
İSTATİSTİK: JOURNAL OF THE TURKISH STATISTICAL ASSOCIATION
Vol. 11, No. 1-2, January-July 2018, pp. 12–28

issn 1300-4077 |18 |1-2 |12 |28
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1. Introduction
Prediction of the future samples based on current sample information (called informative sample)

is very interesting topic in Statistics. Here, the informative sample and the future sample are
supposed stochastically independent. The aim of this paper is to discuss the predicting progressively
first-failure-censored order statistics arising from a future sample based on observed k-records.
First, we present a brief description to the progressively first-failure-censored samples and the
k-records.

Censoring is usual in lifetime data due to time and cost restrictions. There are various types
of censoring in survival analysis and progressive censoring is one of the most common for consid-
eration. This censoring allows the experimenter to remove units from a life test at various stages
during the experiment. For a comprehensive review of theory, methods and applications of the
progressive censoring, we refer the reader to Balakrishnan and Aggarwala [7], Balakrishnan [6] and
the references contained therein. Also, recently a book due to Balakrishnan and Cramer [8] offers
a thorough and updated guide to the theory and methods of progressive censoring along with its
practical applications to reliability and survival analyses. Progressive first-failure censoring, intro-
duced by Wu and Kuş [30], is a type of progressive censoring in which n disjoint groups with s
identical units within each group (N = n× s) are placed on a life test at time zero. Suppose the
random variables X1, . . . ,XN denote their corresponding lifetimes. The life test is terminated at
the time of m-th failure. When the i-th unit fails (i= 1,2, . . . ,m−1), randomly selected Ri groups
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Table 1. The k-record times and k-record values for the insulating fluid data set when k= 2.

r 1 2 3 4 5 6 7 8

Tr(k) 2 5 6 9 10 11 18 19

Ur(k) 0.96 4.15 8.01 8.27 31.75 32.52 33.91 36.71

Table 2. The k-record times and k-record values for the insulating fluid data set when k= 3.

r 1 2 3 4 5 6 7 8 9 10

Tr(k) 3 4 5 6 7 9 10 11 18 19

Ur(k) 0.19 0.78 0.96 4.15 7.35 8.01 8.27 31.75 32.52 33.91

and the group in which the i-th failure is observed are removed from the test. When the m-th
failure occurs, all of the remaining groups are removed from the test. The m observed failure times
denoted by XR

1:m:n:s < · · ·<XR
m:m:n:s are the progressively first-failure-censored order statistics with

pre-determined censoring scheme R = (R1, . . . ,Rm). Note that: (1) for s= 1, the progressive first-
failure-censoring scheme is reduced to the case of progressive Type-II censoring, (2) if Ri = 0 for
i = 1,2, . . . ,m, we have the first-failure censoring, (3) if s = 1, Ri = 0 for i = 1,2, . . . ,m− 1 and
hence Rm = n−m, this scheme is reduced to the Type-II censoring and (4) if s= 1 and Ri = 0 for
i = 1,2, . . . ,m, this scheme is simplified to the complete sample. According to Wu and Kuş [30],
“Although more units are used (only m of N units fail) in the progressive first-failure-censoring
plan than in others, it has advantages in terms of reducing test cost and test time”.

Let {Yi, i≥ 0} be a sequence of continuous random variables. Then, Yj will be called an upper
record value (or simply record value) if Yj >Yi for every i < j. A similar definition can be proposed
for lower record values. Analogously, an upper k-record value (or simply k-record value) is defined
in terms of the k-th largest Y yet seen. Precisely, let T1(k) = k, U1(k) = Y1:k and for r≥ 2,

Tr(k) = min{j : j > Tr−1(k), Yj >YTr−1(k)−k+1:Tr−1(k)
},

where Yi:n denotes the i-th order statistic in a random sample of size n. In the literature, {Tr(k), r≥
1} is said to be the k-record times sequence. Thus, the sequence of k-record values is defined by
Ur(k) = YTr(k)−k+1:Tr(k)

for r ≥ 1. For the special case k = 1, the usual record values are obtained.
Dziubdziela and Kopocinski [13] showed that {Ur(k), r≥ 1} arising from a sequence of independent
and identically distributed (IID) random variables with the common distribution function (DF)
F is distributed as the usual record values (i.e. k = 1) coming from a sequence of IID random
variables with the common DF 1− (1−F )

k
. Various applications of k-record values can be found

in the literature; See, e. g. Arnold et al. [5], Kamps [16, 17] and Nevzorov [22]. For example, the
r-th k-record value can be regarded as the life length of a k-out-of-Tr(k) system. As an illustration,
consider the following data set given by Lawless [19, p. 185]:

0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91 32.52 3.16 4.85 2.78

4.67 1.31 12.06 36.71 72.89 .

These data contains times to breakdown of an insulating fluid between electrodes recorded at
34 kilovolts. For k = 2 and k = 3, the k-record times and k-record values are reported in Tables 1
and 2.

Statistical predictions via a Bayesian approach have been considered in the literature; See, for
example, Madi and Raqab [20], Ali Mousa and Jaheen [3], Ali Mousa and Al-Sagheer [4], Raqab
et al. [23], Kundu and Howlader [18], Ahmadi et al. [1, 2], Ghafoori et al. [14], Huang and Wu
[15], Balakrishnan and Shafay [9], Saeidi et al. [24] and Doostparast [11]. Also, Soliman et al.
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[27] considered point and interval Bayesian predictions on the basis of general progressively Type-
II censored data coming from Weibull model under symmetric and asymmetric loss functions.
Recently, Shafay et al. [25] discussed the problem of predicting the future sequential order statistics
based on observed multiply Type-II censored samples of sequential order statistics from one- and
two-parameter exponential distributions.

In this paper, we suppose that the parent population follows the Weibull distribution with DF

F (x;α,β) = 1− exp
{
−αxβ

}
, x > 0, α > 0, β > 0. (1.1)

Hence, the density function of the Weibull distribution is

f(x;α,β) = αβxβ−1 exp
{
−αxβ

}
, x > 0, α > 0, β > 0. (1.2)

The Weibull distribution is one of the most popular distributions that is extensively used for
modelling the failure data. For more details on applications of the Weibull distribution, see, for
example, Murthy et al. [21] and references therein.

The rest of this paper is organized as follows. In Sections 2 and 3, Bayesian interval and point
predictors for progressively first-failure-censored order statistics arising from a future sample based
on observed k-record values are derived. To do this, we consider two cases for the shape parameter
β in the DF (1.1). The performance analysis of the obtained predictors is carried out by conducting
a simulation study in Section 4. Finally, we use a real data set from Dunsmore [12] for illustrating
the inferential methods developed here.

2. Bayesian prediction interval
Let U1(k) < · · ·<Ur(k) be the first r k-record values from a continuous population with density

function and DF f(·|θ) and F (·|θ), respectively, where θ is a vector of parameters. Following
Arnold et al. [5], the associated likelihood function (LF) of the observed data u = (u1, . . . , ur) is
reduced to

L(θ;u) = kr (1−F (ur|θ))
k

r∏
j=1

f(uj|θ)

1−F (uj|θ)
.

Under the Weibull distribution, the LF becomes

L(α,β;u) = (kαβ)r
r∏
j=1

uβ−1j exp
{
−kαuβr

}
, 0<u1 < · · ·<ur <∞. (2.1)

On the other hand, let XR
1:m:n:s, . . . ,X

R
m:m:n:s be a progressively first-failure-censored sample from

a continuous population with density function and DF f(·|θ) and F (·|θ), respectively. It can be
seen that XR

1:m:n:s, . . . ,X
R
m:m:n:s can be viewed as a progressively type II censored sample from a

continuous population with density function and DF sf(·|θ) (1−F (·|θ))
s−1

and 1− (1−F (·|θ))
s
,

respectively. Then, the marginal density function of XR
i:m:n:s, (1 ≤ i ≤ m) is given by (see, for

example, Balakrishnan and Aggarwala [7])

fXR
i:m:n:s

(xi|θ) = ci−1sf(xi|θ) (1−F (xi|θ))
s−1

i∑
j=1

aj (1−F (xi|θ))
s(γj−1) , (2.2)

where

γj =
m∑
l=j

(Rl + 1) = n−
j−1∑
l=1

(Rl + 1), ci−1 =
i∏

j=1

γj,

aj =
i∏

l=1, l 6=j

1

γl− γj
, 1< i≤m and a1 = 1.
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Upon substituting Equations (1.2) and (1.1) into Equation (2.2), the marginal density function of
XR
i:m:n:s is obtained as

fXR
i:m:n:s

(xi|α,β) = ci−1sαβx
β−1
i

i∑
j=1

aj exp
{
−sαγjxβi

}
, xi > 0. (2.3)

In the following subsections, two cases for the parameter β are considered.

2.1. β is known
Assume a gamma conjugate prior for α as

π(α)∝ αa−1 exp{−bα} , α > 0, (2.4)

where a and b are positive hyperparmeters that are chosen, for example, from a prior knowledge
of the mean and variance of α. From (2.1) and (2.4), the posterior density function of α, given u,
is obtained as

π(α|u)∝ αr+a−1 exp{−αgβ,b(ur)} , α > 0, (2.5)

where gβ,b(ur) = b+ kuβr . It is obvious that (α|u)∼ Γ(r+ a, gβ,b(ur)). By combining the posterior
density function in (2.5) with the conditional density function in (2.3), and then integrating out
the parameter α, the Bayes predictive density function of XR

i:m:n:s, given u, is

f?
XR
i:m:n:s

(xi|u) =

∫ ∞
0

fXR
i:m:n:s

(xi|α)π(α|u)dα

= ci−1sβ(r+ a)(gβ,b(ur))
r+axβ−1i

i∑
j=1

aj
(
gβ,b(ur) + sγjx

β
i

)−(r+a+1)
. (2.6)

From (2.6), the predictive survival function of XR
i:m:n:s given u becomes

P (XR
i:m:n:s > t|u) =

∫ ∞
t

f?
XR
i:m:n:s

(xi|u)dxi

= ci−1

i∑
j=1

aj
γj

(
gβ,b(ur)

gβ,b(ur) + sγjtβ

)r+a
. (2.7)

Suppose that ψ?i (τ) is the τ -th upper quantile of the predictive distribution of XR
i:m:n:s, i.e.

ψ?i (τ) satisfies P (XR
i:m:n:s > ψ?i (τ)|u) = τ . Hence, it is clear that the values ψ?i (τ) and ψ?i (1− τ)

are the (one-sided) upper and lower 100(1− τ)% Bayesian prediction bounds for XR
i:m:n:s. Also,

the two-sided equi-tialed 100(1 − τ)% Bayesian prediction interval for XR
i:m:n:s is obtained as

(ψ?i (1− τ/2),ψ?i (τ/2)). Although the quantiles of the predictive density function in Equation (2.7)
are not expressible in closed form, we can calculate them numerically. In Section 4, we have used
the mathematical package of Mathematica version 6 in order to obtain these quantiles.
Remark 1. A closed form for the Bayesian prediction interval of XR

1:m:n:s is derived. The value
of XR

1:m:n:s will be the first failure time of the future sample of size N = n× s. Putting i = 1 in
Equations (2.6) and (2.7), we obtain

f?
XR

1:m:n:s
(x1|u) = nsβ(r+ a)(gβ,b(ur))

r+axβ−11

(
gβ,b(ur) +nsxβ1

)−(r+a+1)
,

and

P (XR
1:m:n:s > t|u) =

(
gβ,b(ur)

gβ,b(ur) +nstβ

)r+a
. (2.8)
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From (2.8), the τ -th upper quantile is obtained as

ψ?1(τ) =

{
gβ,b(ur)

ns

(
τ−

1
r+a − 1

)} 1
β

.

Thus, the two-sided equi-tialed 100(1− τ)% Bayes prediction interval for XR
1:m:n:s is({

gβ,b(Ur(k))

ns

((
1− τ

2

)− 1
r+a

− 1

)} 1
β

,

{
gβ,b(Ur(k))

ns

((τ
2

)− 1
r+a

− 1

)} 1
β
)
. (2.9)

Since, the marginal density function of Ur(k) under the Weibull distribution is obtained as (see, for
example, Arnold et al. [5])

fUr(k)(u) =
(kα)rβ

Γ(r)
urβ−1 exp{−kαuβ}, u > 0,

where Γ(·) denotes the complete gamma function, one can readily derive that Uβ
r(k) ∼ Γ(r, kα).

Hence, the expected width (W ) of Bayesian prediction interval in Equation (2.9) becomes

E(W ) = ξE

(
gβ,b(Ur(k))

ns

) 1
β

=
ξ(kα)rβ

(ns)
1
β Γ(r)

∫ ∞
0

(
b+ kuβ

) 1
β urβ−1 exp(−kαuβ)du

=
ξ exp(αb)

(nsα)
1
β Γ(r)

∫ ∞
αb

y
1
β (y−αb)r−1 exp(−y)dy

=
ξ exp(αb)

(nsα)
1
β Γ(r)

r−1∑
j=1

(
r− 1

j

)
(−αb)r−1−j

∫ ∞
αb

y
1
β+j exp(−y)dy

=
ξ exp(αb)

(nsα)
1
β Γ(r)

r−1∑
j=1

(
r− 1

j

)
(−αb)r−1−j Γ

(
1

β
+ j+ 1, αb

)
, (2.10)

where

ξ =

((τ
2

)− 1
r+a

− 1

) 1
β

−
((

1− τ
2

)− 1
r+a

− 1

) 1
β

,

and Γ(·, ·) denotes the incomplete gamma function. In the special case when b= 0, the expression in
(2.10) simply becomes E(W ) = ξΓ (1/β+ r)/

(
(nsα)1/βΓ(r)

)
. From Equation (2.10), it is observed

that the expected width of Bayesian prediction interval for XR
1:m:n:s is decreasing with respect to n

and s when all others are fixed.
It is easy to show that W = 1 + ns(XR

1:m:n:s)
β/gβ,b(ur) has the Pareto distribution with the

density function fW (w) = (r+ a)w−(r+a+1), w > 1. Thus, we can find Bayesian prediction intervals
for XR

1:m:n:s on the basis of pivotal quantity W . One can readily obtain, in this case, the same
Bayesian prediction bounds as in Equation (2.9).

2.2. α and β are unknown
In order to obtain Bayesian prediction interval for XR

i:m:n:s, specifying a general joint prior for α
and β leads us to computational complexities. For sake of brevity in the Bayesian analysis, we use
Soland’s method (see, Soland [26]). Therefore, it is assumed that the shape parameter β is restricted
to a finite number of values β1, . . . , βM with prior probabilities ξ1, . . . ξM , respectively, such that
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0< ξl < 1 for l= 1, . . . ,M and
∑M

l=1 ξl = 1. Moreover, suppose that the conditional distribution of
α, given β = βl, is gamma with shape and scale parameters al and bl, respectively. Therefore,

P (β = βl) = ξl, l= 1, . . . ,M,

π(α|β = βl) =
b
al
l

Γ(al)
αal−1 exp(−blα), α > 0, al > 0, bl > 0.

The hyperparameters al and bl (l = 1, . . . ,M) are chosen so as to reflect prior beliefs on α given
that β = βl. The conditional prior density function of α given β = βl for l= 1, . . . ,M is completely
specified when the hyperparameters al and bl are known. To simplify the problem, we assume
that the shape and scale parameters of the conditional distribution α given β = βl are a and bβl,
respectively, where a and b are two positive specified constants. Thus, using the LF (2.1), the
conditional posterior density function of α given β = βl is

π(α|β = βl,u) =
L(α,βl;u)π(α|β = βl)P (β = βl)∫ ∞

0

L(α,βl;u)π(α|β = βl)P (β = βl)dα

∝ αr+a−1 exp(−αqβl,b(ur)), (2.11)

where qβl,b(ur) = bβl + kuβlr . Consequently, (α|β = βl,u)∼ Γ(r+ a, qβl,b(ur)) for l= 1, . . . ,M . Also,
the posterior density function of β = βl is obtained as

P (β = βl|u) =

∫ ∞
0

L(α,βl;u)π(α|β = βl)P (β = βl)dα∑M

l=1

∫ ∞
0

L(α,βl;u)π(α|β = βl)P (β = βl)dα

= c?ξleβl(u)

(
βl

qβl,b(ur)

)r+a
, (2.12)

where eβl(u) =
∏r

j=1 u
βl−1
j and c? =

[∑M

l=1 ξleβl(u)
{
βl/qβl,b(ur)

}r+a]−1
is the normalizing constant.

The Bayes predictive density function of XR
i:m:n:s, given u, is

f??
XR
i:m:n:s

(xi|u) =

M∑
l=1

∫ ∞
0

fXR
i:m:n:s

(xi|α,βl)π(α|β = βl,u)P (β = βl|u)dα. (2.13)

Substituting Equations (2.3), (2.11) and (2.12) into Equation (2.13), the Bayes predictive density
function of XR

i:m:n:s reads

f??
XR
i:m:n:s

(xi|u) = c?ci−1s(r+ a)

M∑
l=1

i∑
j=1

ξlajeβl(u)x
βl−1
i

(
βl

qβl,b(ur) + sγjx
βl
i

)r+a+1

, (2.14)

and hence, the predictive survival function of XR
i:m:n:s becomes

P
(
XR
i:m:n:s ≥ t|u

)
=

∫ ∞
t

f??
XR
i:m:n:s

(xi|u)dxi

= c?ci−1

M∑
l=1

i∑
j=1

ξlajγ
−1
j eβl(u)

(
βl

qβl,b(ur) + sγjtβl

)r+a
. (2.15)

If ψ??i (τ) satisfies P (XR
i:m:n:s > ψ??i (τ)|u) = τ , hence, in this case, the values ψ??i (τ) and ψ??i (1−

τ) are the (one-sided) upper and lower 100(1 − τ)% Bayesian prediction bounds for XR
i:m:n:s.
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Also, the two-sided equi-tialed 100(1− τ)% Bayesian prediction interval for XR
i:m:n:s is given by

(ψ??i (1− τ/2),ψ??i (τ/2)). Again, the quantiles of the predictive density function in Equation (2.15)
are not expressible in closed form and then we calculate them numerically using the mathematical
package of Mathematica version 6 in Section 4.

It is important to determine the values for the hyperparameters (βl, ξl), l= 1, . . . ,M and (a, b).
In fact, considering the values for (βl, ξl), l = 1, . . . ,M is fairly straightforward, but for (a, b), the
following method is suggested. Suppose that on the basis of a prior knowledge, we known the
conditional expectation and variance of α given a special value of β (say, β = βt). Consequently,
we have

µt =E(α|β = βt) =
a

bβt
and σ2

t = V ar(α|β = βt) =
a

(bβt)2
, (2.16)

where µt and σ2
t are the expectation and variance of α given β = βt, respectively. By solving

Equation (2.16), the hyperparameters (a, b) are obtained.
Remark 2. When i= 1, the expressions in Equations (2.14) and (2.15) are reduced to

f??
XR

1:m:n:s
(x1|u) = c?ns(r+ a)

M∑
l=1

ξleβl(u)x
βl−1
1

(
βl

qβl,b(ur) +nsx
βl
1

)−(r+a+1)

,

and

P
(
XR

1:m:n:s ≥ t|u
)

= c?
M∑
l=1

ξleβl(u)

(
βl

qβl,b(ur) +nstβl

)r+a
, (2.17)

respectively. Thus, the 100(1 − τ)% Bayesian prediction interval (ψ??1 (1− τ/2),ψ??1 (τ/2)) for
XR

1:m:n:s can be easily obtained numerically using Equation (2.17).

3. Bayes point prediction
In the Bayesian framework, the choice of a loss function is essential. One of the most popu-

lar widely used loss functions is the squared error (SE) loss defined by L(δ̂, δ) = (δ̂ − δ)2, where
δ̂ is an estimate of δ. But, the SE loss function is justified only when losses are symmetric in
nature. The symmetric nature of this loss function gives equal weight to overestimation as well
as underestimation, while in practice, overestimation may be more serious than underestimation
of same magnitude or vice versa. Such conditions are very common in engineering, medical and
biomedical sciences. In this case, an asymmetric loss function might be more appropriate. A suit-
able alternative to the SE loss function is a convex but asymmetric loss function, known as the
LINear-EXponential (LINEX) loss function, proposed by Varian [29] and defined by

L(δ̂, δ) = exp
{
ϑ(δ̂− δ)

}
−ϑ(δ̂− δ)− 1, ϑ 6= 0. (3.1)

The constants ϑ and σ > 0 involved in (3.1) are the shape and scale parameters. Obviously, the
nature of the LINEX loss function changes according to the choice of ϑ. The sign and magnitude of
the shape parameter ϑ represents the direction and degree of symmetry, respectively. (ϑ> 0 means
overestimation is more serious than underestimation and ϑ < 0 means the opposite). The LINEX
loss converges to the SE loss as ϑ→ 0. It is proved that the Bayes estimates of δ under the SE and
the LINEX loss functions, respectively denoted by δ̂BS and δ̂BL, are given by

δ̂BS =E(δ), (3.2)

and

δ̂BL =− 1

ϑ
lnE

(
exp(−ϑδ)

)
, (3.3)

provided that E(δ) and E
(

exp(−ϑδ)
)

exist and are finite.
Now, we obtain the Bayes point predictor for XR

i:m:n:s on the basis of observed k-record data. For
this purpose, we consider the following two cases.
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3.1. β is known
Using Equations (2.6), (3.2) and (3.3), the Bayes point predictors for XR

i:m:n:s under SE and
LINEX loss functions are given, respectively, by

X̂R
i:m:n:s,BS =

∫ ∞
0

xif
?
XR
i:m:n:s

(
xi|u

)
dxi

= ci−1(r+ a)
i∑

j=1

aj
γj

(
sγj

gβ,b(ur)

)− 1
β
∫ 1

0

yr+a−
1
β−1(1− y)

1
β dy

= ci−1(r+ a)B

(
r+ a− 1

β
,1 +

1

β

) i∑
j=1

aj
γj

(
sγj

gβ,b(ur)

)− 1
β

, (3.4)

and

X̂R
i:m:n:s,BL =− 1

ϑ
ln

{∫ ∞
0

exp(−ϑxi)f?XR
i:m:n:s

(
xi|u

)
dxi

}
=− 1

ϑ
ln

{
ci−1sβ(r+ a)

(
gβ,b(ur)

)r+a i∑
j=1

aj

∫ ∞
0

xβ−1i exp(−ϑxi)(
gβ,b(ur) + sγjx

β
i

)r+a+1 dxi

}
=− 1

ϑ
ln

{
ci−1sβ(r+ a)

i∑
j=1
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l=0

(
−r− a− 1

l

)
aj(sγj)

lΓ
(
(l+ 1)β

)(
gβ,b(ur)

)l+1
ϑ(l+1)β

}
, (3.5)

where B(·, ·) denotes the complete beta function.
Remark 3. In the special case i = 1, the expressions in Equations (3.4) and (3.5) simply

become

X̂R
1:m:n:s,BS = (r+ a)B

(
r+ a− 1

β
,1 +

1

β

)(
ns

gβ,b(ur)

)− 1
β

,

and

X̂R
1:m:n:s,BL =− 1

ϑ
ln

{
nsβ(r+ a)
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l=0

(
−r− a− 1

l

)
(ns)lΓ

(
(l+ 1)β

)(
gβ,b(ur)

)l+1
ϑ(l+1)β

}
,

respectively.

3.2. α and β are unknown
From Equations (2.14), (3.2) and (3.3), it is easy to show that the Bayes point predictors for

XR
i:m:n:s under SE and LINEX loss functions are, respectively,

X̂R
i:m:n:s,BS =c?ci−1s(r+ a)

×
M∑
l=1

i∑
j=1

ξlβ
r+a
l ajeβl(u)B

(
r+ a− 1

βl
,1 +

1

βl

)
(sγj)

− 1
βl
−1(

gβl,b(ur)
)r+a− 1

βl

, (3.6)

and

X̂R
i:m:n:s,BL =− 1

ϑ
ln

{
c?ci−1s(r+ a)

×
M∑
l=1

i∑
j=1

∞∑
h=0

ξlβ
r+a+1
l ajeβl(u)

(
−r− a− 1

h

)
(sγj)

hΓ
(
(h+ 1)βl

)(
gβl,b(ur)

)r+a+h+1
ϑ(h+1)βl

}
. (3.7)
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Remark 4. For the special case of i = 1, the expressions in Equations (3.6) and (3.7) are
reduced to

X̂R
1:m:n:s,BS =c?ns(r+ a)

M∑
l=1

ξlβ
r+a
l eβl(u)B

(
r+ a− 1

βl
,1 +

1

βl

)
(ns)

− 1
βl
−1(

gβl,b(ur)
)r+a− 1

βl

,

and

X̂R
1:m:n:s,BL =− 1

ϑ
ln

{
c?ns(r+ a)

×
M∑
l=1

∞∑
h=0

ξlβ
r+a+1
l eβl(u)

(
−r− a− 1

h

)
(ns)hΓ

(
(h+ 1)βl

)(
gβl,b(ur)

)r+a+h+1
ϑ(h+1)βl

}
,

respectively.

4. Numerical Results
In this section, the performances of the procedures proposed in the preceding sections are inves-

tigated by conducting a simulation study and analysing an illustrative example.

4.1. Simulation study
A simulation study was conducted in order to evaluate the performance of the Bayesian prediction

intervals and Bayes point predictors for i-th order statistic XR
i:m:n:s in a future progressively first-

failure-censored sample under the assumption that α and β are unknown. Since in predicting first
order statistic XR

1:m:n:s, the corresponding Bayesian prediction intervals and point predictors depend
on the total number of units put on the test N = n× s but not on (R1, . . . ,Rm) and m, hence,
without loss of generality, we constructed the Bayesian prediction intervals and point predictors
for XR

1:m:n:s under the assumption that m=N and (R1, . . . ,Rm) = (0, . . . ,0). Also, for predicting
XR

5:m:n:s, we considered different choices for progressive censoring scheme (R1, . . . ,Rm) which include
three progressive censoring schemes (n−m,0(m−1)), (0(m−1), n−m) and (0(3), n−m,0(m−4)), among
others. Note that, for example, the notation (15,0(4)) stands for a progressive censoring scheme
with specification (R1, . . . ,R5) = (15,0,0,0,0).

Our simulation was done according to the following steps:
1. Assuming βt = 1 and (µt, σ

2
t ) = (1,0.1) and using Equation (2.16), the hyperparameters (a, b)

were obtained as (10,10).
2. Following the work of Soman and Misra [28], we assumed that the value of the shape parameter

β falls in the interval (0,3). Then, we generated β = 2.5 from discrete uniform distribution on
0.5(0.5)3 and α= 0.27152 from Γ(a, bβ) prior distribution.

3. A sequence of independent observations from Weibull distribution with parameters α =
0.27152 and β = 2.5 was generated and the first r k-record values in the sequence for r = 5 and
k= 1,3 were discovered.

4. Considering the observed k-record values and using Equations (2.15), (3.6) and (3.7), the
Bayesian two-sided equi-tailed prediction intervals as well as the Bayes point predictors for XR

i:m:n:s

(i= 1,5) under the SE and LINEX loss functions were obtained.
5. Simulating t= 104 independent progressively first-failure-censored samples, the coverage prob-

abilities of the Bayesian prediction intervals for XR
i:m:n:s (i= 1,5) were computed. Also, the Esti-

mated Risks (ER) of the Bayes point predictors XR
i:m:n:s under the SE and LINEX loss functions

given, respectively, by

ER(δ̂BS) =
1

t

t∑
j=1

(
δ̂BS − δj

)2

,
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Table 3. The coverage probabilities of the prediction intervals and the estimated risks of the point predictors
for XR

i:m:n:s with i= 1 and k= 1.

N Coverage probability Estimated risk

τ = 0.1 τ = 0.05 SE LINEX

ϑ= 0.7 ϑ= 1.2

5 0.8956 0.9456 0.13348 0.03170 0.09100

10 0.8929 0.9514 0.07721 0.01857 0.05378

15 0.8942 0.9506 0.05550 0.01345 0.03917

20 0.9054 0.9547 0.04317 0.01050 0.03068

30 0.9038 0.9498 0.03160 0.00771 0.02257

50 0.8910 0.9534 0.02145 0.00525 0.01541

Table 4. The coverage probabilities of the prediction intervals and the estimated risks of the point predictors
for XR

i:m:n:s with i= 1 and k= 3.

N Coverage probability Estimated risk

τ = 0.1 τ = 0.05 SE LINEX

ϑ= 0.7 ϑ= 1.2

5 0.9101 0.9581 0.13041 0.03125 0.09020

10 0.9082 0.9547 0.07815 0.01893 0.05509

15 0.8924 0.9430 0.05943 0.01443 0.04206

20 0.9076 0.9608 0.04701 0.01145 0.03348

30 0.8929 0.9429 0.03396 0.00832 0.02441

50 0.9058 0.9582 0.02343 0.00576 0.01694

and

ER(δ̂BL) =
1

t

t∑
j=1

(
exp

{
ϑ(δ̂BL− δj)

}
−ϑ(δ̂BL− δj)− 1

)
,

were calculated.
The results are tabulated in Tables 3-6. From empirical evidence in Tables 3-6, the following points
can be drawn:
• The simulated coverage probabilities of the Bayesian prediction intervals for XR

i:m:n:s are close
to the their nominal level.
• The estimated risk of predictors X̂R

1:m:n:s,BS and X̂R
1:m:n:s,BL is decreasing in N .

• For fixed s and n, as m increases, the estimated risk of predictors X̂R
5:m:n:s,BS and X̂R

5:m:n:s,BL

reduce significantly under progressive censoring schemes (n−m,0(m−1)) and (0(3), n−m,0(m−4)).

• It seems that the estimated risk of X̂R
5:m:n:s,BS and X̂R

5:m:n:s,BL under progressive censoring
scheme (0(m−1), n−m) does not depend on m, when all other components are kept fixed.
• For fixed s (or n), m and progressive censoring scheme, when n (or s) becomes large, the

estimated risk of X̂R
5:m:n:s,BS and X̂R

5:m:n:s,BL decreases.
• When s, n and m are fixed, the progressive censoring scheme (0(m−1), n−m) possesses the

smallest estimated risk. Also, it seems that when s and n are fixed, the distance between the
estimated risk of different progressive censoring schemes decreases with respect to m.
• Experimentation with different values of the prior parameters led to the same results, which

shows a good stability with respect to the prior setting. The results are available upon readers
request to the authors.
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Table 5. The coverage probabilities of the prediction intervals and the estimated risks of the point predictors
for XR

i:m:n:s with i= 5 and k= 1.

s n m (R1, . . . ,Rm) Coverage probability Estimated risk

τ = 0.1 τ = 0.05 SE LINEX

ϑ= 0.7 ϑ= 1.2

1 20 5 (15,0(4)) 0.9066 0.9664 0.32170 0.07763 0.22375

(0(4),15) 0.8750 0.9382 0.06308 0.01601 0.04828

(0(3),15,0) 0.8952 0.9517 0.35890 0.08169 0.22792

(3(5)) 0.8732 0.9314 0.11942 0.02938 0.08675

(0,5(3),0) 0.9037 0.9589 0.32485 0.07538 0.21285

15 (5,0(14)) 0.8723 0.9326 0.07678 0.01937 0.05816

(0(14),5) 0.8785 0.9426 0.06297 0.01600 0.04824

(0(3),5,0(11)) 0.8815 0.9414 0.06828 0.01730 0.05206

(1,0(2),1,0(2), . . . ,1,0(2)) 0.8762 0.9405 0.06606 0.01676 0.05051

50 15 (35,0(14)) 0.8718 0.9351 0.07639 0.01926 0.05780

(0(14),35) 0.9241 0.9692 0.03005 0.00775 0.02361

(0(3),35,0(11)) 0.8939 0.9440 0.05537 0.01383 0.04122

(0,5,0,5, . . . ,0,5,0) 0.9229 0.9651 0.03280 0.00845 0.02570

30 (20,0(29)) 0.8989 0.9545 0.04395 0.01123 0.03400

(0(29),20) 0.9257 0.9693 0.02992 0.00772 0.02352

(0(3),20,0(26)) 0.9157 0.9604 0.03485 0.00893 0.02708

(0,1(2),0,1(2), . . . ,0,1(2)) 0.9241 0.9687 0.03105 0.00800 0.02434

(5,0(28),15) 0.9175 0.9660 0.03283 0.00844 0.02567

(2,0(2),2,0(2), . . . ,2,0(2)) 0.9218 0.9654 0.03185 0.00820 0.02493

3 20 5 (15,0(4)) 0.8786 0.9421 0.15401 0.03794 0.11205

(0(4),15) 0.9199 0.9683 0.03383 0.00872 0.02652

(0(3),15,0) 0.8893 0.9363 0.16443 0.03884 0.11144

(3(5)) 0.8851 0.9428 0.06340 0.01598 0.04788

(0,5(3),0) 0.8874 0.9404 0.15552 0.03726 0.10781

15 (5,0(14)) 0.9079 0.9601 0.04133 0.01063 0.03227

(0(14),5) 0.9212 0.9704 0.03373 0.00871 0.02653

(0(3),5,0(11)) 0.9163 0.9638 0.03660 0.00942 0.02860

(1,0(2),1,0(2), . . . ,1,0(2)) 0.9167 0.9649 0.03571 0.00920 0.02798

50 15 (35,0(14)) 0.9053 0.9606 0.04123 0.01056 0.03196

(0(14),35) 0.9257 0.9791 0.01651 0.00427 0.01301

(0(3),35,0(11)) 0.8985 0.9569 0.02754 0.00699 0.02106

(0,5,0,5, . . . ,0,5,0) 0.9223 0.9791 0.01771 0.00458 0.01396

30 (20,0(29)) 0.9079 0.9704 0.02350 0.00607 0.01846

(0(29),20) 0.9243 0.9778 0.01668 0.00431 0.01313

(0(3),20,0(26)) 0.9189 0.9768 0.01854 0.00479 0.01458

(0,1(2),0,1(2), . . . ,0,1(2)) 0.9250 0.9804 0.01654 0.00428 0.01305

(5,0(28),15) 0.9237 0.9792 0.01737 0.00450 0.01372

(2,0(2),2,0(2), . . . ,2,0(2)) 0.9286 0.9815 0.01690 0.00437 0.01333

4.2. Illustrative example
Dunsmore [12] has given the size of rock crushed by a rock crushing machine. The machine has

to be reset if, at any operation, the size of rock being crushed is larger than that has been crushed
before. The following data are the sizes dealt with up to the third time that the machine has been
reset.

9.3 0.6 24.4 18.1 6.6 9.0 14.3 6.6 13.0 2.4 5.6 33.8.
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Table 6. The coverage probabilities of the prediction intervals and the estimated risks of the point predictors
for XR

i:m:n:s with i= 5 and k= 3.

s n m (R1, . . . ,Rm) Coverage probability Estimated risk

τ = 0.1 τ = 0.05 SE LINEX

ϑ= 0.7 ϑ= 1.2

1 20 5 (15,0(4)) 0.8909 0.9620 0.30663 0.07283 0.20736

(0(4),15) 0.8897 0.9477 0.04746 0.01184 0.03530

(0(3),15,0) 0.8840 0.9470 0.33897 0.07651 0.21198

(3(5)) 0.8729 0.9371 0.10126 0.02447 0.07129

(0,5(3),0) 0.8896 0.9496 0.31201 0.07054 0.19593

15 (5,0(14)) 0.8754 0.9362 0.06167 0.01527 0.04526

(0(14),5) 0.8862 0.9435 0.04757 0.01185 0.03530

(0(3),5,0(11)) 0.8870 0.9435 0.05194 0.01289 0.03829

(1,0(2),1,0(2), . . . ,1,0(2)) 0.8834 0.9409 0.05067 0.01261 0.03748

50 15 (35,0(14)) 0.8799 0.9376 0.06048 0.01495 0.04426

(0(14),35) 0.9372 0.9723 0.02050 0.00519 0.01566

(0(3),35,0(11)) 0.9108 0.9515 0.04200 0.01029 0.03029

(0,5,0,5, . . . ,0,5,0) 0.9302 0.9684 0.02298 0.00581 0.01747

30 (20,0(29)) 0.9141 0.9587 0.03155 0.00793 0.02377

(0(29),20) 0.9396 0.9744 0.02033 0.00515 0.01554

(0(3),20,0(26)) 0.9307 0.9680 0.02417 0.00610 0.01834

(0,1(2),0,1(2), . . . ,0,1(2)) 0.9376 0.9733 0.02055 0.00521 0.01573

(5,0(28),15) 0.9336 0.9718 0.02193 0.00555 0.01675

(2,0(2),2,0(2), . . . ,2,0(2)) 0.9365 0.9708 0.02152 0.00546 0.01645

3 20 5 (15,0(4)) 0.8704 0.9337 0.13125 0.03141 0.09085

(0(4),15) 0.9381 0.9727 0.01889 0.00479 0.01446

(0(3),15,0) 0.8928 0.9424 0.13666 0.03185 0.09047

(3(5)) 0.9037 0.9499 0.04094 0.01013 0.03005

(0,5(3),0) 0.8861 0.9387 0.13453 0.03138 0.08928

15 (5,0(14)) 0.9294 0.9666 0.02414 0.00610 0.01837

(0(14),5) 0.9405 0.9739 0.01870 0.00474 0.01430

(0(3),5,0(11)) 0.9355 0.9708 0.02121 0.00536 0.01614

(1,0(2),1,0(2), . . . ,1,0(2)) 0.9375 0.9748 0.01970 0.00499 0.01505

50 15 (35,0(14)) 0.9140 0.9700 0.02405 0.00606 0.01819

(0(14),35) 0.9374 0.9797 0.00793 0.00204 0.00615

(0(3),35,0(11)) 0.9170 0.9641 0.01628 0.00406 0.01209

(0,5,0,5, . . . ,0,5,0) 0.9337 0.9775 0.00873 0.00223 0.00674

30 (20,0(29)) 0.9251 0.9777 0.01234 0.00314 0.00949

(0(29),20) 0.9372 0.9855 0.00810 0.00208 0.00626

(0(3),20,0(26)) 0.9313 0.9764 0.00947 0.00241 0.00727

(0,1(2),0,1(2), . . . ,0,1(2)) 0.9385 0.9798 0.00794 0.00203 0.00615

(5,0(28),15) 0.9389 0.9789 0.00855 0.00218 0.00661

(2,0(2),2,0(2), . . . ,2,0(2)) 0.9379 0.9784 0.00822 0.00211 0.00635

Dunsmore [12] assumed that the exponential distribution is suitable for these data. Here, we
intend to predict the progressively first-failure-censored order statistics from a future sample based
on k-records extracted from the above data. The observed k-record values, when k= 1 and k= 2,
are shown in Table 7.
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Table 7. Observed k-record values extracted from the data set in Dunsmore [12], when k= 1 and k= 2.

j 1 2 3 4

Uj(1) 9.3 24.4 33.8

Uj(2) 0.6 9.3 18.1 24.4

For this example, the various progressive first-failure-censoring schemes (CS) reported in Table
8 were considered.

Table 8. Different choices for progressive first-failure-censoring scheme.

CS s n m (R1, . . . ,Rm)

I 1 10 5 (5,0(4))

II 1 10 8 (0(4),2,0(3))

III 2 10 10 (0(10))

IV 2 30 10 (0(5),4(5))

V 3 30 10 (1(3),2(4),3(3))

VI 3 30 20 (0(3),2,0(3),1,1,4,0(3),1,0(3),1,0(2))

We recall that in the case where β is known, the gamma conjugate prior (2.4) was considered for
α, so we readily find E(α) = a/b and V ar(α) = a/b2. In order to have least informative, infor-
mative, and most informative prior densities, we considered three cases for the hyperparameters
(a, b) = (0.5,0.5), (1,1) and (2,2), which correspond to the prior densities with common means 1
and different variances 2, 1 and 0.5, respectively. Considering these settings, we constructed 95%
Bayesian two-sided equi-tailed prediction intervals as well as Bayes point predictors for future pro-
gressively first-failure-censored order statistics under SE and LINEX loss functions. The results
are summarized in Tables 9-14.

By empirical evidences from Tables 9-14, we observe that the width of the prediction intervals
decreases as the information about the unknown parameter α increases, i.e., as the hyperparameters
(a, b) increase. So, the prediction intervals are shortest when (a, b) = (2,2). As we would expect, the
prediction intervals are very sensitive to the prior distribution, and hence, the prior distribution
must be determined carefully by the researcher. Also, the width of the prediction intervals is
increasing with respect to i when other parameters are kept fixed, while it decreases as each of
the parameters m, n and s increases. Moreover, the results in Tables 9-14 show that the Bayes
point predictor relative to the LINEX loss function is sensitive to the value of the shape parameter
ϑ. The problem of choosing the value of the parameter ϑ has been investigated by Calabria and
Pulcini [10]. These results establish that for making an optimum decision, the careful consideration
must be given to the choice of the loss function and one should not just consider appropriate prior
distribution.
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Table 9. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 1 and (a, b) = (0.5,0.5).

CS i Prediction interval Point predictor

Lower Upper SE LINEX

ϑ= 0.5 ϑ= 1

I 1 0.0249 6.41069 1.372 0.92544 0.75168
2 0.34552 19.6229 4.802 2.54114 1.94704

5 4.63435 107.639 29.9553 9.35748 6.64666

II 1 0.0249 6.41069 1.372 0.92544 0.75168
2 0.22772 11.4318 2.89644 1.84024 1.47887

5 1.58548 30.2426 8.85811 4.74453 3.70847

8 6.29625 117.997 34.0114 11.0019 7.97905
III 1 0.01245 3.20534 0.686 0.53721 0.46272

5 0.79274 15.1213 4.42906 2.88621 2.37226
8 2.09218 32.2619 9.80272 5.36927 4.25876

10 4.1676 67.5167 20.0927 8.50762 6.45626

IV 1 0.00415 1.06845 0.22867 0.20615 0.19088
5 0.22192 4.17791 1.22814 1.02049 0.91275

8 0.50409 7.51108 2.30287 1.78084 1.55317

10 0.93835 14.4759 4.36087 2.9463 2.46621
V 1 0.00277 0.7123 0.15244 0.14165 0.13369

5 0.16196 3.06649 0.90001 0.77625 0.70615

8 0.39885 6.02192 1.84008 1.47205 1.29991
10 0.75676 11.8414 3.55508 2.50422 2.12069

VI 1 0.00277 0.7123 0.15244 0.14165 0.13369
5 0.15043 2.83637 0.83342 0.7251 0.66239

10 0.46421 6.29245 1.96764 1.57769 1.39644

20 3.16558 46.4877 14.0635 6.96744 5.47593

Table 10. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 1 and (a, b) = (1,1).

CS i Prediction interval Point predictor

Lower Upper SE LINEX
ϑ= 0.5 ϑ= 1

I 1 0.0221 5.27174 1.16 0.83062 0.68637
2 0.30986 15.9935 4.06 2.33045 1.81293

5 4.20602 86.7622 25.3267 8.84877 6.35123

II 1 0.0221 5.27174 1.16 0.83062 0.68637
2 0.20428 9.28556 2.44889 1.66607 1.36148
5 1.44197 24.2321 7.48937 4.37811 3.47413
8 5.73966 94.7871 28.756 10.4117 7.62936

III 1 0.01105 2.63587 0.58 0.47426 0.41531

5 0.72098 12.1161 3.74468 2.61968 2.18905
8 1.91205 25.7465 8.28802 4.95706 3.99095

10 3.80932 54.0393 16.988 7.97251 6.12585
IV 1 0.00368 0.87862 0.19333 0.17821 0.16705

5 0.20186 3.34608 1.03837 0.89844 0.81653

8 0.46094 5.98711 1.94703 1.54238 1.40795
10 0.85838 11.5689 3.68703 2.65471 2.26997

V 1 0.00246 0.58575 0.12889 0.12176 0.11612

5 0.14731 2.45643 0.76094 0.67906 0.62709
8 0.36463 4.80221 1.55575 1.30537 1.17203

10 0.69209 9.4674 3.00575 2.25652 1.9429

VI 1 0.00246 0.58575 0.12889 0.12176 0.11612
5 0.13683 2.27176 0.70464 0.63333 0.58717

10 0.42542 5.00336 1.6636 1.39984 1.25991

20 2.90145 37.1436 11.8905 6.4773 5.16029



Ahmadi and Doostparast: Bayesian Prediction of progressively first-failure-censored order statistics
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Table 11. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 1 and (a, b) = (2,2).

CS i Prediction interval Point predictor

Lower Upper SE LINEX

ϑ= 0.5 ϑ= 1

I 1 0.01817 3.90678 0.895 0.69268 0.58805
2 0.2588 11.7032 3.1325 2.00917 1.60276

5 3.57761 62.4403 19.5408 8.02138 5.86283

II 1 0.01817 3.90678 0.895 0.69268 0.58805
2 0.1707 6.75879 1.88944 1.40661 1.18075

5 1.23054 17.2714 5.77843 3.80549 3.09625

8 4.91687 67.8579 22.1868 9.44529 7.0482
III 1 0.00909 1.95339 0.4475 0.38597 0.34634

5 0.61527 8.63572 2.88922 2.21718 1.90274
8 1.64457 18.233 6.39463 4.30984 3.55814

10 3.27741 38.4613 13.1071 7.10864 5.58014

IV 1 0.00303 0.65113 0.14917 0.14098 0.13432
5 0.1723 2.38314 0.80115 0.72687 0.67587

8 0.39679 4.23146 1.50224 1.30613 1.18853

10 0.7395 8.21349 2.84474 2.24823 1.96386
V 1 0.00202 0.43409 0.09944 0.09567 0.09242

5 0.12573 1.75008 0.5871 0.54469 0.51355

8 0.31378 3.39655 1.20035 1.06635 0.9812
10 0.59599 6.72616 2.3191 1.88779 1.66835

VI 1 0.00202 0.43409 0.09944 0.09567 0.09242
5 0.11679 1.61814 0.54367 0.50698 0.4796

10 0.36758 3.52156 1.28355 1.14413 1.05551

20 2.50791 26.3644 9.1741 5.69514 4.64417

Table 12. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 2 and (a, b) = (0.5,0.5).

CS i Prediction interval Point predictor

Lower Upper SE LINEX
ϑ= 0.5 ϑ= 1

I 1 0.02782 6.26078 1.40857 0.97578 0.79333
2 0.39337 18.8613 4.93 2.70565 2.07091

5 5.39272 101.395 30.7538 10.1172 7.15811

II 1 0.02782 6.26078 1.40857 0.97578 0.79333
2 0.25941 10.9192 2.97365 1.9594 1.57716
5 1.85207 28.1731 9.09423 5.15094 4.03323
8 7.38705 110.458 34.918 12.0215 8.70581

III 1 0.01391 3.13039 0.70429 0.56421 0.48789

5 0.92603 14.0866 4.54711 3.11531 2.5755
8 2.46617 29.8309 10.064 5.87067 4.67704

10 4.91399 62.7767 20.6283 9.34165 7.10311
IV 1 0.00464 1.04346 0.23476 0.2146 0.19984

5 0.2593 3.88873 1.26088 1.08251 0.97812

8 0.59478 6.92958 2.36426 1.91033 1.68445
10 1.10809 13.4217 4.47711 3.19019 2.69431

V 1 0.00309 0.69564 0.15651 0.14701 0.1395

5 0.18922 2.8553 0.924 0.81966 0.7533
8 0.47043 5.56035 1.88913 1.57309 1.40476

10 0.89323 10.9877 3.64985 2.70272 2.31051

VI 1 0.00309 0.69564 0.15651 0.14701 0.1395
5 0.17576 2.64032 0.85563 0.76481 0.70585

10 0.55004 5.77832 2.02008 2.77549 1.51336

20 3.75202 43.0861 14.4384 7.66772 6.06231
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Table 13. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 2 and (a, b) = (1,1).

CS i Prediction interval Point predictor

Lower Upper SE LINEX

ϑ= 0.5 ϑ= 1

I 1 0.02528 5.43457 1.245 0.89812 0.73976
2 0.36001 16.2798 4.3575 2.52923 1.95856

5 4.97668 86.8583 27.1825 9.67337 6.9003

II 1 0.02528 5.43457 1.245 0.89812 0.73976
2 0.23746 9.40189 2.62833 1.81367 1.47859

5 1.71175 24.0256 8.03815 4.83182 3.82752

8 6.83967 94.3945 30.8632 11.4956 8.39332
III 1 0.01264 2.71728 0.6225 0.51302 0.44906

5 0.85588 12.0128 4.01908 2.88576 2.41591
8 2.28769 25.3633 8.89533 5.50661 4.43806

10 4.55907 53.502 18.2328 8.86358 6.80511

IV 1 0.00421 0.90576 0.2075 0.19229 0.18059
5 0.23968 3.31509 1.11446 0.98082 0.89634

8 0.55196 5.88621 2.08971 1.74538 1.55814

10 1.02869 11.4255 3.95721 2.94847 2.52112
V 1 0.00281 0.60384 0.13833 0.13124 0.12539

5 0.17489 2.43447 0.8167 0.73943 0.6867

8 0.43649 4.72481 1.66975 1.43207 1.29427
10 0.82906 9.3565 3.226 2.48915 2.15444

VI 1 0.00281 0.60384 0.13833 0.13124 0.12539
5 0.16246 2.25093 0.75627 0.68924 0.64261

10 0.51132 4.89871 1.7855 1.52902 1.39472

20 3.48866 36.6745 12.7617 7.22771 5.77448

Table 14. 95% prediction intervals and point predictors for XR
i:m:n:s when k= 2 and (a, b) = (2,2).

CS i Prediction interval Point predictor

Lower Upper SE LINEX
ϑ= 0.5 ϑ= 1

I 1 0.02148 4.3145 1.016 0.7772 0.65407
2 0.30917 12.8144 3.556 2.2448 1.7735

5 4.33122 67.5645 22.1827 8.92216 6.45819

II 1 0.02148 4.3145 1.016 0.7772 0.65407
2 0.20399 7.37182 2.14489 1.58301 1.31847
5 1.49337 18.5493 6.55965 4.30843 3.48256
8 5.98523 73.1455 25.1863 10.6014 7.85424

III 1 0.01074 2.15725 0.508 0.43551 0.3886

5 0.74668 9.27464 3.27983 2.51942 2.15421
8 2.00809 19.4855 7.25916 4.90774 4.03576

10 4.00307 41.273 14.8792 8.05928 6.29483
IV 1 0.00358 0.71908 0.16933 0.15975 0.15188

5 0.20913 2.55793 0.90947 0.8271 0.76899

8 0.48481 4.51474 1.70533 1.49756 1.36445
10 0.90417 8.79669 3.22933 2.56578 2.24017

V 1 0.00239 0.47939 0.11289 0.10848 0.10465

5 0.1526 1.87894 0.66648 0.61969 0.58445
8 0.38329 3.62615 1.36263 1.21599 1.11969

10 0.72847 7.20768 2.63263 2.1524 1.90114

VI 1 0.00239 0.47939 0.11289 0.10848 0.10465
5 0.14175 1.73695 0.61717 0.57677 0.54584

10 0.45046 3.74476 1.45708 1.3036 1.21045

20 3.07476 28.2347 10.4144 6.49547 5.2373
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