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Ordering and transfer policy and variable
deterioration for a warehouse model

Biswajit Sarkar∗† and Sharmila Saren‡

Abstract

This paper represents an inventory model for ordering and transfer-
ring policy with random, deterioration and several demand patterns.
The number of transfers per order from warehouse to display area and
optimal order quantity are determined in this model. The random
deterioration makes a realistic scenario when the retailer has several
products. The model uses di�erent demand pattern to check the op-
timum pro�t for di�erent situation. The main purpose of this model
is to maximize average pro�t per unit time for retailer. The retailer
receives products from supplier and store in a warehouse. These items
are transferred through multi-delivery policy with equal lot-size. There
are four lemmas to establish the global maximum solution analytically.
Some numerical examples and graphical representations are given to
illustrate the model.
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1. Introduction

It is common phenomenon/phenomena that demand is increasing with the time in-
creasing. There are many products for which demand rate depends on time. Demand
of items may increase or decrease with time. Many mathematical models have been de-
veloped to control inventory by considering constant demand rate while in most of the
cases, demand of items increase with time. Harris [1] �rst discovered an EOQ (economic
order quantity) for constant demand pattern. Regarding demand as time dependent,
many researchers formulated several inventory models. Hsu and Li [2] discussed an in-
ventory model with delivery service strategy for internet shopping and time dependent
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consumer demand. Dye et al. [3] observed an inventory model by including not only
cost of lost sales, but also the non-constant purchase cost. They extended their model
from a constant demand to any log-concave demand function. Khanra et al. [4] devel-
oped an inventory model for time dependent demand with delay-in-payments, but with
constant deterioration rate. Sarkar et al. [5] formed an economic production quantity
(EPQ) model for both continuous and discrete random demand. They considered certain
percent of total product is of imperfect quality which followed a probability distribution.
The imperfect quality items are reworked at a �xed cost. The percent of defectiveness in
the total product usually increases with an increase in production run-time. Sarkar and
Moon [6] extended Sarkar et al.'s [5] model with the e�ect of in�ation. They highlighted
imperfect items which are reworked at some �xed costs and considered shortages due to
the production of imperfect products. The lifetime of defective items followed a Weibull
distribution. Sarkar et al. [7] studied an imperfect production model which produces a
single type of items. Their model formulated by time-dependent demand with reliability
as a decision variable under e�ect of in�ation and time-value of money.

The loss due to deterioration of items like vegetable, or commodities cannot be ignored.
The growth and application of inventory control models regarding deterioration products
is the main concerns of researcher. Many previous studies have been done in this �eld
by assuming constant deterioration. But deterioration of item may vary with time. Us-
ing present value concept, many researchers stated about the distribution processing for
deterioration. Wee and Law [8] presented an inventory model with deterioration, time-
value of money, and price-dependent demand. Their model applied the discounted cash
�ows (DCF) approach for problem analysis. Chu and Chen [9] proposed the inventory
carrying cost is in proportion to the cost of deteriorated items. Khanra and Chaudhuri
[10] invented an order-level inventory problem on continuous and quadratic function of
time-dependent demand. They assumed a constant fraction of the on-hand inventory
which deteriorated per unit of time. In their model for in�nite and �nite time-horizon,
the solution of model was discussed analytically. Chern et al. [11] extended previous
inventory model by allowing general partial backlogging rate and in�ation. They con-
sidered inventory lot size models for deteriorating items with �uctuating demand under
in�ation. Sett et al. [12] developed a two-warehouse inventory model based on the as-
sumption of quadratic demand which is useful for those items whose demand increases
very rapidly. Their study discussed about time-dependent deterioration rates. Sarkar
et al. [13] formulated an optimal inventory replenishment policy for a deteriorating
item with quadratic time-dependent demand and time-dependent partial backlogging.
Sarkar [14] constructed an inventory model for �nite replenishment rate where demand
and deterioration rate both are time-dependent. Sarkar and Sarkar [15] developed an
inventory model for time-dependent deterioration rate. Their study discussed about
inventory-dependent demand function. They considered three possible cases for demand
and inventory. Sarkar and Sarkar [16] extended earlier literature with in�nite replenish-
ment rate by including stock-dependent demand, time-varying deterioration, and partial
backlogging. Sarkar [17] presented a production-inventory model for deteriorating item
in a two-echelon supply chain management (SCM). An algebraical approach with the
help of three types of continuous probabilistic deterioration functions are employed to
obtain the associated cost. Sarkar and Sarkar [18] extended an economic manufacturing
quantity (EMQ) model with deterioration and exponential demand under the e�ect of
in�ation and time value of money. The production rate is a dynamic variable (varying
with time) in a production system. To reduce the production of improper items, they
incorporated development cost, production cost, and material cost which are dependent
on reliability parameter with probabilistic deterioration. Sarkar et al. [19] discussed an
inventory model for �nite production rate and deteriorating items with time-dependent
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increasing demand. The component cost and selling price both are considered at a con-
tinuous rate of time in their model. Sarkar et al. [20] developed an inventory model with
two-level trade-credit policy for �xed lifetime products. They highlighted the assumption
that suppliers o�er full trade-credit to retailers, but retailers o�er partial trade-credit to
their customers.

Pricing is also an important factor in success of business for any item. In general, when
selling price of items decreases, customers are more attracted to that product. Hence,
demand rate of an item may consider based on the selling-price dependent. Wee [21]
analyzed an inventory model for price-dependent demand of items with variable deterio-
ration and completely backorder. Datta and Paul [22] derived an inventory system where
the demand rate was in�uenced by stock-level and selling-price. They considered a �nite
period system under multi-replenishment scenario. Goyal and Chang [23] obtained an
ordering-transfer inventory model for determining retailer's optimal order quantity and
the number of transfers per order from warehouse to display area. They assumed limited
display space and stock-level-dependent demand rate. Sarkar et al. [24] discovered an
inventory model under the assumption that retailers are allowed a period by supplier to
obtain trade-credit for goods bought with some discount rates. They developed retailer's
optimal replenishment decision under trade-credit policy with in�ation. They assumed
several types of deterministic demand patterns with the delay-periods and di�erent dis-
counts rates on purchasing cost. Sarkar et al. [25] developed an imperfect production
process for stock-dependent demand. These imperfect items were reworked at some �xed
cost for restoring its original quality. In addition, in their model unit production cost is
a function of reliability parameter and production rate. Sana [26] investigated an inven-
tory model to obtain retailer's optimal order quantity for similar products with limited
display space. In his article, demand of products depends on selling price, salesmen's
initiatives and display stock-level where more stocks of one product makes a negative
impression of another products. Sarkar [27] assumed an imperfect production process
with price and advertising demand pattern under the e�ect of in�ation. To reduce the
production of imperfect items, development cost, production cost, and material cost are
dependent on reliability in his model. Sarkar [28] deduced an inventory framework in
which supplier generally o�ers a delay-period to the retailer to buy more. In this point of
view, retailer's optimal replenishment policy under permissible delay-in-payment are con-
sidered with stock-dependent demand with �nite replenishment rate and the production
of defective items. See Table 1 for contribution of various authors.

In this article, an inventory model for probabilistic deteriorating rate is considered
with several demand function as time and price dependent, and �nite production rate.
The display space is taken to be limited. This model includes the number of transfer
per order from the warehouse to display area. The main objective of this paper is to
maximize average pro�t function over �nite planning horizon and obtain the optimal
order quantity and the number of transfer per order. In Section 2, there are four cases
of demand functions. The average pro�t per unit time for the retailer is maximized in
each case. Section 3 derives some numerical examples and sensitivity analysis for each
numerical example. Finally, conclusions and future extensions are discussed in Section
4.

2. Mathematical model

Following notation are used to formulate this model.
Decision variables

t1 replenishment cycle time in display area (year)
n integer number of shipments for stocks from warehouse to display area per order
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Table 1. Contribution of various authors

Author(s) Time- Price- Other Probabilistic Other
dependent dependent demands deterio- deterio-
demand demand ration rations

Harris [1]
√

Hsu and Li [2]
√

Dye et al. [3]
√ √

Khanra et al. [4]
√ √

Sarkar et al. [5]
√ √

Sarkar and Moon [6]
√ √

Sarkar et al. [7]
√ √

Wee and Law [8]
√ √

Chu and Chen [9]
√ √

Khanra and Chaudhuri [10]
√ √

Chern et al. [11]
√ √

Sett et al. [12]
√ √

Sarkar et al. [13]
√ √

Sarkar [14]
√ √

Sarkar and Sarkar [15]
√

Sarkar and Sarkar [16]
√ √

Sarkar [17]
√ √

Sarkar and Sarkar [18]
√ √

Sarkar et al. [19]
√ √

Sarkar et al. [20]
√

Wee [21]
√ √

Datta and Paul [22]
√

Goyal and Chang [23]
√

Sarkar et al. [24]
√

Sarkar et al. [25]
√

Sana [26]
√ √

Sarkar [27]
√ √

Sarkar [28]
√

This model
√ √ √

p unit selling price of stocks per unit ($/units)

Parameters

h1 unit carrying cost per stock in warehouse ($/units/unit time)
h unit carrying cost per stock in display area, where h > h1 ($/units/unit time)
c unit purchasing cost ($/units)
S retailer's ordering cost per order ($/order)
s �xed cost of stocks per transfer to display area from warehouse ($/transfer)
T replenishment cycle time in warehouse
Q order quantity placed to the supplier (units)

I(t) inventory level at time t in the display area
R �xed inventory level of stocks in display area for transfering of q items reducing

stockout during variable demand
q stock per transfer to display area from warehouse (units/transfer)
D demand function considered as time-dependent, price-dependent, and time-price

dependent
θ probabilistic deterioration rate, 0 < θ < 1

AP1 average pro�t for demand function D(t, p) = x+ x1 + yt− y1p+ zt2 − z1p2
AP2 average pro�t while demand function is D(t) = x+ yt+ zt2
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AP3 average pro�t for demand function D(p) = x1 − y1p− z1p2
AP4 average pro�t when demand function is D(t) = x2e

y2t

This model is based on the following assumptions

1. The model consider a warehouse problem with random deterioration rate θ which
follows a uniform distribution.
The probability density function of deterioration is

f(X) =

{
1
b−a , if X ∈ [a, b]

0, otherwise

}
where a and b(> a) are two parameters of this distribution and 0 < a < b < 1.
Therefore, θ = E[f(X)] = b+a

2
.

2. The retailer orders quantity Q per order from a supplier and stores them into
the warehouse. These items are transferred to display area from warehouse in
equal lots of q until inventory level in warehouse reaches to zero.

3. The transferring time of stocks from warehouse to display area is taken as neg-
ligible.

4. The demand function as follows
D(t, p) = x+x1+yt−y1p+zt2−z1p2, D(t) = x+yt+zt2, D(p) = x1−y1p−z1p2,
and D(t) = x2e

y2t. x, y, and z are beginning rate, increasing rate, and rate of
change for demand in �rst and second demand function respectively. x1, y1, and
z1 are initial rate, decreasing rate, and rate of change for demand in �rst and
third demand function separately. x2 is constant parameter and y2 is increasing
rate of demand regarding fourth demand function.

5. Lead time is considered as negligible and shortages are not allowed.

Here, an inventory model related with warehouse and display area are considered.
Two types of costs (warehouse cost and display area cost) are given. These costs are
used to calculate the pro�t of the model.
Warehouse cost

When the retailer orders Q items from the supplier, it is instantly supplied to the
retailer and the retailer stocks all the items in the warehouse. Now, the items Q can be
divided into q equal parts i.e., Q = nq and a part is transferred to the display area when
the previous part has just been depleted. The process will continue until the inventory
at the warehouse reaches at zero level.
Retailer's ordering cost per order is = S.
During the time interval [0, t1], total item is

[q + 2q + 3q + ............+ (n− 1)q]t1 =
n(n− 1)qt1

2
.

Hence, the stock holding cost is = h1t1
n(n−1)

2
q.

Cost at display area
Initially at time t = 0, the inventory level I(t) starts with a maximum inventory say

Ī and then it reaches to R at the end of cycle t1. Figure 1 represents the inventory system.

Case I
In this case, demand rate is considered as a function of price and time. As demand

may increase when the selling price diminishes and vice-versa or it may �uctuate with
the change of time. The consideration of time and price-dependent demand is useful for
deteriorated items, for example, fashionable goods, fruits, and vegetables. This study
discussed an inventory model by assuming demand as a quadratic function of time and
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Figure 1

price. i.e.,

f(t, p) = D(t, p) = (x+ yt+ zt2) + (x1 − y1p− z1p2)

= x+ x1 + yt− y1p+ zt2 − z1p2

The governing di�erential equation of the inventory system is

dI(t)

dt
+ θI(t) = −f(t, p), 0 ≤ t ≤ t1, I(t1) = R

= −(x+ x1 + yt− y1p+ zt2 − z1p2)

Using the boundary condition, inventory level I(t) as

I(t) =
(1− eθ(t1−t))

θ
(y1p+ z1p

2 − x− x1) + y
( (t1e

θ(t1−t) − t)
θ

− (eθ(t1−t) − 1)

θ2

)
+ z

(
(t1

2eθ(t1−t) − t2)

θ
− (2t1e

θ(t1−t) − 2t)

θ2
+

(2eθ(t1−t) − 2)

θ3

)
+Reθ(t1−t)(2.1)

During [0,t1], the total costs are as follows:
(i) Fixed cost of stocks per transfer to display area from warehouse is = s.
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(ii) Holding cost is

= h

∫ t1

0

I(t)dt = hR(eθt1−1)
θ

+ h(y1p+z1p
2−x−x1)
θ

(
t1 + (1−eθt1 )

θ

)
+hy

(
t1e

θt1

θ2
+ (1−eθt1 )

θ3
− t1

2

2θ

)
+hz

(
t1

2eθt1

θ2
− 2t1e

θt1

θ3
+ (2eθt1−2)

θ4
− t1

3

θ3

)
(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t, p)dt = (p− c)
∫ t1

0

(x+ x1 + yt− y1p+ zt2 − z1p2)dt

= (p− c)
(

(x+ x1 − y1p− z1p2)t1 +
yt1

2

2
+
zt1

3

3

)
Equating equation (1) and I(0)=q+R, we obtain

q =
(1− eθt1)

θ
(y1p+ z1p

2 − x− x1) + y
( t1eθt1

θ
− (eθt1 − 1)

θ2

)
+ z

(
t1

2eθt1

θ
− 2t1e

θt1

θ2
+

(2eθt1 − 2)

θ3

)
+Reθt1 −R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1 = h1

[n(n− 1)

2

( (1− eθt1)

θ
(y1p+ z1p

2 − x− x1) + y
( t1eθt1

θ

− (eθt1 − 1)

θ2

)
+ z

(
t1

2eθt1

θ
− 2t1e

θt1

θ2
+

(2eθt1 − 2)

θ3

)
+Reθt1

− R
)]
t1

Thus, the average pro�t per unit time is

: AP1(n, p, t1) = 1
T
[revenue-(total cost in warehouse)-(total cost in display area)]

(where T=nt1)

= (p− c)
(

(x+ x1 − y1p− z1p2) +
yt1
2

+
zt1

2

3

)
−
[
h1

( (n− 1)

2

( (1− eθt1)

θ
(y1p

+ z1p
2 − x− x1) + y

( t1eθt1
θ
− (eθt1 − 1)

θ2

)
+ z

(
t1

2eθt1

θ
− 2t1e

θt1

θ2
+

(2eθt1 − 2)

θ3

)
+ Reθt1 −R

))
+

S

nt1

]
− s

t1
− h
[R(eθt1 − 1)

θt1
+

(y1p+ z1p
2 − x− x1)

θ

( (1− eθt1)

θt1

+ 1
)

+ y
(eθt1
θ2

+
(1− eθt1)

θ3t1
− t1

2θ

)
+ z

(
t1e

θt1

θ2
− 2eθt1

θ3
+

(2eθt1 − 2)

θ4t1
− t1

2

θ3

)]
Now, we have to maximize the total pro�t function. Thus, we have formulated a lemma
to obtain the global optimum solution.
Lemma 1
AP1(n∗, p∗, t1

∗) will have the global maximum solution where n∗, p∗, and t1
∗ are optimal

values of n, p, and t1 if following conditions are satis�ed

(i) 4Sθ < h1n
3t1(1− eθt1)(y1 + 2z1p),

(ii) 4z1p+
h1

2

(1− eθt1)

θ
(y1 + 2z1p) > 2

[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1)

+h

(
1− eθt1
θt1

+ 1

))]
,
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(iii) h1
(eθt1 − 1)

θ
(y1 + 2z1p)M < N

(
h1

2
U +

s

t12

)
,

(iv)

(
y

2
+

2zt1
3

)
+
h

θ

(
eθt1

t1
+

(1− eθt1)

θt12

)
<
h1(1− n)

2
(y1 + 2z1p)e

θt1 .

[See Appendix A for the values of M , N , and U .]

Proof
The necessary condition for optimal solution of AP1(n, p, t1) can be calculated by
∂AP1(n,p,t1)

∂n
= 0, ∂AP1(n,p,t1)

∂p
= 0, and ∂AP1(n,p,t1)

∂t1
= 0.

i.e.,

∂AP1(n, p, t1)

∂n
=

S

n2t12
− h1

2

[ (1− eθt1)

θ
(y1p+ z1p

2 − x− x1)

+ y

(
t1e

θt1

θ
− (eθt1 − 1)

θ2

)
+ z

(
t1

2eθt1

θ
− 2t1e

θt1

θ2
+

2(eθt1 − 1)

θ3

)
+Reθt1 −R

]
= 0

gives n =
√

2S
h1t1f

, [See Appendix B for the value of f ] .

For the decision variable p,

∂AP1(n, p, t1)

∂p
= 0

i.e.,

∂AP1(n, p, t1)

∂p
= 2z1p

2 − 2p
[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1) + h

( (1− eθt1)

θt1

+ 1
))]
−
[
x+ x1 +

yt1
2

+
zt1

2

3
+ cy1 −

y1
θ

(h1(n− 1)

2
(1− eθt1)

+ h

(
(1− eθt1)

θt1
+ 1

))]
= 0

Now p∗ will be calculated if η(p∗) = 0 where ∂AP1(n,p,t1)
∂p

= η(p) and ∂AP1(n,p,t1)
∂t1

= 0
gives i.e.,

∂AP1(n, p, t1)

∂t1
=

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1p+ z1p

2 − x− x1)eθt1

− h1(n− 1)

2
(yt1e

θt1 + zt1
2eθt1 +Rθeθt1) +

(S + sn)

t12

− h
[Reθt1

t1
− (y1p+ z1p

2 − x− x1)

θ

(eθt1
t1

+
(1− eθt1)

θt12

)
− (Reθt1 − 1)

θt12
+ y

(
eθt1

θ
− eθt1

θ2t1
− (1− eθt1)

θ3t12
− 1

2θ

)
− z

(eθt1
θ2
− t1e

θt1

θ
− 2eθt1

θ3t1
+

2(eθt1 − 1)

θ4t12
+

2t1
θ3

)]
= 0

Now t1
∗ will be calculated if ξ1(t1

∗) = 0 where ∂AP1(n,p,t1)
∂t1

= ξ1(t1).

To verify the su�cient conditions for global optimum solution, the second order partial
derivatives of AP1(n, p, t1) with respect to n, p, and t1 are as follows:

∂2AP1(n, p, t1)

∂n2
=
−2S

n3t1
,
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∂2AP1(n, p, t1)

∂t12
=

2z

3
+
h1(n− 1)

2
θ(y1p+ z1p

2 − x− x1)eθt1

− h1(n− 1)

2
eθt1(y + yθt1 + 2zt1 + zt1

2θ +Rθ2)− 2(S + sn)

t13

− h
[Rθeθt1

t1
− 2R(eθt1 − 1)

θt13

+
(y1p+ z1p

2 − x− x1)

θ

(−θeθt1
t1

+
2eθt1

t12
+

2(1− eθt1)

θt13

)
+ y

(
eθt1 − eθt1

θt1
+

2eθt1

θ2t21
+

2(1− eθt1)

θ3t13

)
+ z

(
t1e

θt1 +
2eθt1

θ2t1
− 4eθt1

θ3t12
+

4(eθt1 − 1)

θ4t13
− 2

θ3

)]
,

∂2AP1(n, p, t1)

∂p2
= 4z1p− 2

[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1) + h

( (1− eθt1)

θt1

+ 1
))]

,

∂2AP1(n, p, t1)

∂n∂t1
=

h1

2
eθt1(y1p+ z1p

2 − x− x1 − yt1 − zt12 −Rθ)
s

t12
,

∂2AP1(n, p, t1)

∂p∂t1
=

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1 + 2z1p)e

θt1

+
h(y1 + 2z1p)

θ

(
eθt1

t1
+

(1− eθt1)

θt12

)
,

and

∂2AP1(n, p, t1)

∂n∂p
=

h1

2

(
(y1 + 2z1p)

(eθt1 − 1)

θ

)
.

The su�cient condition for global optimum solution for this case is all principal minors
are alternating in sign.

i.e., the su�cient condition for the optimum solution of AP1(n, t1) are ∂2AP1(n,p,t1)

∂n2 < 0,
∂2AP1
∂n2

∂2AP1
∂p2

− ( ∂
2AP1
∂n∂p

)2 > 0, and the value of third principal minor i.e., the value of the

Hessian matrix H < 0.
Now

∂2AP1(n, p, t1)

∂n2
=
−2S

n3t1
< 0

To show the condition of second principal minor, if ∂
2AP1
∂n2 > ∂2AP1

∂n∂p
and ∂2AP1

∂p2
> ∂2AP1

∂n∂p
,

then the condition holds.
Now

∂2AP1(n, p, t1)

∂n∂p
=

h1

2

(
(y1 + 2z1p)

(eθt1 − 1)

θ

)
which can be written as

∂2AP1(n, p, t1)

∂n∂p
=

∂2AP1(n, p, t1)

∂n2
− ξ1.

where

ξ1 =
h1

2

(1− eθt1)

θ
(y1 + 2z1p)−

2S

n3t1



994

∂2AP1
∂n2 > ∂2AP1

∂n∂p
will hold if ξ1 > 0.

Now ξ1 > 0 exists when

4Sθ < h1n
3t1(1− eθt1)(y1 + 2z1p)

Similarly,

∂2AP1(n, p, t1)

∂n∂p
=

∂2AP1(n, p, t1)

∂p2
− ξ2

where

ξ2 = 4z1p− 2

[
cz1 − y1 −

z1
θ

(
h1(n− 1)

2
(1− eθt1) + h

(
1− eθt1
θt1

+ 1

))]
+

h1

2

(1− eθt1)

θ
(y1 + 2z1p)

∂2AP1
∂p2

> ∂2AP1
∂n∂p

will exist if ξ2 > 0.

i.e., if

4z1p+
h1

2

(1 − eθt1 )

θ
(y1 + 2z1p) > 2

[
cz1 − y1 −

z1

θ

(
h1(n− 1)

2
(1 − eθt1 ) + h

(
1 − eθt1

θt1
+ 1

))]
Similar as above, value of third principal minor i.e., H < 0 will hold if

h1
(eθt1 − 1)

θ
(y1 + 2z1p)M < N

(
h1

2
U +

s

t12

)
and (

y

2
+

2zt1
3

)
+
h

θ

(
eθt1

t1
+

(1− eθt1)

θt12

)
<
h1(1− n)

2
(y1 + 2z1p)e

θt1

Therefore, AP1(n∗, p∗, t1
∗) will have the global maximum (where n∗, p∗, and t1

∗ are
optimal values of n, p, and t1) if the conditions hold.

Case II
This section provides demand function is time-dependent. As time increases, the demand
of each product increases. To show this matter, the demand is considered as quadratic
function of time.
For the demand function f(t) = D(t) = x+ yt+ zt2

The governing di�erential equation of the inventory system is

dI(t)

dt
+ θI(t) = −f(t), 0 ≤ t ≤ t1, I(t1) = R

= −(x+ yt+ zt2)

Using the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) + (1− eθ(t1−t))
(
y

θ2
− 2z

θ3
− x

θ

)
+ (t1e

θ(t1−t) − t)
(
y

θ
− 2z

θ2

)
+
z

θ

(
− t2t12eθ(t1−t)

)
(2.2)

During [0,t1], the total costs are as follows:
(i) Fixed cost of stocks per transfer to display area from warehouse = s.
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(ii) Holding cost is

= h

∫ t1

0

I(t)dt =
−hR(1− eθt1)

θ
+ h

(
y

θ2
− 2z

θ3
− x

θ

)(
t1 +

(1− eθt1)

θ

)
− h

( t1(1− eθt1)

θ
+
t21
2

)(y
θ
− 2z

θ2

)
− hz

θ

(
t1

2(1− eθt1)

θ
+
t1

3

3

)
(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t)dt = (p− c)
∫ t1

0

(x+ yt+ zt2)dt

= (p− c)
(
xt1 + y

t21
2

+ z
t31
3

)
Equating equation (2) and I(0)=q+R, one has

q +R = Reθt1 + (1− eθt1)

(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1

i.e., q = Reθt1 + (1− eθt1)

(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1 −R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1

= h1

[n(n− 1)

2

(
Reθt1 + (1− eθt1)

(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+

z

θ
t1

2eθt1 −R
)]
t1

Hence, the average pro�t per unit time is

: AP2(n, t1) = 1
T
[revenue-(total cost in warehouse)-(total cost in display area)]

(where T=nt1)

= (p− c)
(
x+ y

t1
2

+ z
t21
3

)
−
[ S
nt1

+ h1

( (n− 1)

2

(
Reθt1 + (1− eθ(t1−t))

( y
θ2
− 2z

θ3

−x
θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1 −R
))]
− s

t1
− h
[−R(1− eθt1)

θt1
+
( y
θ2
− 2z

θ3

−x
θ

)(
1 +

(1− eθt1)

θt1

)
−
(

(1− eθt1)

θ
+
t1
2

)(
y

θ
− 2z

θ2

)
− z

θ

(
t1(1− eθt1)

θ
+
t21
3

)]
which we have to maximize with respect to the decision variables n and t1. We have
made the following lemma to make the global optimum solution for it.
Lemma 2
AP2(n∗, t1

∗) will have the global maximum (where n∗ and t1
∗ are optimal values of n

and t1) if following conditions are satis�ed
(i)

S

n2t21

+
h

2
e
θt1

(
zt1

2
+

(
y +

2z

θ

)
t1 +

(
Rθ +

y

θ

))
>

2S

n3t1
+ he

θt1

 z(θt1 + 1)

θ2
+
e−θt

(
y
θ

− 2z
θ2

− x
)

2


and
(ii)

2(p− c)z

3
+

2hz

3θ
+

S

n2t12
+ αe

θ(t1−t)
+ (β + γ)e

θt1 + δ >
2

t13

(
S

n
+ s

)
+
h1Re

θt1θ

2
[(n− 1)θ − 1]
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Proof
From the necessary condition of the optimal solution, ∂AP2(n,t1)

∂n
= 0.

i.e.,

∂AP2(n, t1)

∂n
=

S

n2t1
− h1

2

(
Reθt1 + (1− eθt1)

(
y

θ2
+

2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
+

2z

θ2

)
+
zt21e

θt1

θ
−R

)
= 0

which gives

n =

√
2S

h1t1(Reθt1 + (1− eθt1)
(
y
θ2

+ 2z
θ3
− x

θ

)
+ t1eθt1

(
y
θ

+ 2z
θ2

)
+

zt21e
θt1

θ
−R)

For the second decision variable t1,
∂AP2(n,t1)

∂t1
= 0 gives

i.e., a1t1
6 + a2t1

5 + a3t1
4 + a4t1

3 + a5t1
2 + a6 = 0

See Appendix C for the values of α, β, γ, δ, a1, a2, a3, a4, a5, and a6.

Now t1
∗ will be obtained if ξ2(t1

∗) = 0 where ∂AP2(n,t1)
∂t1

= ξ2(t1).

To obtain the global maximum, we have to check the su�cient conditions. Thus, we have
to calculated the second order partial derivatives of AP2(n, t1) with respect to n and t1
are as follows:

∂2AP2(n, t1)

∂n2
=
−2S

n3t1
,

∂2AP2(n, t1)

∂t12
=

∂2λ1

∂t12
+
∂2λ2

∂t12

where

∂2λ1

∂t12
=

2(p− c)z
3

− 2S

nt13
− h1(n− 1)

2

[
Rθ2eθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t)θ

+

(
y

θ
− 2z

θ2

)
eθt1θ(t1θ + 2) +

z

θ
eθt1(4t1θ + t1

2θ2 + 2)
]

and

∂2λ2

∂t12
=

hR

θ

[
2(1− eθt1)

t13
+

2θeθt1

t12
− θ2eθt1

t1

]
− 2s

t31
− h

(
y

θ2
− 2z

θ3
− x

θ

)[2eθt1

t12

+
2(1− eθt1)

θt13
− θeθt1

t1

]
− h

(
y − 2z

θ

)
eθt1 +

hz

θ

(
−t1θeθt1 − 2eθt1 +

2

3

)
.

∂2AP2(n, t1)

∂n∂t1
= −

S

n2t12
−
h1

2

[
Rθeθt1 −

(
y

θ
−

2z

θ2
− x

)
eθ(t1−t) +

(
y

θ
−

2z

θ2

)
eθt1 (θt1 + 1)

+
z

θ
t1e

θt1 (θt1 + 2)
]

The su�cient conditions for the optimum solution of AP2(n, t1) are ∂2AP2(n,t1)

∂n2 < 0 and
∂2AP2
∂n2

∂2AP2
∂t12 − ( ∂

2AP2
∂n∂t1

)2 > 0.

Now

∂2AP2(n, t1)

∂n2
=
−2S

n3t1
< 0

We have to show ∂2AP2
∂n2

∂2AP2
∂t12 − ( ∂

2AP2
∂n∂t1

)2 > 0.

For the proof of this above condition, if ∂2AP2
∂n2 > ∂2AP2

∂n∂t1
and ∂2AP2

∂t12 > ∂2AP2
∂n∂t1

, then the
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conditions hold.
Now

∂2AP2(n, t1)

∂n∂t1
= −

S

n2t12
−
h1

2

[
Rθeθt1 −

(
y

θ
−

2z

θ2
− x

)
eθ(t1−t) +

(
y

θ
−

2z

θ2

)
eθt1 (θt1

+ 1) +
z

θ
t1e

θt1 (θt1 + 2)
]

which can be written as

∂2AP2(n, t1)

∂n∂t1
=

∂2AP2(n, t1)

∂n2
− ξ3.

where

ξ3 =
S

n2t12
+
h1

2

[
Rθeθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(
y

θ
− 2z

θ2

)
eθt1(θt1

+ 1) +
z

θ
t1e

θt1(θt1 + 2)
]
− 2S

n3t1

∂2AP2
∂n2 > ∂2AP2

∂n∂t1
will hold if ξ3 > 0.

Now ξ3 > 0 will exist if

S

n2t21

+
h

2
e
θt1

(
zt1

2
+

(
y +

2z

θ

)
t1 +

(
Rθ +

y

θ

))
>

2S

n3t1
+ he

θt1

 z(θt1 + 1)

θ2
+
e−θt

(
y
θ

− 2z
θ2

− x
)

2


Similarly,

∂2AP2(n, t1)

∂n∂t1
=

∂2AP2(n, t1)

∂t12
− ξ4

where

ξ4 =
2(p− c)z

3
− 2S

nt13
− h1(n− 1)

2

[
Rθ2eθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t)θ +

(y
θ

− 2z

θ2

)
eθt1θ(t1θ + 2) +

z

θ
eθt1(4t1θ + t1

2θ2 + 2)
]
− 2s

t31
+
hR

θ

[2(1− eθt1)

t13

+
2θeθt1

t12
− θ2eθt1

t1

]
− h

(
y

θ2
− 2z

θ3
− x

θ

)[2eθt1

t12
+

2(1− eθt1)

θt13
− θeθt1

t1

]
− h

(
y − 2z

θ

)
eθt1 +

hz

θ

(
−t1θeθt1 − 2eθt1 +

2

3

)
+

S

n2t12
+
h1

2

[
Rθeθt1

−
(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(
y

θ
− 2z

θ2

)
eθt1(θt1 + 1) +

z

θ
t1e

θt1(θt1 + 2)
]

∂2AP2
∂t12 > ∂2AP2

∂n∂t1
will exist if ξ4 > 0.

i.e., if

2(p− c)z
3

+
2hz

3θ
+

S

n2t12
+ αe

θ(t1−t)
+ (β + γ)e

θt1 + δ >
2

t13

(
S

n
+ s

)
+
h1Re

θt1θ

2
[(n− 1)θ − 1]

Therefore, AP2(n∗, t1
∗) will have the global maximum (where n∗ and t1

∗ are optimal
values of n and t1) if the conditions hold.

Case III
In this section, demand of products is a function of selling price. In general, selling-
price decreases means demand of products increases and vice-versa. Customers are more
a�ective to that product whose selling price is low. Therefore, demand can be a function
of selling price. Here, demand is taken to be as quadratic function of selling price.
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The demand function is f(p) = D(p) = x1 − y1p− z1p2
The governing di�erential equation of the inventory system is

dI(t)

dt
+ θI(t) = −f(p), 0 ≤ t ≤ t1, I(t1) = R

= −(x1 − y1p− z1p2)

Using the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) +
(x1 − y1p− z1p2)(eθ(t1−t) − 1)

θ
(2.3)

During [0,t1], the total costs are as follows:
(i) Fixed cost of stocks per transfer to display area from warehouse = s.
(ii) Holding cost is

= h

∫ t1

0

I(t)dt = hR
(eθt1 − 1)

θ
+
h(x1 − y1p− z1p2)

θ

(
(eθt1 − 1)

θ
− t1

)
(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(p)dt = (p− c)
∫ t1

0

(x1 − y1p− z1p2)dt

= (p− c)(x1 − y1p− z1p2)t1

Using equation (3) and I(0)=q+R

q +R = Reθt1 + (x1 − y1p− z1p2)
(eθt1 − 1)

θ

i.e., q = Reθt1 + (x1 − y1p− z1p2)
(eθt1 − 1)

θ
−R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1 = h1t1

n(n− 1)

2
[Reθt1 + (x1 − y1p− z1p2)

(eθt1 − 1)

θ
−R]

Hence, the average pro�t per unit time is
AP3(n, p, t1)= 1

T
[revenue-(total cost in warehouse)-(total cost in display area)] (where

T=nt1)

= (p− c)(x1 − y1p− z1p2)−
( S

nt1
+ h1

(n− 1)

2
[Reθt1 + (x1 − y1p

− z1p
2)

(eθt1 − 1)

θ
−R]

)
− s

t1
− h
[
R

(eθt1 − 1)

θt1
+

(x1 − y1p− z1p2)

θ

( (eθt1 − 1)

θt1

− 1
)]

which we have to maximize with respect to the decision variables n, p, and t1. To obtain
the global optimum solution, we have formulated Lemma 3.
Lemma 3
AP3(n∗, p∗, t1

∗) will have the global maximum (where n∗, p∗, and t1
∗ are optimal values

of n, p, and t1) if following conditions are satis�ed.

(i)4Sθ > n3t1(eθt1 − 1)h1(2z1p− y),

(ii)
2z1θ

(
h
θ

+ 3p
)

(eθt1 − 1)
>

[
h1

(
z1(n− 1 + p)− y1

2

)
+

2z1θ

θt1

]
,
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and

(iii)

[
1 +

sn

S
+
nt1

3

2S

(
(n− 1)θ2eθt1

2
+ h

)(
R+

D(p)

θ

)]
l1l3 +

nt1
3

2S

(
l3l4

2

+hh1
2
(y1

2
+ z1p

2
)2 )

< l5
2 +

nt1
3h1

S

(y1
2

+ z1p
)
l4l5.

[See Appendix D for the values of D(p), l1, l2, l3, l4, and l5.]

Proof
From the necessary conditions of the optimal solution, ∂AP3(n,p,t1)

∂n
= 0.

i.e.,

∂AP3(n, p, t1)

∂n
=

S

n2t12
− h1

2

[
Reθt1 +D(p)

(eθt1 − 1)

θ
−R

]
= 0

which gives

n =

√√√√ 2S

h1t12
[
Reθt1 +D(p) (eθt1−1)

θ
−R

]
For the decision variable p, ∂AP3(n,p,t1)

∂p
= 0 gives

i.e., p =
θ(2y1 − cy1 − x1 − 2cz1)

2z1
[
h1(n−1)

2
(eθt1−1)

θ
− h

(
(eθt1−1)
θt1

− 1
)]

For another decision variable t1,
∂AP3(n,p,t1)

∂t1
= 0 gives

i.e.,
S + n2s2

t12
=

(
R+

D(p)

θ

)[
h1(n− 1)

2
θeθt1 − h

(
eθt1

t1
− (eθt1 − 1)

θt12

)]
Now t1

∗ will be obtained if ξ3(t1
∗) = 0 where ∂AP3(n,p,t1)

∂t1
= ξ3(t1).

To obtain the su�cient conditions, we have to calculate the second order partial deriva-
tives of AP3(n, p, t1) with respect to n and t1 which are as follows:

∂2AP3(n, p, t1)

∂n2
=
−2S

n3t1
,

∂2AP3(n, p, t1)

∂t12
= −2(S + n2s2)

t13
−
(
R+

D(p)

θ

)[h1(n− 1)

2
θ2eθt1

− h
(θeθt1

t1
− 2eθt1

t12
+

2(eθt1 − 1)

θt13

)]
,

∂2AP3(n, p, t1)

∂p2
=

(
h1(n− 1) +

2h

θt1

)
(eθt1 − 1)

θ
z1 − 2z1

(
h

θ
+ 3p

)
,

∂2AP3(n, p, t1)

∂n∂t1
=

2ns2

t12
−
(
R+

D(p)

θ

)
h1

2
θeθt1 ,

∂2AP3(n, p, t1)

∂p∂t1
=

(y1 + 2z1p)h1(n− 1)θeθt1

2
,

and

∂2AP3(n, p, t1)

∂n∂p
=

h1

2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)
.
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The su�cient conditions for the optimum solution of AP3(n, t1) are ∂2AP3(n,p,t1)

∂n2 < 0,
∂2AP3
∂n2

∂2AP3
∂p2

− ( ∂
2AP3
∂n∂p

)2 > 0, and the value of third principal minor is

H =
−2S

nt13

[(
1 +

h1(n− 1)nt1
3

4S
(Rθ +D(p))θeθt1 +

sn

S
+
nt1

3h

2S

(
R+

D(p)

θ

)
l1l3

+
nt1

3h

2S
h1

2
(y1

2
+ z1p

)2
− l52 −

nt1
3h1

S

(y1
2

+ z1p
)
l4l5 +

nt1
3

2S
l3l4

2
)]

< 0

Now

∂2AP3(n, p, t1)

∂n2
=
−2S

n3t1
< 0

We have to show that ∂2AP3
∂n2

∂2AP3
∂p2

− ( ∂
2AP3
∂n∂p

)2 > 0.

To prove the condition of second principal minor, if ∂
2AP3
∂n2 > ∂2AP3

∂n∂p
and ∂2AP3

∂p2
> ∂2AP3

∂n∂p
,

then the conditions hold.
Now

∂2AP3(n, p, t1)

∂n∂p
=

h1

2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)
which can be written as

∂2AP3(n, p, t1)

∂n∂p
=

∂2AP3(n, p, t1)

∂n2
− ξ5.

where

ξ5 = − 2S

n3t1
− h1

2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)
∂2AP3
∂n2 > ∂2AP3

∂n∂p
will hold if ξ5 > 0.

Now ξ5 > 0 exists when

4Sθ > n3t1(eθt1 − 1)h1(2z1p− y)

Similarly,

∂2AP3(n, p, t1)

∂n∂p
=

∂2AP3(n, p, t1)

∂p2
− ξ6

where

ξ6 =
(eθt1 − 1)

θ

[(
h1(n− 1) +

2h

θt1

)
z1 −

h1

2
(y1 − 2z1p)

]
− 2z1

(
h

θ
+ 3p

)
∂2AP3
∂p2

> ∂2AP3
∂n∂p

will exist if ξ6 > 0.

i.e., if

2z1θ
(
h
θ

+ 3p
)

(eθt1 − 1)
>

[
h1

(
z1(n− 1 + p)− y1

2

)
+

2z1θ

θt1

]
Similar as above, value of third principal minor i.e., H < 0 will be satis�ed if[

1 +
sn

S
+
nt1

3

2S

(
(n− 1)θ2eθt1

2
+ h

)(
R+

D(p)

θ

)]
l1l3 +

nt1
3

2S

(
l3l4

2

+hh1
2
(y1

2
+ z1p

2
)2 )

< l5
2 +

nt1
3h1

S

(y1
2

+ z1p
)
l4l5

Therefore, AP3(n∗, p∗, t1
∗) will have the global maximum (where n∗, p∗, and t1

∗ are
optimal values of n, p, and t1) if conditions hold.

Case IV
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This section describes that demand of products is exponentially time-dependent. For
example, electronic goods, fashionable clothes are those products whose demand rate
may �uctuate with time. For new products, initially the demand is very high and then it
decreases. That situation of demand can be represented by exponential demand pattern.
Therefore, it can be observed that demand of products varies exponentially with time.
In this case, the demand function f(t) = D(t) = x2e

y2t

The governing di�erential equation of the inventory system is

dI(t)

dt
+ θI(t) = −f(t), 0 ≤ t ≤ t1, I(t1) = R

= −x2ey2t

Using the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) +
x2

(y2 + θ)
(e(y2+θ)t1−θt − ey2t)(2.4)

During [0,t1], the total costs are as follows:
(i) Fixed cost of stocks per transfer to display area from warehouse = s.
(ii) Holding cost is

= h

∫ t1

0

I(t)dt =
hR

θ
(eθt1 − 1) +

hx2
(y2 + θ)

e(y2+θ)t1
(1− e−θt1)

θ
− hx2

(y2 + θ)

(ey2t1 − 1)

y2

(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t)dt = (p− c)
∫ t1

0

x2e
y2tdt

= (p− c)x2
[
ey2t1

y2
− 1

y2

]
Using Equation (4) and I(0)=q+R

q +R =
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1

i.e., q =
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1 −R

(iv) Stock holding cost in the warehouse is

= h1[
n(n− 1)

2
q]t1 = h1t1

n(n− 1)

2

[
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1 −R

]
Hence, the average pro�t per unit time is
AP4(n, t1)= 1

T
[revenue-(total cost in warehouse)-(total cost in display area)](where T=nt1)

=
(p− c)x2
y2t1

(ey2t1 − 1)

−
[
S

nt1
+ h1

(n− 1)

2

(
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1 −R

)]
− s

t1
− h

t1

[
x2

(y2 + θ)
e(y2+θ)t1

(1− e−θt1)

θ
− x2

(y2 + θ)

(ey2t1 − 1)

y2
+
R(eθt1 − 1)

θ

]
which we have to maximize with respect to the decision variables n and t1. To obtain
the global maximum solution, we have made Lemma 4.
Lemma 4
AP4(n∗, t1

∗) will have the global maximum solution (where n∗ and t1
∗ are optimal values

of n and t1) if following conditions are satis�ed

(i)eθt1(x2e
y2t1 +Rθ) >

2S(2− Sn)

h1t1n3
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and

(ii)
(c− p)x2b1

y2
>

2S

nt13
+
h1(n− 1)b2

2
+ hb3

See Appendix E for the values of b1, b2, and b3.

Proof
From the necessary conditions of optimal solution, one has

∂AP (n, t1)

∂n
= 0

i.e.,

∂AP4(n, t1)

∂n
=

S

n2t1
− h1

2

(
x2

(y2 + θ)
e(y2+θ)t1 +Reθt1 −R

)
= 0

which implies

n =

√√√√ 2S

h1t1
(

x2
(y2+θ)

e(y2+θ)t1 +Reθt1 −R
)

For the other decision variable t1,

∂AP4(n, t1)

∂t1
= 0

i.e.,
(p− c)x2

y2

(
ey2t1y2
t1

− (ey2t1 − 1)

t21

)
+

S
t12√
2S

h1t1

(
x2

(y2+θ)
e(y2+θ)t1+Reθt1−R

)

−h1

[√
2S

h1t1

(
x2

(y2+θ)
e(y2+θ)t1+Reθt1−R

) − 1

]
2

(x2e
(y2+θ)t1 +Rθeθt1)

+
s

t12
− h
[ x2

(y2 + θ)

(
− e(y2+θ)t1 (1− eθt1)

θt12
+
e(y2+2θ)t1

t1

+
(1− eθt1)

θ

e(y2+θ)t1

t1
(y2 + θ)

)
− ey2t1 +Reθt1

]
= 0

Now t1
∗ can be obtained if ξ4(t1

∗) = 0 where ∂AP4(n,t1)
∂t1

= ξ4(t1).

From the su�cient conditions, the second order partial derivatives of AP4(n, t1) with
respect to n and t1 are as follows:

∂2AP4(n, t1)

∂n2
=
−2S

n3t1
,

∂2AP4(n, t1)

∂t12
=

(p− c)x2
y2

[
2(ey2t1 − 1)

t13
− 2ey2t1y2

t12
+
ey2t1y2

2

t1

]
− 2S

nt13

− h1
(n− 1)

2
[x2(y2 + θ)e(y2+θ)t1 +Reθt1θ2]− h

[
e(y2+θ)t1(−θe−θt1

− y2e
y2t1)

x2
y2 + θ

+ x2(y2 + θ)
( (1− e−θt1)

θ
+

(1− ey2t1)

y2

)
+ 2(e−θt1 − ey2t1)(y2 + θ)

x2
(y2 + θ)

+Rθeθt1
]
,

and

∂2AP4(n, t1)

∂n∂t1
= − S

n2t12
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ].
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The su�cient conditions for the optimum solution of AP4(n, t1) are ∂2AP4(n,t1)

∂n2 < 0 and
∂2AP4
∂n2

∂2AP4
∂t12 − ( ∂

2AP4
∂n∂t1

)2 > 0.

Now

∂2AP4(n, t1)

∂n2
=
−2S

n3t1
< 0

we have to show ∂2AP4
∂n2

∂2AP4
∂t12 − ( ∂

2AP4
∂n∂t1

)2 > 0.

To justify above condition, if ∂2AP4
∂n2 > ∂2AP4

∂n∂t1
and ∂2AP4

∂t12 > ∂2AP4
∂n∂t1

, then optimality

conditions for second principal minor are satis�ed.
Now

∂2AP4(n, t1)

∂n∂t1
= − S

n2t12
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

which can be written as

∂2AP4(n, t1)

∂n∂t1
=

∂2AP4(n, t1)

∂n2
− ξ7.

where

ξ7 =
2S

n3t1
− S

n2t12
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

∂2AP4
∂n2 > ∂2AP4

∂n∂t1
will hold if ξ7 > 0.

Now ξ7 > 0 will exist if

eθt1(x2e
y2t1 +Rθ) >

2S(2− Sn)

h1t1n3

Similarly,

∂2AP4(n, t1)

∂n∂t1
=

∂2AP4(n, t1)

∂t12
− ξ8

where

ξ8 =
(c− p)x2

y2

[
2(ey2t1 − 1)

t13
− 2ey2t1y2

t12
+
ey2t1y2

2

t1

]
+

2S

nt13
+ h1

(n− 1)

2
[x2(y2

+ θ)e(y2+θ)t1 +Reθt1θ2] + h
[
e(y2+θ)t1(−θe−θt1 − y2ey2t1)

x2
y2 + θ

+ x2(y2

+ θ)
( (1− e−θt1)

θ
+

(1− ey2t1)

y2

)
+ 2(e−θt1 − ey2t1)(y2 + θ)

x2
(y2 + θ)

+Rθeθt1
]

− S

n2t12
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

∂2AP4
∂t12 > ∂2AP4

∂n∂t1
will exist if ξ8 > 0.

i.e., if

(c− p)x2b1
y2

>
2S

nt13
+
h1(n− 1)b2

2
+ hb3

Therefore, AP4(n∗, t1
∗) will have the global maximum (where n∗ and t1

∗ are optimal
values of n and t1) solution if the conditions hold.
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Figure 2. Average Pro�t (AP) versus number of transfer of stocks (n)
and selling price (p) for Example 1

3. Numerical examples

By using numerical data from Goyal and Chang (2009) model, this paper formulates
the optimal value of average pro�t and optimal order quantity.
Example 1. The values for the parameters are taken as follows:
h = 0.6 dollar/unit/unit time, h1 = 0.3 dollar/unit/unit time, c = 1.0 dollar/unit,
x = 100, y = 10, z = 0.1, x1 = 800, y1 = 50, z1 = 0.1, R = 1 unit, a = 0.1,
b = 0.2, s = 10 dollars/transfer, S = 100 dollars/order. Then the optimal solution is
AP1 = $3432.74, n∗ = 10, t1

∗ = 0.33 year, p∗ = 9.3 dollars/unit, and optimal order
quantity Q∗ = 114.325 units.

Example 2 The values for the parameters are taken as follows:.
h = 0.6 dollar/unit, h1 = 0.3 dollar/unit/unit time, c = 1.0 dollar/unit/unit time,
p = 3.0 dollars/unit, x = 3000, y = 40, z = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = 10
dollars/transfer, S = 100 dollars/order. Then the optimal solution is AP2 = $2983.81,
n∗ = 3, t1

∗ = 0.206 year, and optimal order quantity Q∗ = 1069.69 units.

Example 3 The values for the parameters are taken as follows:.
h = 0.6 dollar/unit/unit time, h1 = 0.3 dollar/unit/unit time, c = 1.0 dollar/unit,
x1 = 700, y1 = 40, z1 = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = 10 dollars/transfer,
S = 100 dollars/order. Then the optimal solution is AP3 = $2473.03, n∗ = 3, and
p∗ = 9.1 dollars/unit, t1

∗ = 0.42 year, and optimal order quantity Q∗ = 426.406 units.

Example 4 The values for the parameters are taken as follows:.
h = 0.6 dollar/unit/unit time, h1 = 0.3 dollar/unit/unit time, p = 3 dollars/unit, c = 1.0
dollar/unit, x2 = 2000, y2 = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = 10 dollars/transfer,
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Figure 3. Average Pro�t (AP) versus number of transfer of stocks (n)
and time (t) for Example 1

Figure 4. Average Pro�t (AP) versus selling price (p) and time (t)
for Example 1
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Figure 5. Average Pro�t (AP) versus number of transfer of stocks (n)
and time (t) for Example 2

Figure 6. Average Pro�t (AP) versus selling price (p) and number of
transfer of stocks (n) Example 3

S = 100 dollars/order. Then the optimal solution is AP4 = $2634.91, n∗ = 2, and
t1

∗ = 0.3 year, and optimal order quantity Q∗ = 934.702 units.
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Figure 7. Average Pro�t (AP) versus time (t) and selling price (p)
for Example 3

Figure 8. Average Pro�t (AP) versus number of transfer of stocks (n)
and time (t) for Example 3
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Figure 9. Average Pro�t (AP) versus number of transfer of stocks (n)
and time (t) for Example 4

Sensitivity Analysis
This section provides the sensitivity analysis of each key parameter. The sensitivity anal-
ysis of key parameters for several demand functions are given in Table 2, Table 3, Table
4, and Table 5.

Table 2:(a) Sensitivity analysis for Case I

Parameters Changes(in %) AP1

−50% 0.83
−25% 0.35

h +25% −
+50% −
−50% 0.36
−25% 0.16

h1 +25% −0.14
+50% −0.27
−50% 6.28
−25% 3.11

c +25% −3.07
+50% −6.10
−50% 0.51
−25% 0.23

s +25% −0.2
+50% −0.39

'−' refers to infeasible solution.

• As unit carrying cost per stock in display area h increases, average pro�t AP1

decreases. But, for +25% and +50% increase of this parameter, the model does
not allow feasible results. This means, we can decrease holding cost as we need,
but we cannot increase it anymore.
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• It can be observed that if the parameter h1 i.e., unit carrying cost per stock
in warehouse, increases then the average pro�t AP1 gradually decreases. The
negative percentage change is greater than positive percentage change for h1.
This is the least sensitive parameter among others.

• If purchasing cost c increases, then the average pro�t AP1 decreases. In this
case, negative percentage change is greater than the positive percentage change
for that parameter. It is the most sensitive parameter among others.

• An increasing value in ordering cost s decreases the average pro�t AP1. For
that parameter s, positive percentage change is less than the negative percentage
change. This is also less sensitive parameter among others.

Table 3:(b) Sensitivity analysis for Case II

Parameters Changes(in %) AP2

−50% −
−25% −

h +25% −0.8
+50% −1.47
−50% 2.36
−25% 1.02

h1 +25% −0.79
+50% −1.35
−50% 28.56
−25% 14.28

c +25% −14.28
+50% −28.56
−50% 0.95
−25% 0.43

s +25% −0.38
+50% −0.73

'−' refers to infeasible solution.

• While the parameter unit carrying cost per stock in display area (i.e., h) de-
creases for −25% and −50%, this model does not give any feasible solution.
But for +25% and +50%, this model allows feasible results and in that case
average pro�t AP2 decreases when unit carrying cost per stock in display area
h increases.

• As h1 i.e., unit carrying cost per stock in warehouse, increases, then the average
pro�t AP2 decreases gradually. The positive percentage change is less than
negative percentage change for h1.

• For the unit purchasing cost c, negative and positive percentage changes are ex-
actly same. An increasing value in purchasing cost c decreases the average pro�t
AP2. This is the most sensitive parameter comparing with other parameters.

• When ordering cost s increases, the average pro�t AP2 decreases. The negative
percentage change is bigger in comparing to positive percentage change for s.
This is least sensitive among other parameters.
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Table 4:(c) Sensitivity analysis for Case III

Parameters Changes(in %) AP3

−50% −2.96
−25% −3.4

h +25% −4.26
+50% −4.70
−50% 0.06
−25% −1.89

h1 +25% −5.78
+50% −7.72
−50% 2.81
−25% 0.51

c +25% −7.15
+50% −10.47
−50% −3.35
−25% −3.6

s +25% −4.07
+50% −4.31

• If unit carrying cost per stock in display area (i.e., h) increases, the average
pro�t AP3 decreases. It is found that positive and negative percentage changes
are almost double for h.

• For h1, the positive percentage change is greater than the negative percentage
change. The result indicates that average pro�t AP3 decreases if h1 increases.

• While purchasing cost c increases from −50% to +50%, average pro�t AP3

decreases. The negative percentage change is smaller than positive percentage
change for that parameter. This is the most sensitive parameter comparing to
others.

• The increasing value of ordering cost s decreases the average pro�t AP3. The
negative percentage change is not similar with positive percentage change of s.

Table 5:(d) Sensitivity analysis for Case IV

Parameters Changes(in %) AP4

−50% −13.60
−25% −14.93

h +25% −17.60
+50% −18.92
−50% −4.29
−25% −10.28

h1 +25% −22.24
+50% −28.23
−50% 12.62
−25% −1.82

c +25% −30.7
+50% −45.14
−50% −15.63
−25% −15.94

s +25% −16.58
+50% −16.89
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• The negative percentage change and positive percentage change for h is not
similar. As unit carrying cost per stock in display area h increases, the average
pro�t AP4 decreases.

• It can be found that if the parameter h1 i.e., unit carrying cost per stock in
warehouse, increases, then the average pro�t AP4 decreases. The negative and
positive percentage changes are similar for h1.

• While purchasing cost c increases, then the average pro�t AP4 decreases. From
Table 5, it is clear that the negative percentage change is higher than positive
percentage change.

• An increasing value in ordering cost s decreases the average pro�t AP4. In that
case, negative and positive percentage changes are close to each other.

4. Conclusions and future extensions

This model developed an optimal ordering and transfer policy for uniformly distributed
deteriorating items. In Goyal and Chang's(2009) [Goyal SK, Chang CT (2009) Optimal
ordering and transfer policy for an inventory with stock dependent demand. Euro. J.
Oper. Res. 196:177-185] model, demand of products is taken to be only stock-dependent.
They does not consider deterioration of products. This model incorporated random de-
terioration of products. According to Goyal and Chang's (2009) [Goyal SK, Chang CT
(2009) Optimal ordering and transfer policy for an inventory with stock dependent de-
mand. Euro. J. Oper. Res. 196:177-185] model, demand of items depends only on
display stocks over the whole year. Demand of products may vary with time and price.
These two factors i.e., time and price both can a�ect demand of products. This study
derived four di�erent cases of demand functions such as time-price, time, selling price,
and exponentially time-dependent demand function which would make this model more
realistic to real life situation. This model determined retailer's optimal ordering quantity
and maximized average pro�t for the retailer with �nite production rate. The number of
transfers from warehouse to display area is determined. The global optimal solutions are
obtained analytically. There are four lemmas to �nd the global optimum solution.Some
numerical examples, sensitivity analysis, and graphical representation explained the ap-
plicability of this proposed model. This model can be extended in di�erent ways by
considering shortages, discounts, and in�ation rates.
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Appendix A

M =

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1 + 2z1p)e

θt1 +
h(y1 + 2z1p)

θ

(
eθt1

t1
+

(1− eθt1)

θt12

)
N = 4z1p− 2

[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1) + h

( (1− eθt1)

θt1
+ 1
))]

U = (y1p+ z1p
2 − x− x1 − yt1 − zt12 −Rθ)eθt1

Appendix B

f =
[ (1 − eθt1 )

θ
(y1p+ z1p

2 − x− x1) + y

(
t1eθt1

θ
−

(eθt1 − 1)

θ2

)
+ z
( t12eθt1

θ
−

2t1eθt1

θ2

+
2(eθt1 − 1)

θ3
Big) +Reθt1 −R

]

Appendix C

α =
h1

2
(θ(n− 1)− 1)

(
y

θ
− 2

θ2
− x
)

β =

(
y − 2z

θ

)(
h1

2θ
(θt1 + 1− (n− 1)θ(t1θ + 2)− h)

)
γ =

z

θ

[
h1(t1

2θ + 2t1 −
(n− 1)

2
(4t1θ + θ2t1

2 + 2))− h(t1θ + 2)

]
δ =

h

2

[
2(1− eθt1)

t13
+

2θeθt1

t12
− θ2eθt1

t1

] [
R−

(
y

θ
− 2z

θ2
− x
)]

a1 =
h1(n− 1)

4
zθ2

a2 =
h1(n− 1)

2

(
(y + 2z)

θ2

2
+ 2zθ

)

a3 =
h1(n− 1)

2

[
(y + 2z)

3θ

2
+ 3z

]
−
[h1(n− 1)

2

(Rθ3
2

+

(
y

θ
− 2z

θ2
− x
)
e−θt

θ2

2

)
+ h

(
y − 2z

θ

)
θ

2

]
a4 =

[2(p− c)z
3

− h1(n− 1)

2

(
Rθ2 +

(
y

θ
− 2z

θ2
− x
)
e−θtθ − 2θ

(y
θ

+
2z

θ

)
− z

θ

)
− hRθ2

2
+ h

(
y

θ
− 2z

θ2
− x
)
θ

2
− h

(
y − 2z

θ

)]
,

a5 =
[
(p− c)y

2
− h1(n− 1)

2

[
Rθ +

(
y

θ
− 2z

θ2
− x
)
e−θt −

(
y

θ
+

2z

θ

)]
− hRθ

2

− h

2

(
y

θ
− 2z

θ2

)]
,

a6 =
S

n
+ s.
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Appendix D

D(p) = (x1 − y1p− z1p2).

l1 =
2(eθt1 − 1)

θt13
− 2eθt1

θ2
+
θeθt1

t1
.

l2 =

(
eθt1

t1
− eθt1 − 1

θt12

)
.

l3 =

(
2cz1 + h1(n− 1)z1 − 6z1p+

2z1h

θ
l2

)
.

l4 =

(
− S

n2t12
− h1

2
(Rθ +D(p))eθt1

)
.

l5 = (y1 + 2z1p)

(
h1(1− n)

2
eθt1 +

h

θ

)
l2.

Appendix E

b1 =

[
2(ey2t1 − 1)

t13
− 2ey2t1y2

t12
+
ey2t1y2

2

t1

]
,

b2 = [x2(y2 + θ)e(y2+θ)t1 +Reθt1θ2],

b3 = [e(y2+θ)t1(−θe−θt1 − y2ey2t1)
x2

y2 + θ
+ x2(y2 + θ)

( (1− e−θt1)

θ
+

(1− ey2t1)

y2

)
+ 2(e−θt1 − ey2t1)(y2 + θ)

x2
(y2 + θ)

+Rθeθt1
]
.


