θ > 0
(1 + xγ)θ

(1 + (x+ t)γ)θ
γθ(1 + xγ)θ(x+ t)γ−1

(1 + (x+ t)γ)

Exponentiated Exp. (α, λ),

α > 0, λ > 0
1− (1− e−λ(x+t))α

1− (1− e−λx)α
α(1− e−λ(x+t))α−1λe−λ(x+t)

1− (1− e−λ(x+t))α

From Table 1, we can conclude that :

• For X ∼ Exp (λ) and all λ, tpx is independent of x, the initial age;
• For X ∼ Gompertz (α, λ), tpx is a decreasing function of x for all α > 0 and
λ > 1;

• For X ∼ Weibull (α, λ), tpx is an increasing (decreasing) function of x for all λ
and 0 < α < 1 (α > 1) ;

• For X ∼ Pareto (θ), tpx is an increasing function of x for all θ;
• For X ∼ Burr (γ, θ), tpx is an increasing function of x for all θ, γ;
• For X ∼ Exponentiated Exp (α, λ), tpx is an increasing (decreasing) function of
x for all α and λ > 1 (0 < λ < 1).

Since tpx = P [T (x) > t] is the survival function of T (x), hence it is decreasing in t
for the distribution under consideration. The pdfs of future lifetime distributions of X
mentioned in Table 1 can be obtained by multiplying tpx and µx+t.

In the sequel, the distributions of T (x) shall be labeled as future lifetime distributions.

3. Estimation of the parameters for uncensored case

In insurance sector, a whole life assurance policy provides cover till the death of the
insured. We assume that the insured takes out life assurance by paying either a sin-
gle premium or a series of premiums and does not surrender the policy till his death.
Suppose factory workers buy a whole life assurance policy from the insurer, by paying
a single premium. Insurer is liable to pay the sum assured at the moment of death of
the individual. Hence, it is important for the insurer to predict the future lifetime of the
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insured for deciding the premium amount so that the assurance contract is mutually ad-
vantageous. The future lifetime T (x) of the insured aged x can be modeled by assuming
some continuous distribution of X and for doing this accurately, the parameters of the
distribution of T (x) need to be estimated and this is done through method of maximum
likelihood (ML) estimation. As the insurance companies are more interested in future
lifetime modelling, it will be observed that the MLEs based on future lifetime can be
directly computed by knowing the age of the policyholder at the time of initiation of the
policy.
In the following subsections, we discuss the Maximum Likelihood (ML) estimation of
parameters of future lifetime distributions when X follows exponential, Weibull, Pareto,
burr, exponentiated exponential and Gompertz distributions. For a sample of n individ-
uals aged x, let ti(x) denote the future lifetime of the ith individual. For exponential and
Pareto future lifetime distributions, the ML estimators of the parameters can be written
in a closed form whereas for other distributions under study, the non-linear equations
result while maximizing the log-likelihood. As it is di�cult to solve these equations
analytically, the estimates are obtained in Section 5 by using numerical approximation
through BFGS in R.

3.1. Exponential future lifetime distribution. If X follows Exp (λ), then the pdf
of T (x) is

fT (x)(t(x), λ) = λe−λt(x), λ > 0.

The corresponding likelihood function is

L(t(x), λ) =

n∏
i=1

fT (x)(ti(x), λ) = λne−λ
∑n
i=1 ti(x).

Maximizing LogL(t(x), λ) with respect to λ gives the MLE of λ as

λ̂ =
1

t(x)
where t(x) =

1

n

n∑
i=1

ti(x).

Hence ML estimator of λ for exponential future lifetime distribution is of similar type as
for exponential distribution.

3.2. Pareto type I future lifetime distribution. Let X follow Pareto (θ), then the
likelihood function for T(x) is

L(t(x), θ) =

n∏
i=1

θxθ

(x+ ti(x))θ+1
, θ > 0, and x > 0.

Taking log on both sides and di�erentiating with respect to θ, we get

dlog(L(t(x), θ))

dθ
= n

(
1

θ
+ logx

)
−

n∑
i=1

log(x+ ti(x)).(3.1)

Equating (3.1) to zero and solving, the MLE of θ is found to be

θ̂ =
n∑n

i=1 log(
x+ ti(x)

x
)

.



940

3.3. Weibull future lifetime distribution. For X following Weibull (α, λ), the pdf
of T (x) is given by

fT (x)(t(x), λ, α) = αλα(x+ t(x))(α−1)e−λ
α((x+t(x))α−xα), α, λ > 0, t(x) > 0.

The corresponding log-likelihood can be written as

log(L(t(x), λ, α)) =

n∑
i=1

log{αλα(x+ ti(x))α−1e−λ
α((x+ti(x))

α−xα)}.

ML estimators of λ and α can be obtained by equating the derivatives of loglikelihood
with respect to λ and α to zero and solving where

dlog(L(t(x), λ, α))

dλ
=
nα

λ
− αλα−1

(
n∑
i=1

(x+ ti(x))α − nxα
)

;

dlog(L(t(x), λ, α))

dα
= n

(
1

α
+ logλ+ (λx)αlog(λx)

)
+

n∑
i=1

log(x+ ti(x)) (1− (λ(x+ ti(x)))α)

− logλ
n∑
i=1

(λ(x+ ti(x)))α .

3.4. Burr future lifetime distribution. If X follows Burr (γ, θ) then

fT (x)(t(x), θ, γ) =
γθ(1 + xγ)θ(x+ t(x))γ−1

(1 + (x+ t(x))γ)θ+1
, γ > 0 and θ > 0

If L(t(x), θ, γ) denotes the likelihood function,then

dlog(L(t(x), θ, γ))

dγ
=
n

γ
+
nθxγ logx

(1 + xγ)

+

n∑
i=1

log(x+ ti(x))

(
1− (x+ ti(x))γ(θ + 1)

1 + (x+ ti(x))γ

)
;(3.2)

dlog(L(t(x), θ, γ))

dθ
=
n

θ
+ nlog(1 + xγ)−

n∑
i=1

log(1 + (x+ ti(x))γ).(3.3)

The ML estimators of θ and γ shall be obtained by equating (3.2) and (3.3) to zero and
�nding numerical solutions to the non-linear equations in Section 5.

3.5. Exponentiated exponential future lifetime distribution. Let X follow Ex-
ponentiated Exponential (α, λ), then the corresponding likelihood function is

L(t(x), α, λ) =

n∏
i=1

αλ(1− e−λ(x+ti(x)))α−1e−λ(x+ti(x))

1− (1− e−λx)α
.

The ML estimators of α and λ can be obtained using the non-linear expressions given by

dlog(L(t(x), λ, α))

dλ
=n

(
1

λ
+
αxe−λx(1− e−λx)α−1

1− (1− e−λx)α

)
+

n∑
i=1

(x+ ti(x))

(
(α− 1)e−λ(x+ti(x))

1− e−λ(x+ti(x))
− 1

)
;(3.4)
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dlog(L(t(x), λ, α))

dα
=n

(
1

α
+

(1− e−λx)αlog(1− e−λx)

1− (1− e−λx)α

)
+

n∑
i=1

log(1− e−λ(x+ti(x))).(3.5)

3.6. Gompertz future lifetime distribution. The pdf of T (x), whenX follows Gom-
pertz (α, λ), is

fT (x)(t(x)) = αλ(x+t(x))e

−αλx(λt(x) − 1)

logλ α > 0, λ > 1, t(x) and x > 0.

L(t(x), α, λ) =

n∏
i=1

αλx+ti(x)e

−αλx(λti(x) − 1)

logλ

is the corresponding likelihood function.
Hence

dlog(L(t(x), α, λ))

dα
=
n

α
−

n∑
i=1

λx(λti(x) − 1)

logλ
;(3.6)

dlog(L(t(x), α, λ))

dλ
=
αλx−1

logλ

n∑
i=1

(
(λti(x) − 1)(

1

logλ
− x)− λti(x)ti(x)

)

+

n∑
i=1

(x+ ti(x))

λ
.(3.7)

Equating (3.6) and (3.7) to zero, the MLEs of α and λ are obtained in simulations section
using numerical approximation.

The following section discusses the estimation of parameters of di�erent continuous future
lifetime distributions when some observations are censored in a given set of observations.

4. Estimation of parameters in censored case

In insurance sector, it is possible that some insured persons do not continue the con-
tract due to some reasons. They surrender the policy or don't pay the renewal premium
after few years to draw bene�t from the contract. Such individuals are considered to be
censored and their time of death is not known. The time of occurrence of such events is
not known in advance and is a random variable, named as censoring variable. This type
of censoring is known as right censoring.
For an individual aged x, let the random variable C(x) be the time at which an individ-
ual either leaves the contract or stops paying premium and is randomly censored. T (x)
and C(x) are assumed to be independent. In the subsequent discussion, we study the
estimation under term assurance contract and whole life assurance contract in case of
censoring.

4.1. Estimation for term assurance contract. We consider a term assurance con-
tract, tenable for t0 years. Under this contract, an insurer pays the sum assured only if
insured dies within the term of the contract. This means that at the time of inception of
the policy, a policy holder aged x gets the bene�t if he dies between x and x+ t0. Hence,
the insured ones surviving at time t0 and those who surrender the policy due to one or
the other reason are lost to further follow up by the company. Surviving persons are right
censored at a predetermined time t0 and those who surrender the policy are randomly
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censored. We attempt to estimate the unknown parameters of the distributionsof future
lifetime. For this type of situation, we attempt to estimate the unknown parameters of
the distributions of future lifetime.
Let the random variable Z be de�ned as

Z = min(T (x), C(x), t0) =


T (x) if T (x) < C(x) and T (x) < t0;

C(x) if C(x) < T (x) and C(x) < t0;

t0 if t0 < T (x) and t0 < C(x).

For ith life aged x, we take ti(x) to be the future lifetime and ci(x), the censoring time.
This means that the policy is either surrendered or gets lapsed. We assume that, there
are n individuals aged x in the cohort and a total of m leave the cohort due to death
or some other reason. Out of m, r is assumed to be the random no. of individuals that
leave the cohort due to death. Hence, there will be (n −m) observations in the cohort
at time t0 and the likelihood function [10] can be written as

L(z) =

r∏
i=1

fT (x)(ti(x))ḠC(x)(ti(x))

m∏
i=r+1

gC(x)(ci(x))F̄T (x)(ci(x))

[
F̄T (x)(t0)ḠC(x)(t0)

]n−m
(4.1)

where
F̄T (x)(.) : survival function of T (x),

ḠC(x)(.) : survival function of C(x),
gC(x)(.) : probability density function of C(x).
In the following discussion, we explore the maximum likelihood estimation of the param-
eters of exponential, Weibull, Pareto, burr and Gompertz future lifetime distributions
when some observations are censored. For all the cases, the distribution of C(x) is as-
sumed to follow U(0, η) where the value of η depends on the percentage of censoring.

4.1.1. Exponential future lifetime distribution. If λ is the parameter of exponential dis-
tribution followed by X, the likelihood function for T (x) using (4.1), is written as

L(z, λ) =λre−λ
∑r
i=1 ti(x)

(
r∏
i=1

(
1− ti(x)

η

))(
e−λ

∑m
i=r+1 ci(x)

ηm−r

)
(
e−λt0

(
1− t0(x)

η

))n−m
.

Maximizing the loglikelihood, we have

λ̂ =
r∑r

i=1 ti(x) +
∑m
i=r+1 ci(x) + (n−m)t0

.

4.1.2. Weibull future lifetime distribution. Let X follow Weibull (α, λ) and C(x) follow
U(0, η), then

L(z, α, λ) = en(λx)
α

r∏
i=1

αλα (x+ ti(x))α−1 e−(λ(x+ti(x)))
α
(

1− ti(x)

η

)
m∏

i=r+1

e−(λ(x+ci(x)))
α

η

(
e−(λ(x+t0))

α
(

1− t0(x)

η

))n−m
.
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Hence

dLog(L(z, α, λ))

dα
=
r

α
+ rlogλ+ n(λx)αlog(λx)

+

r∑
i=1

(log(x+ ti(x))− λα(x+ ti(x))αlog(λ(x+ ti(x))))

−
m∑

i=r+1

(λ(x+ ci(x)))αlog(λ(x+ ci(x)))

− (n−m)(λ(x+ t0))αlog(λ(x+ t0));(4.2)

dLog(L(z, α, λ))

dλ
=
αr

λ
+ αλα−1(nxα − (n−m)(x+ t0)α)

− αλα−1(

r∑
i=1

(x+ ti(x))α +

m∑
i=r+1

(x+ ci(x))α)(4.3)

ML estimates of α and λ are found by solving the non-linear equations obtained as a
result of equating (4.2) and (4.3) to zero. This is done using numerical approximation
and corresponding RMSEs are calculated in Section 5.

4.1.3. Pareto type I future lifetime distribution. If X follows Pareto (θ), θ > 0, the MLE
of θ is

θ̂ =
r∑r

i=1 log(x+ ti(x))− nlogx+
∑m
i=r+1 log(x+ ci(x)) + (n−m)log(x+ t0)

.

4.1.4. Burr future lifetime distribution. For X ∼Burr(γ, θ) γ, θ > 0, the ML estimators
of θ and γ can be obtained using non-linear equations given by

dLog(L(z, γ, θ))

dθ
=
r

θ
+ nlog(1 + xγ)−

r∑
i=1

log(1 + (x+ ti(x))γ)

−
m∑

i=r+1

log(1 + (x+ ci(x))γ)− (n−m)log(1 + (x+ t0)γ);

dLog(L(z, γ, θ))

dγ
=
r

γ
+
nθxγ logx

(1 + xγ)
+

r∑
i=1

log(x+ ti(x))

(
1− θ(x+ ti(x))γ

(1 + (x+ ti(x))γ)

)

− θ
m∑

i=r+1

(x+ ci(x))γ log(x+ ci(x))

(1 + (x+ ci(x))γ)

− (n−m)θ(x+ t0)γ log(x+ t0)

(1 + (x+ t0)γ)
.

The estimation of γ and θ shall be explored in Section 5 by using numerical methods.
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4.1.5. Gompertz future lifetime distribution. If X follows Gompertz (α, λ), then using
the log-likelihood function, we have

dLog(L(z, α, λ))

dα
=
nλx

logλ
+
r

α
+

r∑
i=1

(x+ ti(x))logλ

− λx

logλ

(
r∑
i=1

λti(x) +

m∑
i=r+1

λci(x)
)
− (n−m)

λx+t0

logλ
.(4.4)

dLog(L(z, α, λ))

dλ
=nαλx−1 xlogλ− 1

(logλ)2
− (n−m)αλx+t0−1 logλ(x+ t0)− 1

(logλ)2

+

r∑
i=1

x+ ti(x)

λ
−

r∑
i=1

αλx+ti(x)−1 logλ(x+ ti(x))− 1

(logλ)2

−
m∑

i=r+1

αλx+ci(x)−1 logλ(x+ ci(x))− 1

(logλ)2
;(4.5)

By applying Newton-Raphson Method and using (4.4) and (4.5), the estimates are found
in Section 5.

4.2. Estimation for whole life assurance contracts in case of censoring. In
insurance, there are some policies which pay bene�t till or at the time of the death of
the insured, known as whole life assurance contracts. This happens provided the insured
does not leave the cohort due to any other reason except death. To evaluate bene�ts
accurately under this situation, the insurance company takes account of all the conditions
under which insured may leave the contract. For example, the insured may surrender the
policy at a random time giving rise to a censored observation. We take account of this
censoring for estimation of parameters of the future lifetime distributions under whole

life assurance contract. We write Z = min(T (x), C(x)) =

{
T (x) if T (x) < C(x)

C(x) if C(x) < T (x)

where T (x) and C(x) are de�ned in Section 4.1.
The likelihood function, under random right censoring [10] is written as

L(z) =

r∏
i=1

fT (x)(ti(x))ḠC(x)(ti(x))

n∏
i=r+1

gC(x)(ci(x))F̄T (x)(ci(x)).(4.6)

In the following subsections, ML estimation of unknown parameters of di�erent future
lifetime distributions shall be discussed by assuming that C(x) ∼ U(0, η) where the value
of η depends upon the assumed percentage of censoring.

4.2.1. Exponential future lifetime distribution. Let X follow Exponential (λ), then using
(4.6)

L(z, λ) = λre−λ
∑r
i=1 ti(x)

r∏
i=1

(
1− ti(x)

η

)
e−λ

∑n
i=r+1 ci(x)

ηn−r
.

Di�erentiating the log-likelihood with respect to λ and solving the normal equation, we
get

λ̂ =
r∑r

i=1 ti(x) +
∑n
i=r+1 ci(x)

.
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4.2.2. Weibull future lifetime distribution. If X follows Weibull (α, λ), then considering
the log likelihood and di�erentiating with respect to α and λ, we get

dLog(L(z, α, λ))

dα
=
r

α
+ rlogλ+ n(λx)αlog(λx) +

r∑
i=1

log(x+ ti(x))

−
r∑
i=1

(x+ ti(x))αλαlog(λ(x+ ti(x)))

−
n∑

i=r+1

(λ(x+ ci(x)))αlog(λ(x+ ci(x)));(4.7)

dLog(L(z, α, λ))

dλ
=
αr

λ
− αλα−1

(
nxα +

r∑
i=1

(x+ ti(x))α −
n∑

i=r+1

(x+ ci(x))α
)
.(4.8)

When (4.7) and (4.8) are equated to zero, the resulting non-linear equations can be solved
using numerical methods. The results are demonstrated in Section 5.

4.2.3. Pareto type I future lifetime distribution. If X follows Pareto (θ), θ > 0, then
di�erentiation of log likelihood with respect to θ and equating the resulting expressions
to zero, gives

θ̂ =
r∑r

i=1 log(x+ ti(x))− nlogx+
∑n
i=r+1 log(x+ ci(x))

.

4.2.4. Burr future lifetime distribution. Let X follow Burr (γ, θ), γ, θ > 0, then

dLog(L(z, γ, θ))

dθ
=
r

θ
+ nlog(1 + xγ)−

r∑
i=1

log(1 + (x+ ti(x))γ)

−
n∑

i=r+1

log(1 + (x+ ci(x))γ);(4.9)

dLog(L(z, γ, θ))

dγ
=
r

γ
+
rθxγ log(x)

(1 + xγ)
+

r∑
i=1

log(x+ ti(x))− (θ + 1)

r∑
i=1

(x+ ti(x))γ log(x+ ti(x))

(1 + (x+ ti(x))γ)
+
θ(n− r)xγ logx

(1 + xγ)

− θ
n∑

i=r+1

(x+ ci(x))γ log(x+ ci(x))

(1 + (x+ ci(x))γ)

=
r

γ
+
nθxγ logx

(1 + xγ)

+

r∑
i=1

log(x+ ti(x))

[
1− (θ + 1)

(x+ ti(x))γ

(1 + (x+ ti(x))γ)

]

− θ
n∑

i=r+1

(x+ ci(x))γ log(x+ ci(x))

(1 + (x+ ci(x))γ)
.(4.10)

In Section 5, the estimates of γ and θ are obtained by equating (4.9) and (4.10) to zero
and solving the resulting equations using numerical methods.
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4.2.5. Gompertz future lifetime distribution. If X follows Gompertz (α, λ),

dLog(L(z, α, λ))

dα
=
nλx

logλ
+
r

α
+

r∑
i=1

(x+ ti(x))logλ

− λx

logλ

[
r∑
i=1

λti(x) +

n∑
i=r+1

λci(x)
]
.

dLog(L(z, α, λ))

dλ
=nαλx−1 xlogλ− 1

(logλ)2
+

r∑
i=1

x+ ti(x)

λ

− αλx−1

(logλ)2

r∑
i=1

λti(x)(logλ(x+ ti(x))− 1)

+
αλx−1

(logλ)2
λci(x)(logλ(x+ ci(x))− 1);

The maximum likelihood estimates are presented in Section 5.

5. Simulations

In this section, we generate random samples of sizes 50, 100 and 500 from di�er-
ent continuous future lifetime distributions and estimate their parameters, using BFGS
method in R. The root mean square errors (RMSEs) are evaluated to check the extent
of the deviation of the estimate from the true value. The number of replications is 10000
for starting age x = 20, 40 and 60.

5.1. Uncensored case for whole life assurance contract. Tables 2-5 give the esti-
mates and the corresponding RMSEs when the data sets are generated from Weibull (α
= 1.5 and λ = 2.5), Burr (θ = 3 and γ = 2), exponentiated exponential (α = 1.5 and λ
= 0.5) and Gompertz (α = 0.0005 and λ = 1.08) future lifetime distributions.

Table 2: Estimates and RMSEs for Weibull future lifetime dist.

x n = 50 n = 100 n = 500

20
1.5223 2.4262 1.5034 2.4856 1.4987 2.5371
(0.0626) (0.2134) (0.0435) (0.1947) (0.0112) (0.1255)

40
1.4963 2.5496 1.4978 2.5064 1.4989 2.5072
(0.0173) (0.1034) (0.0097) (0.0891) (0.0055) (0.0350)

60
1.4979 2.5390 1.4999 2.4969 1.5005 2.4979
(0.0085) (0.0820) (0.0044) (0.0543) (0.0039) (0.0131)

Table 3: Estimates and RMSEs for Burr future lifetime dist.

x n = 50 n = 100 n = 500

20
2.8290 2.2758 3.0099 2.2939 2.9358 2.1314
(0.2532) (0.2430) (0.2232) (0.2014) (0.1532) (0.1232)

40
2.8971 2.1205 2.8451 2.0950 2.9291 2.0868
(0.1917) (0.1859) (0.1603) (0.1215) (0.0951) (0.0843)

60
2.9680 2.1660 3.0494 2.1077 3.0121 2.0750
(0.0959) (0.1123) (0.0751) (0.0825) (0.0275) (0.0372)
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Table 4: Estimates and RMSEs for Exponentiated Exp. future lifetime dist.

x n = 50 n = 100 n = 500

20
1.5995 0.5102 1.5990 0.5047 1.5991 0.5008
(0.2468) (0.0740) (0.1024) (0.0512) (0.0991) (0.0223)

40
1.5999 0.5109 1.5985 0.5048 1.5925 0.5013
(0.2215) (0.0706) (0.0985) (0.0511) (0.0925) (0.0220)

60
1.5212 0.4873 1.5002 0.4997 1.5001 0.5071
(0.2076) (0.0685) (0.0832) (0.0434) (0.0604) (0.0198)

Table 5: Estimates and RMSEs for Gompertz future lifetime dist.

x n = 50 n = 100 n = 500

20
1.0828 0.0005 1.0813 0.0005 1.0802 0.0005
(0.0117) (0.0003) (0.0080) (0.0002) (0.0034) (0.0000)

40
1.0834 0.0005 1.0819 0.0005 1.0802 0.0005
(0.0150) (0.0005) (0.0103) (0.0003) (0.0044) (0.0001)

60
1.0869 0.0009 1.0838 0.0006 1.0811 0.0005
(0.0256) (0.0020) (0.0170) (0.0008) (0.0078) (0.0002)

On the basis of values in Tables 2-5, we conclude that for all future lifetime distributions
under study

• RMSEs decrease as sample size increases, that is, the estimates get closer to the
assumed values of the parameters for large samples;

• RMSEs decrease as initial age increases, except when X follows Gompertz dis-
tribution.

5.2. Censored case. As mentioned in Section 4.1, C(x), the censoring variable is as-
sumed to follow U(0, η). The parameter η for C(x) is determined by assuming 30%
censoring in the data, that is, by solving

(5.1) P [T (x) > C(x)] = 0.30.

We �nd the values of η for di�erent combinations of parameters of T (x). The values are
generated from the future lifetime and Uniform distributions. These generated sets of
values are used to estimate the values of parameters when x = 20, 40, 60; n =
50, 100, 500 and t0 = 10, 20, 30, 40 and 50.

5.3. Term life assurance contract. Tables 6 − 8 display the values of η, estimates
of parameters of future lifetime distributions and the corresponding RMSEs when the
random samples are generated from Weibull (α = 1.5 and λ = 2.5), Burr (θ = 3 and
γ = 2), and Gompertz (α = 0.0005 and λ = 1.08) future lifetime distributions. The
values in the parentheses give the RMSEs.
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Table 6: Estimates and RMSEs for censored Weibull future lifetime dist.

n = 50 n = 100 n = 500

t0 x = 20, η = 0.120

10
1.5126 2.4146 1.5005 2.4996 1.4946 2.5400
(0.0505) (0.2500) (0.0339) (0.1596) (0.0120) (0.0779)

20
1.5090 2.4321 1.5010 2.5086 1.5008 2.5122
(0.0462) (0.2243) (0.0281) (0.1375) (0.0097) (0.0561)

30
1.5050 2.4374 1.4962 2.5332 1.4966 2.5189
(0.0451) (0.2072) (0.0262) (0.1359) (0.0096) (0.0453)

40
1.5051 2.4573 1.4995 2.5228 1.4994 2.5199
(0.0415) (0.1689) (0.0259) (0.1283) (0.0060) (0.0319)

50
1.5025 2.4737 1.5111 2.4781 1.4960 2.5076
(0.0399) (0.1374) (0.0160) (0.0932) (0.0058) (0.0109)

t0 x = 40, η = 0.085

10
1.5044 2.4819 1.4963 2.5165 1.4992 2.5104
(0.0223) (0.0288) (0.0172) (0.0271) (0.0073) (0.0215)

20
1.5041 2.4809 1.4978 2.5149 1.5014 2.5121
(0.0221) (0.0283) (0.0155) (0.0269) (0.0050) (0.0200)

30
1.5019 2.4842 1.4975 2.5151 1.4989 2.5121
(0.0198) (0.0251) (0.0143) (0.0250) (0.0046) (0.0188)

40
1.5066 2.4867 1.5003 2.5129 1.4996 2.5025
(0.0189) (0.0198) (0.0140) (0.0225) (0.0031) (0.0074)

50
1.5007 2.4891 1.4969 2.5115 1.5022 2.5044
(0.0166) (0.0152) (0.0140) (0.0178) (0.0027) (0.0056)

t0 x = 60, η = 0.070

10
1.5045 2.4745 1.4961 2.5112 1.4988 2.5094
(0.0225) (0.0354) (0.0165) (0.0185) (0.0068) (0.0154)

20
1.5024 2.4803 1.4987 2.5090 1.4978 2.5086
(0.0188) (0.0321) (0.0141) (0.0163) (0.0063) (0.0146)

30
1.5043 2.4798 1.4983 2.5085 1.4992 2.5090
(0.0179) (0.0313) (0.0140) (0.0154) (0.0062) (0.0145)

40
1.5005 2.4834 1.4971 2.5082 1.4996 2.5078
(0.0145) (0.0292) (0.0138) (0.0153) (0.0058) (0.0122)

50
1.5008 2.4930 1.4981 2.5083 1.4978 2.5059
(0.0097) (0.0112) (0.0075) (0.0132) (0.0055) (0.0094)
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Table 7: Estimates and RMSEs for censored Burr future lifetime dist.

n = 50 n = 100 n = 500

t0 x = 20, η = 12.5

10
2.8388 2.1497 2.7930 2.1671 2.9601 1.9129
(0.4877) (0.4392) (0.4562) (0.4278) (0.4223) (0.3762)

20
2.7799 2.1659 2.7020 2.1905 2.7613 2.1185
(0.4583) (0.4363) (0.4303) (0.3959) (0.3686) (0.3444)

30
2.8021 2.1510 2.7854 2.1594 2.8359 2.0595
(0.4409) (0.4301) (0.4184) (0.3630) (0.3455) (0.3442)

40
2.7928 2.8010 2.8010 2.0806 2.8289 1.9735
(0.4223) (0.4246) (0.3799) (0.3507) (0.2966) (0.3100)

50
2.7881 2.1392 2.8250 2.0729 2.8856 2.0961
(0.4164) (0.4047) (0.3375) (0.3427) (0.2114) (0.2697)

t0 x = 40, η = 24.5

10
3.0250 2.0045 2.9921 1.9985 3.0059 1.9823
(0.1755) (0.2133) (0.1284) (0.1396) (0.1194) (0.0880)

20
3.0125 1.9932 2.9800 2.0007 2.9889 2.0159
(0.1612) (0.1959) (0.1260) (0.1232) (0.0845) (0.0669)

30
3.0040 2.0299 2.9796 2.0163 2.9725 2.0095
(0.1542) (0.1897) (0.1243) (0.1089) (0.0749) (0.0648)

40
3.0106 2.0249 3.0105 2.0480 2.9850 2.0053
(0.1486) (0.1751) (0.1212) (0.1089) (0.0609) (0.0521)

50
3.0094 2.0327 3.0456 2.0641 2.9677 1.9673
(0.1468) (0.1678) (0.0789) (0.1086) (0.0322) (0.0326)

t0 x = 60, η = 36.5

10
2.9772 2.0113 2.9767 1.9349 2.9865 1.9384
(0.1561) (0.2291) (0.1002) (0.1775) (0.0394) (0.0801)

20
2.9883 1.9486 2.9665 1.9524 2.9826 1.9800
(0.1548) (0.2113) (0.0952) (0.1261) (0.0206) (0.0294)

30
3.0091 1.9647 2.9534 1.9456 3.0122 2.0202
(0.1240) (0.1948) (0.0925) (0.1100) (0.0122) (0.0202)

40
2.9685 1.9464 2.9505 1.9368 2.9842 1.9778
(0.1206) (0.1938) (0.0778) (0.0951) (0.0117) (0.0200)

50
2.9497 1.9234 3.0084 2.0135 3.0086 2.0171
(0.0730) (0.1317) (0.0599) (0.0848) (0.0086) (0.0171)
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Table 8: Estimates and RMSEs for censored Gompertz future lifetime dist.

n = 50 n = 100 n = 500

t0 x = 20, η = 130

10
1.1917 0.0001 1.1688 0.0001 1.1332 0.0002
(0.1395) (0.0003) (0.1155) (0.0003) (0.0812) (0.0003)

20
1.1302 0.0002 1.1172 0.0002 1.0901 0.0004
(0.0725) (0.0003) (0.0575) (0.0003) (0.0268) (0.0002)

30
1.1078 0.0003 1.0980 0.0003 1.0822 0.0005
(0.0453) (0.0003) (0.0345) (0.0002) (0.0122) (0.0001)

40
1.0961 0.0003 1.0900 0.0004 1.0807 0.0005
(0.0296) (0.0003) (0.0203) (0.0002) (0.0065) (0.0001)

50
1.0874 0.0004 1.0830 0.0004 1.0807 0.0004
(0.0165) (0.0002) (0.0104) (0.0002) (0.0050) (0.0001)

t0 x = 40, η = 70

10
1.1394 0.0001 1.1362 0.0002 1.1082 0.0002
(0.0786) (0.0003) (0.0716) (0.0003) (0.0420) (0.0003)

20
1.1044 0.0002 1.1029 0.0002 1.0840 0.0004
(0.0366) (0.0003) (0.0333) (0.0003) (0.0128) (0.0002)

30
1.0982 0.0002 1.0891 0.0003 1.0811 0.0005
(0.0257) (0.0003) (0.0169) (0.0002) (0.0069) (0.0001)

40
1.0869 0.0004 1.0842 0.0004 1.0805 0.0005
(0.0143) (0.0002) (0.0110) (0.0002) (0.0052) (0.0001)

50
1.0903 0.0003 1.0854 0.0004 1.0801 0.0005
(0.0170) (0.0002) (0.0096) (0.0002) (0.0048) (0.0001)

t0 x = 60, η = 34

10
1.1143 0.0002 1.1108 0.0002 1.0882 0.0003
(0.0471) (0.0003) (0.0424) (0.0003) (0.0161) (0.0002)

20
1.1038 0.0002 1.0947 0.0003 1.0851 0.0004
(0.0330) (0.0003) (0.0228) (0.0003) (0.0106) (0.0002)

30
1.1033 0.0002 1.0941 0.0002 1.0822 0.0004
(0.0327) (0.0003) (0.0197) (0.0003) (0.0077) (0.0002)

40
1.1040 0.0002 1.0955 0.0003 1.0836 0.0004
(0.0324) (0.0003) (0.0247) (0.0003) (0.0084) (0.0002)

50
1.1039 0.0002 1.0948 0.0003 1.0827 0.0004
(0.0314) (0.0003) (0.0228) (0.0003) (0.0078) (0.0002)

From Tables 6− 8, it can be observed that RMSEs decrease with an increase in sample
size n, initial age x and term of the contract t0.

5.4. Whole life assurance contract. Tables 9−11 show the estimates and the corre-
sponding RMSEs (in parantheses) when the data sets are generated fromWeibull (α = 1.5
and λ = 2.5), Burr (θ = 3 and γ = 2) and Gompertz (α = 0.0005 and λ = 1.08) future
lifetime distributions.
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Table 9: Estimates and RMSEs for censored Weibull future lifetime dist.

n = 50 n = 100 n = 500

η = 0.120 for
1.5003 2.4969 1.4984 2.5011 1.4999 2.5003

x = 20 (0.0182) (0.0097) (0.0114) (0.0075) (0.0075) (0.0030)

η = 0.085 for
1.5051 2.4978 1.4980 2.5012 1.4975 2.5006

x = 40 (0.0224) (0.0141) (0.0154) (0.0088) (0.0079) (0.0046)

η = 0.070 for
1.5022 2.4823 1.5005 2.5001 1.4948 2.5017

x = 60 (0.0264) (0.1188) (0.0356) (0.0511) (0.0124) (0.0156)

Table 10: Estimates and RMSEs for censored Burr future lifetime dist.

n = 50 n = 100 n = 500

η = 12.5 for
2.9836 2.1824 2.9318 2.1222 2.9960 2.0209

x = 20 (0.4440) (0.4117) (0.4418) (0.4477) (0.4643) (0.3849)

η = 24.5 for
3.1175 2.1302 3.0823 2.1006 3.0376 2.0309

x = 40 (0.2199) (0.2688) (0.2062) (0.1936) (0.1705) (0.1221)

η = 36.5 for
3.1277 2.1311 3.0889 2.1180 3.0501 2.0598

x = 60 (0.2152) (0.2609) (0.1436) (0.1845) (0.0931) (0.0946)

Table 11: Estimates and RMSEs for censored Gompertz future lifetime dist.

n = 50 n = 100 n = 500

η = 130 for
1.0825 0.0005 1.0815 0.0005 1.0804 0.0005

x = 20 (0.0135) (0.0003) (0.0093) (0.0002) (0.0041) (0.0001)

η = 75 for
1.0846 0.0006 1.0824 0.0005 1.0806 0.0005

x = 40 (0.0189) (0.0007) (0.0128) (0.0003) (0.0056) (0.0001)

η = 34 for
1.0884 0.0020 1.0837 0.0010 1.0791 0.0006

x = 60 (0.0339) (0.0083) (0.0232) (0.0023) (0.0096) (0.0004)

On the basis of Tables 9− 11, it is concluded that

• as sample size increases, RMSEs decrease;
• as initial age increases, RMSEs increase except for Burr future lifetime distribu-
tion.

6. Conclusions

Estimation of the parameters of future lifetime distributions is helpful in modeling
the remaining lifetime of the insured. This is helpful to insurer for setting the premium
in order to make the insured policy mutually advantageous. We study the distributional
properties of the complete future lifetime and explore the maximum likelihood estimation
of the parameters when the insured does not leave the cohort till the end of the contract
or leaves at a random time.
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