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Abstract: In this study, poly(ethylene terephthalate) (PET) fiber was treated with glycidyl methacrylate
(GMA) using benzoyl peroxide (Bz20;) to start the reaction in water (GMA-g-PET). Then, hydroxylamine (HA)
was chemically attached to the GMA-treated PET fiber (HA-GMA-g-PET). The results indicated that a nitrogen
atom was connected to 95% of the GMA-treated PET fiber at a rate of 5.99%, with the reaction happening
at a temperature of 75 °C for 75 min. Hydroxylamine (HA) was then covalently attached to the GMA-grafted
PET fiber (HA-GMA-g-PET). The results showed that 95% of the GMA-grafted PET fiber had a nitrogen atom
attached at a rate of 5.99%, with the reaction taking place at 75 °C for 75 min. The removal of Cu(II), Ni(II),
and Cd(II) ions from the aqueous solution by the HA-GMA-g-PET fiber was examined by the batch
equilibration technique. Researchers investigated how parameters such as pH, adsorption temperature,
adsorption time, and initial ion concentration affect the adsorption capacity of HA-GMA-g-PET fibers. The
maximum adsorption capacities of the reactive fiber at a concentration of 300 mg/L for Cu(II), Ni(II), and
Cd(II) ions at a pH value of 6 were found to be 27.76 mg/g, 63.86 mg/g, and 66.73 mg/g, respectively. It
was determined that the adsorption of Cu(II), Ni(II), and Cd(II) ions onto HA-GMA-g-PET fiber attained
equilibrium at 90 min, 45 min, and 120 min, respectively. It was observed that at a pH value of 6, HA-GMA-
g-PET fiber is more selective for Cd(II) ions in the mixtures of Cu(II)-Cd(II), Ni(II)-Cd(II), and Cu(II)-Ni(II)-
Cd(1I).
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1. INTRODUCTION wastewater treatment systems, leading to difficulties

such as the discharge of inadequately treated

Heavy metals (HMs) are a significant group of
pollutants that endanger the ecological balance due
to their toxicity, ability to accumulate in water, soil,
and living organisms, and their nondegradable
nature (1). HM pollution significantly impacts various
ecosystems by degrading soil and water quality,
disrupting the ecological balance. Studies have
shown that HMs can cause significant pollution and
ecological hazards in aquatic environments (2).
Ecological risk assessments identified sites with
moderate to high HM pollution levels, highlighting the
need for remedial actions (2). HMs also affect

wastewater and the accumulation of metal levels in
sludge, which pose risks to human and
environmental health (3). Aquatic organisms absorb
pollutants directly from water and indirectly through
food chains. HMs have profound effects on fish and
other aquatic organisms, including reduced
developmental growth, increased developmental
anomalies, and the extinction of fish populations in
polluted reservoirs. Therefore, greater attention to
bio conservation protocols is essential (4). The
processes of industrialization and urbanization have
precipitated a swift escalation in heavy metal
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pollution levels. This pollution has led to the
contamination of sediments, soils, and water bodies,
thereby increasing the ecological risks associated
with these hazardous substances (5). The evaluation
of heavy metal contamination in impacted regions
depends significantly on comprehending the
distribution, origins, interactions, and environmental
variables related to it. These elements are essential
in determining the possible ecological repercussions

(6).

Employing advanced treatment methods is crucial for
improving wastewater quality by efficiently removing
pollutants that are resistant to standard processes.
Various methods, such as advanced oxidation
processes (AOPs), membrane separation techniques,
electrochemical oxidation, adsorption, and electroco-
agulation, are employed for this purpose (7). Despite
activated carbon's efficacy as an adsorbent for the
extraction of metal ions from aqueous solutions, its
prohibitive cost has prompted researchers to seek
more economical alternatives. The adsorbents
examined for this purpose encompass diverse
industrial byproducts, including ash, sludge, lignin,
and agricultural residues such as tree bark, bananas,
rice husks, peanut shells, and various plant leaves
and stems (8,9).

This study involves the grafting of glycidyl
methacrylate (GMA) onto PET fibers to create a novel
adsorbent. The aim is to covalently attach hyaluronic
acid (HA) to the grafted PET fibers through the epoxy
groups in the GMA structure. The newly synthesized
adsorbent will undergo characterization through
scanning electron microscopy (SEM), Fourier
transform infrared spectroscopy (FTIR), and
thermogravimetric analysis (TGA). Cu(II), Ni(II), and
Cd(1II) ions have been chosen as model adsorbates
to assess their adsorption characteristics. The impact
of different operational parameters on the adsorption
of these ions will be examined.

2. EXPERIMENTAL SECTION

2.1. Equipment

An Analyst Perkin Elmer 400 atomic absorption
spectrometer (Perkin Elmer, Norwalk, CT, USA)
equipped with a hollow cathode lamp and an air-
acetylene burner was used to determine Cu(II),
Ni(II), and Cd(II) ions. When using the devices, the
necessary parameters were set in accordance with
the manufacturer's recommendations. The selected
wavelengths for Cu, Ni, and Cd were 324.8, 232.0,
and 228.8 nm, respectively. pH measurements were
made using the Hanna HI 221 pH meter (HANNA pH
211, Hanna Instruments, Italy). The shaking of the
working solutions was performed using a Medline BS-
21 orbital shaker (BS-21, Medline, Hwaseong,
Korea). Infrared (IR) spectra were recorded from
400 to 4000 cm* using an IR spectrophotometer,
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Bruker VERTEX 70 FT-IR (Bruker Inc., Germany).
Thermogravimetric (TGA) analyses were recorded in
flowing nitrogen from 25°C to 900°C with a heating
rate of 20°C min-t using the high-resolution mode of
the TGA-Q500 instrument (TGA Q 500, TA
Instruments, USA). SEM measurements were carried
out with a JSM 5600 model scanning electron
microscope (JSM-5600, JEOL, Tokyo, Japan).

2.2. Chemicals and Reagents

Polyethylene terephthalate (PET) fibers were
provided by SASA (Artificial and Synthetic Fiber Inc.,
Adana, Turkey). Glycidyl methacrylate (GMA,
97.0%) was obtained from SRL Chemicals in
Mumbai, India. Benzoyl peroxide (Bz202, pure
grade), copper(Il) nitrate trihydrate (Cu(NO3),.
3H,O, 99.5%), nickel(II) nitrate hexahydrate
(Ni(NO3)2.6H20, 99.9%), cadmium(II) nitrate tetra-
hydrate  (Cd(NO3).4H;0, >98.5%), acetone
(99.7%), sodium acetate trihydrate (CH3COONa.
3H,0, 99.5%), glacial acetic acid (CH3COOH,
99.9%), sodium dihydrogen phosphate (NaH2POa,
>99%), phosphoric acid (H3PO4, 99%), nitric acid
(HNO3, 65%), and sodium hydroxide (NaOH, 97.0%)
were procured from Merck (Darmstadt, Germany). A
50 wt% hydroxylamine solution in H,O (99.999%)
was obtained from Sigma-Aldrich. All solution
preparations utilized ultrapure water generated by a
BIO-AGE Direct Ultra (TUVF-5) Water Purifier
System.

2.3. Polymerization Procedure

GMA-g-PET fiber was synthesized according to the
literature (10). Briefly, 300 mg of PET fibers were
placed in 50 mL of dichloroethane at 90°C for 2 h.
The swollen fibers were placed on filter paper to
remove dichloroethane and were taken into the
polymerization tube. 2 mL of acetone solution
containing the required amount of GMA and
appropriate concentration of Bz,0, was added to the
tube, and the volume was completed to 20 mL with
distilled water. The polymerization tube was kept in
a water bath at 75°C for 2 hours to complete the
polymerization. The grafted fiber was cleaned with
acetone for 24 hours and left to dry at 50°C for 3
days. Using the weight increase in the grafted fiber,
graft yield (GY) was calculated with equation 1.

Gyop = Mo~ o 100 (1)
”

The weight of ungrafted fibérs is represented by wj,
while the weight of grafted fibers is represented by
Wg-

2.4. Preparation of the HA-GMA-g-PET Fiber
0.05 g of GMA-g-PET fiber was taken into a 50 mL
Erlenmeyer flask, and 5 mL of 50% HA was added.
This mixture was shaken in an orbital shaker at 125
rpm for 75 min at 75 °C. The synthesis reaction is
shown in Figure 1.
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Figure 1: Synthesis reaction of HA-GMA-g-PET fiber.

2.5. Adsorption Procedure

Adsorption was carried out using a batch process in
50 mL Erlenmeyer flasks. Approximately 0.05 g of
HA-GMA-g-PET fiber was mixed with 25 mL of metal
solution at 125 rpm under specific temperature, pH,
and time conditions. Samples were taken at specific
intervals, and the metal ion concentration was
determined using AAS. The results were presented
by calculating the amount of metal adsorbed per
gram of HA-GMA-g-PET fiber. The adsorbed metal ion
was calculated using the following equation.

o=y @

Where Q represents the amount of ions adsorbed by
one gram of adsorbent (mg/g), C, is the initial
concentration of the metal solution (mg/L), C is the
equilibrium concentration of the metal solution
(mg/L), V is the volume of the metal solution (L), and
m is the amount of adsorbent (g).

2.6. Desorption of Metal Ions
A batch process was used in desorption studies.
Adsorbed metal ions were desorbed with 25 mL of 1
M HNOs3 solution at 25°C. The samples taken from
the desorption solutions were analyzed in AAS, and
the amount of desorbed metal ions was determined.
The desorption percentage was calculated using
equation 3.

Desorption(%) = % x 100 (3)

where wy is the desorbed ion amount (mg) and wa is
the adsorbent's adsorbed ion amount (mg).

3. RESULTS AND DISCUSSION

3.1. Characterization

3.1.1. FTIR analysis

FTIR spectra of ungrafted PET fibers, GMA-g-PET
fibers, and HA-GMA-g-PET fibers are shown in Figure
2. The FTIR fingerprints for ungrafted PET (Figure 2a)
were composed of five main peaks at 1713, 1407,
1222, 1100, and 739 cm!, corresponding to C=0
bond stretching in esters, C-H bond stretching, C-O
bond stretching in aromatic ether, C-O-C bond
stretching in ether, and aromatic C-H stretching

(11,12). The peak at 904 cm! seen because of GMA
grafting in the spectrum given in Figure 2b belongs
to the asymmetric stretching vibrations of the epoxy
functional group. This data showed that GMA was
grafted onto PET fiber (13). In the spectrum shown
in Figure 2c, the peak at 904 cm™1, which
corresponds to the epoxy groups introduced by
grafting the GMA monomer onto the PET fiber,
disappeared due to a reaction between the amine
groups and the epoxy groups. Additionally, in the
spectrum given in Figure 2c, O-H absorption at 3270
cm, N-H bending vibrations at 1601 cmt and 1556
cm, and C-N stretching vibrations at 1153 cm
were observed. This data showed that HA is
incorporated into the GMA-g-PET structure (14).

3.1.2. SEM analysis

Scanning electron microscope (SEM) photographs of
PET fiber and GMA-grafted PET fiber are shown in
Figure 3. When the SEM photographs were
examined, it was seen that the surface of the
ungrafted PET fiber (Figure 3a) was flatter,
smoother, and homogeneous. An increase in fiber
diameter was observed because of grafting GMA onto
PET fiber (Figure 3b). While the diameter of the
ungrafted PET fiber was 12.0 um, the surface of the
95% GMA-grafted PET fiber became heterogeneous
and rough, and its diameter was measured as 28.1
pm. These changes in the fiber structure were
evidence that GMA was grafted onto PET fiber (15).

3.1.3. TGA analysis

TGA analysis was performed to characterize the new
adsorbent obtained because of binding HA to the
structure formed by grafting GMA monomer onto PET
fiber. The TGA of PET fiber, GMA-g-PET fiber, and HA-
GMA-g-PET fiber is shown in Figure 4. While the initial
mass loss temperature of ungrafted PET fiber is
approximately 400°C, this value is approximately
200°C for GMA-grafted PET fiber. By binding HA to
the structure, this value decreased even further at
lower temperatures. As clearly seen from the TGA
analysis, the introduction of new functional groups to
PET fiber chains reduces the mass loss onset
temperature.
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Figure 2: FTIR spectra of (a) PET fibers, (b) GMA-g-PET fibers, and (c) HA-GMA-g-PET fibers.
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Figure 3: SEM micrographs of (a) PET fibers and (b) GMA-grafted PET fibers (having 95% grafting yield).
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Figure 4: TGA thermograms of PET fibers, GMA-g-PET fiber, and HA-GMA-g-PET fibers.

3.2. Optimization of HA Binding Parameters to
GMA-g-PET Fiber

To provide suitable functional groups to GMA-g-PET
fibers to be used as adsorbents in the adsorption of
heavy metal ions, the fibers were functionalized
using HA. The structure formed by covalently
bonding HA to the epoxy groups on the PET fiber is
shown in Figure 1. Experimental conditions such as
temperature, reaction time, and grafting efficiency
that affect the binding of HA were investigated. The
optimum conditions affecting the binding of HA to
GMA-g-PET fibers were determined according to the
maximum amount of Cu(II) metal ion adsorbed.

The relationship between the maximum amount of
Cu(II) metal ion adsorbed by the HA-GMA-g-PET
fiber and the reaction temperature at which HA binds
is shown in Figure 5a. As can be seen in the figure,
the amount of adsorbed metal ions increases with the
binding temperature of HA. This value reached its
maximum at 75°C. There was no significant change
at higher temperatures. The data obtained show that
HA binds to the GMA-g-PET structure at a maximum
rate at temperatures of 75°C and above. The
elemental analysis results of the amounts of N atoms
bound at different temperature values are shown in
Figure 5b. Elemental analysis data show that as the
temperature increases, the amount of N atoms
bonded to the GMA-g-PET structure increases, and
accordingly, the amount of HA increases.

3.3. Effects of pH on Adsorption

One of the most important parameters affecting the
adsorption behavior of metal ions on the adsorbent
is the pH value of the aqueous solution. We examined
the effect of pH on the adsorption of metal ions using
HA-GMA-g-PET fiber at pH values between 3 and 8
(Figure 6). pH tests were performed below 8 due to
the possibility of precipitation of analytes into their
hydroxides. Since there are no suitable functional
groups to be used in the adsorption of metal ions on
GMA-g-PET fiber, metal adsorption is not affected by
solution pH values, and metal ion adsorption remains
at very low values. As a result of the covalent
bonding of HA to the epoxy groups in the GMA
structure, the adsorbent was functionalized and
obtained a structure suitable for metal adsorption. At
low pH values, the high proton concentration in the
solution makes the surface of the adsorbent positive
by protonating the functional groups (-NH, -OH) on
the HA-GMA-g-PET fiber. The degree of adsorption
decreases as a result of the repulsion force between
Cu(II), Ni(II), and Cd(II) cations and the adsorbent
surface. As pH increases, the degree of protonation
of active functional groups on the adsorbent surface
decreases, while the adsorption amount of analytes
increases. The maximum adsorption amounts on HA-
GMA-g-PET fiber occurred at pH 5 for Cu(II) ions and
at pH 6 for Ni(II) and Cd(II) ions. The formation of
hydroxides (16) likely explains the decrease in the
adsorption levels of analytes at high pH.
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Figure 5: Results of HA binding conditions to GMA-g-PET fibers; a) effect of temperature on the
functionalization of GMA-g-PET fiber with HA ([Cu(II)]=50 mg/L, pH=5, time=90 min, graft yield=95%),
b) elemental analysis results of HA-GMA-g-PET fiber structure, c) effect of time on the functionalization of
GMA-g-PET fiber with HA ([Cu(1I)]=50 mg/L, pH=5, temperature=75°C; grafting efficiency=95%);
d) effect of grafting efficiency on the functionalization of GMA-g-PET fiber with HA ([Cu(II)]=50 mg/L,
pH=5, temperature=75°C; time=75 min).
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Figure 6: Effect of pH on the adsorption of Cu(II), Ni(II), and Cd(II) ions on HA-GMA-g-PET fibers (25 °C,
120 min, grafting yield, 95%).

3.4. Effect of Contact Time HA-functionalized GMA-g-PET fiber using the batch
We examined how adsorption time affects the method, and the results are shown in Figure 7. The
adsorption of metal ions from an aqueous solution of  adsorption process is highly dependent on the ion
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exchange of the grafted modified polymer, its
chelation properties, the openness of the binding
sites of the polymer to the interaction surface, and
the degree of diffusion of the analyte cations (17).
When the figure is examined, it can be seen that
adsorption occurs rapidly at first. The abundance of
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active binding sites on the surface of HA-GMA-g-PET
fibers can initially explain the reason for this. As time
progresses, active binding sites gradually decrease
and equilibrium is reached. Cu(II), Ni(II), and Cd(II)
ions reached the maximum adsorption value after
90, 45, and 120 min, respectively.
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Figure 7: Effect of the contact time on the adsorption of Cu(II), Ni(II), and Cd(II) ions on HA-GMA-g-PET
fibers (Analyte concentrations, 20 mg/L; 25 °C; grafting yield, 95%; pH 5 for Cu(II), 6 for Ni(II) and
Cd(1ID)).

To investigate the adsorption mechanism, the
pseudo-first-order model (PFO) and pseudo-second-
order model (PSO) were used to test dynamic
experimental data. The linearized equation of the
pseudo-first-order model proposed by Lagergren
(17) is given in equation (4):

Log(qe — 4) = Logqe — ()t (4)

In this context, qt represents the amount of ions
adsorbed at any time (in mg of ions adsorbed per
gram of adsorbent), ge denotes the amount of
substance adsorbed at equilibrium, and ki indicates
the rate constant (in min~1). According to the
equation, the log(ge-qt) versus t (Figure 8) graph was
drawn, and the ki value was calculated from the
slope of the line. The theoretical amount of adsorbed

substance, ge, was calculated from the intersection
point of the theoretical line, and the results are
shown in Table 1.

The linearized form of the pseudo-second-order
model developed by Ho and McKay (18) is given in
equation (5):

t 1 t
= + —

qt k2qe2 qe

(5)

Where k, (g/mg/min) is the rate constant (PSO), g.
is calculated from the slope of the line obtained from
the graph drawn with t values against t/q:, k, is
calculated from the theoretical and cut points, and
the results are shown in Table 1.

Table 1: PFO and PSO rate constants.

PFO rate constants

PSO rate constants

Metal (ﬂ?’ge/xgp ) ki Ge, cal R2 k2 Ge, cal R2
(min~1) (mg/q) (9/mg/min) (mg/q)

Cu(II) 3.03 0.0306 2.10 0.987 0.0209 3.31 0.994

Ni(II) 9.03 0.1216 10.25 0.977 0.0412 9.34 0.995

Cd(II) 8.89 0.0251 6.70 0.978 0.0032 10.74  0.995

When Table 1 is examined, the regression numbers
of the lines drawn from the second-order velocity
equation are greater than the regression humbers of
the lines drawn from the first-order velocity
equation. In addition, the theoretical q values
calculated from the second-order velocity equation

showed better agreement with the experimental q
values (Figure 9). The data obtained showed
compliance with the second-order adsorption
mechanism.
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3.5. Effects of Temperature on Adsorption

The effect of temperature on the adsorption of metal
ions from aqueous solution by HA-functionalized
GMA-g-PET fibers was investigated. As seen in Figure
10, there was a slight increase in the amount of
adsorption with the increase in temperature. As the
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temperature increased, the swelling percentage of
the fiber increased. Thus the amount of adsorbed
metal ions increased as the diffusion of metal ions
into the grafted fibers became easier.
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Figure 8: Pseudofirst-order plots for Cu(II), Ni(II) and Cd(II) ions on HA-GMA-g-PET fiber.
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The 1/T plot against Log q values for Cu(II), Ni(II),
and Cd(II) ions is shown in Figure 11. From the
slopes of the lines, the adsorption energies of the
adsorption of Cu(II), Ni(II), and Cd(II) ions were
calculated as 0.345, 0.685, and 0.244 kJ mol™%,
respectively. The activation energy required for
chemical adsorption has been reported in the range
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of 65-250 kJ/mol (19). The fact that the obtained
values are significantly lower than this range
indicates physical adsorption. Low activation
energies showed that the adsorption of metal ions by
HA-GMA-g-PET fibers occurred easily.
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Figure 11: Log q value versus 1/T plot for Cu(II), Ni(II), and Cd(II) ions.

3.6. Effect of Initial Ion Concentration

Figure 12 shows the effect of the initial concentration
of Cu(II), Ni(II), and Cd(II) ions on the adsorption
on HA-GMA-g-PET fibers under optimum conditions.
It was observed that the adsorption of Cu(Il) ions
remained almost constant after the initial
concentration of 200 mg/L, and the adsorption of

Ni(II) and Cd(II) ions remained almost constant after
the initial concentration of 300 mg/L. The maximum
adsorption capacities for 300 mg/L Cu(II), Ni(II), and
Cd(II) were obtained as 27.76, 63.86, and 66.73
mg/g, respectively. The results indicate that the
affinity of Ni(II) and Cd(II) ions is higher than that of
Cu(II) for HA-GMA-g-PET fibers.
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Figure 12: Effect of ion initial concentration on the adsorption of Cu(II), Ni(II), and Cd(II) ions onto HA-
GMA-g-PET fibers (Time: 120 min; temperature: 25 °C; adsorbent concentration: 0.05 g/0.025 L; grafting
yield: 95%; pH 5 for Cu(II), 6 for Ni(II) and Cd(II)).

The literature reports the adsorption capacities of
various adsorbents for heavy metal ions as follows:
0.129-21.40 mg/g for Cu(II) ion, 0.069-13.90 mg/g
for Ni(II) ion, and 0.112-48.80 mg/g for Cd(II) ion.
It has been reported to be in the range of (20-25).

Accordingly, it is thought that the adsorption capacity
of HA-GMA-g-PET fiber is quite satisfactory for Cd(II)
and Ni(II) ions, and at the level of adsorbents given
in the literature for Cu(II) ions.
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It has been found that HA-GMA-g-PET fiber has a
beneficial adsorbent feature in the selective removal
of Cd(II) ions, which are highly toxic, from aqueous
solution, and it removes Ni(II) and Cu(II) ions at the
level of adsorbents given in the literature. According
to these results, it is thought that HA-GMA-g-PET
fibers can be used as an alternative industrial
adsorbent.

3.7. Adsorption Isotherm

The amount of a chemical species adsorbed by an
adsorbent is expressed by adsorption isotherms,
which relate a function to the equilibrium
concentration of the species of interest at constant
temperature. Adsorption isotherm models provide
information about adsorption mechanisms and
affinities (25,26). In this study, Langmuir (27) and
Freundlich (28) isotherms, which are the most
preferred in the literature, were used.

The linearized equations of the Langmuir and
Freundlich isotherms are given in equations 6 and 7,
respectively.
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ce__1 +E (6)
Qe Q.k. Q,
1
LogQe= LogK; +—LogCe (7)
n

where C. is the concentration of Cu(II), Ni(II), and
Cd(II) ions (mg/L) at equilibrium. Q¢ is the amount
of substance adsorbed on the unit adsorbent (mg/g),
Qm indicates the monolayer adsorption capacity of
the adsorbent (mg/g), and K_ is the Langmuir
adsorption constant (L/mg). K and n refer to
adsorption capacity (mg/g) and empirical parameter,
respectively.

According to the Langmuir equation, the C¢/qe versus
Ce graph was drawn as shown in Figure 13, gm values
were calculated from the slope of the line, and K.
values were calculated from the intersection, and the
results are given in Table 2.

e (a) (b)
71\ .
v y=-0.1245x +8.2109 2.0 4 y = 0.4514x + 0.8044 -
64\ R?=0.9588 R? = 0.9601 e
4 y=0.0147x +0.2994 S LA
5 R2=09924 -~ L5 2>
¢ ". Pt 80 9.;;:;95"y— 0.5163x + 0.6697 ) . o
= gt = K R* = 0986 o
© y=0.0182x + 0.3564 el o cu(ll 10 . * Ni(ID
347 .- e -
R? = 0.9669 - ‘ g
.- * Ni(l) ,, A Cd(m)
2 AS s &
P el A cd(m 05 1 ® o 1.1599x - 0.9918
1 “;gt’»" R? = 0.9949
P S— . : . . . : o —s, . . .
0 50 100 150 200 250 300 350 400 -0.5 0.0 0.5 10 1.5 2.0 25 3.0
C, (mg/L) log C,

Figure 13: Linear fit curves for (a) Langmuir and (b) Freundlich adsorption isotherm models.

According to the regression coefficients of the
isotherms, it can be said that the Freundlich isotherm
for Cu(II) and Cd(II) and the Langmuir isotherm for
Ni(II) better describe the adsorption mechanism of
these ions on HA-GMA-g-PET fiber. It indicates the
single-layer adsorption of Ni(II) ions on
homogeneously distributed adsorption sites of HA-
GMA-g-PET fibers and the multilayer adsorption of

Cu(II) and Cd(II) ions on heterogeneous adsorption
sites. The value of 1/n<1 obtained for Ni(II) and
Cd(II) indicates the strong adsorption bond within
the adsorbent layers, while there is a weak
adsorption bond for Ni(II). The Qm for Cu(II), Ni(II),
and Cd(II) ions were 8.03, 68.02, and 54.94 mg/g,
respectively.

Table 2: Freundlich and Langmuir isotherm constants.

Freundlich constant

Langmuir constant

Metal

Ke n R2 Qm (mg/g) K. (L/mg) R?
Cu 0.12 0.86 0.995 8.03 1.02 0.960
Ni 6.37 2.21 0.960 68.02 0.004 0.993
Cd 4,67 1.93 0.986 54.94 0.006 0.966

3.8. Selective Adsorption of Metal Ions

We examined the use of HA-GMA-g-PET fibers as
adsorbents for selective adsorption in aqueous
solutions containing binary and ternary mixtures of
metal ions. The results of the removal of metal ions
by HA-GMA-g-PET fiber from equimolar solutions of
Cu(II), Ni(II), and Cd(II) ions at optimum pH value
are shown in Figure 14. Cu(II)-Cd(II) (Figure 14a),

Ni(II)-Cd(II) (Figure 14b), and Cu(II)-Ni(II)-Cd(II)
(Figure 14c) are examples of binary and triplet. In
the mixtures, Cd(II) ions showed better affinity to
HA-GMA-g-PET fiber, and adsorption selectivity was
achieved at 85%. This indicates that it will allow the
selective separation of Cd(II) ions in aqueous
samples containing Cu(II) and Ni(II) ions.
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3.9. Desorption of Metal Ions

We examined the desorption properties of Cu(II),
Ni(II), and Cd(II) ions adsorbed on HA-GMA-g-PET
fiber. The results obtained were shown in Figure 15.
Adsorbed metal ions were easily desorbed with 25
mL of 1 mol/L HNOs in 60 minutes at room
temperature. The highest desorption values for
Cu(II), Ni(II), and Cd(II) ions were found to be 99%,

60

80 100 120

time, min.
Figure 14: The process involves the competitive adsorption of ions onto HA-GMA-g-PET fibers. [(a) Cd(II)-
Cu(II); (b) CdA(II)-Ni(II); (c) Cd(II)-Cu(II)-Ni(II); pH 6; ion concentration: 50 mg/L; contact time: 120
min; temperature = 25 °C; graft yield: 95%]

99%, and 98%, respectively. The desorption of metal
ions was rapid and completed in a short time. The
high and rapid desorption rate supported the
proposed adsorption mechanism. These desorption
results indicate that HA-GMA-g-PET fibers can be
used in industrial applications as an effective
adsorbent in removing the studied metal ions from
wastewater.

120
100 A
C\o 80 s
c
§=]
e —e— Cu(ll
£ 60 1 u(n)
é —ao—Ni(ll)
40 —a—Cd(Il)
20
0 T T T T T T
0 10 20 30 40 50 60
Time, min.

Figure 15: Desorption profile of HA-GMA-g-PET fibers with adsorbed Cu(II), Ni(II), and Cd(II) ions. (Graft
yield: 95%; ions concentration: 50 mg/L; temperature: 25°C; contact time: 60 min.)
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The desorption of metal ions was rapid and
completed in a short time. The high and rapid
desorption rate supported the proposed adsorption
mechanism. These desorption results indicate that
HA-GMA-g-PET fibers can be used in industrial
applications as an effective adsorbent in removing
the studied metal ions from wastewater.

3.10. Reusability of HA-GMA-g-PET Fibers
One of the most important features of an effective
and economical adsorbent is that it can be used

RESEARCH ARTICLE

repeatedly. We investigated how the repeated use of
HA-GMA-g-PET fiber as an adsorbent affects the
adsorption of Cd(II) ion. For this purpose, the
adsorption and desorption process was repeated five
times, and the results are shown in Figure 16. It was
observed that there was an approximately 9%
decrease in the amount of Cd(II) metal ion adsorbed
after five repetitions. The results indicate that HA-
GMA-g-PET fibers can be used as a suitable
adsorbent with high reusability in the adsorption of
Cd(II) ions.

100

80

60

40

20

Percentage (%) desorption

1 2 3 4 5

Number of cycles

Figure 16: Adsorption—-desorption of Cd(II) ions and reusability of adsorbent using HNO3 as desorbing
agent (n:3). (Graft yield: 95%; pH 6; Cd(II) ions concentration: 50 mg/L; temperature: 25°C; contact
time: 120 min.)

4. CONCLUSION

GMA monomers were grafted onto PET fibers in an
aqueous medium using a benzoyl peroxide initiator.
The GMA-g-PET fiber was treated with HA, studied to
understand its properties, and tested to see how well
it can remove heavy metal ions. It was noticed that
factors like temperature, how long the reaction
takes, and how well the GMA-impregnated PET fiber
is soaked with HA influence how well the fiber is
functionalized. It was observed that various
parameters, such as pH, adsorption time, adsorption
temperature, and initial ion concentration, affect the
adsorption capacity of Cu(II), Ni(II), and Cd(II) ions
on HA-GMA-g-PET fibers. It was found that the
maximum adsorption of Cu(II) ions occurred at pH 5,
while Ni(II) and Cd(II) ions reached maximum
adsorption at pH 6 on HA-GMA-g-PET fibers. The
Cu(II), Ni(II), and Cd(II) ions quickly attached to the
HA-GMA-g-PET fibers in the first 30 minutes, with
Cu(II) ions stabilizing after 90 min, Ni(II) ions after
45 min, and Cd(II) ions after 120 min. It was found
that the way Cu(II), Ni(II), and Cd(II) ions attach to
HA-GMA-g-PET fibers followed a pattern described by
a second-order kinetic model. The adsorption of
Cu(II), Ni(II), and Cd(II) ions onto HA-GMA-g-PET
fibers increased with the initial ion concentration, and
the maximum adsorption amounts of Cu(II), Ni(II),
and Cd(1II) ions were found to be 27.76 mg/g, 63.86
mg/g, and 66.73 mg/g, respectively. The adsorption
of heavy metal ions onto HA-GMA-g-PET fibers
follows the Freundlich adsorption isotherm for Cu(II)
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and Cd(II) ions and the Langmuir adsorption
isotherm for Ni(II) ions. The Cu(II), Ni(II), and Cd(II)
ions stuck to HA-GMA-g-PET fibers were removed at
a rate of 98% using a 1 mol/L HNO3s solution. It was
discovered that Cd(II) ions were taken out more
efficiently, at a rate of 85%, from mixtures that
included Cu(II) and Cd(II) or Ni(II) and Cd(II), as
well as from a mixture of Cu(II), Ni(II), and Cd(II).
The HA-GMA-g-PET fiber was subjected to five
adsorption and desorption cycles for reuse. After five
reuses, the amount of adsorbed metal ions
decreased by 9%. The adsorbent's selectivity toward
Cd(II) ions, which are highly toxic, is an important
property. Due to its reusability, the synthesized
material is anticipated to serve as an alternative
adsorbent.
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