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    Abstract— Bearings are critical mechanical components in 

rotating machinery, playing a vital role in system safety and 

operational continuity. In this study, the Case Western Reserve 

University (CWRU) bearing dataset is used to perform fault 

classification using four machine learning algorithms: Random 

Forest, XGBoost, Support Vector Machine (SVM), and Naive 

Bayes. Based on statistical features extracted in the time 

domain, the performance of each model is evaluated using 

accuracy, precision, recall, and F1-score metrics. The results 

reveal that Random Forest and XGBoost algorithms achieved 

superior performance with 95.73% accuracy and 96% in 

precision, recall, and F1-score. The SVM model, with 93.73% 

accuracy, stands out as a robust alternative, while the Naive 

Bayes algorithm shows relatively lower performance with 

92.40% accuracy. Additionally, an individual feature-based 

classification analysis indicates that standard deviation (sd) and 

root mean square (RMS) features contribute most significantly 

to model performance. This study provides a comprehensive 

performance analysis of traditional machine learning 

algorithms, offering a valuable reference for early and accurate 

detection of bearing faults. 

 

Index Terms— Bearing fault diagnosis, Machine learning, 

Random Forest, XGBoost, Support Vector Machine, Naive 

Bayes, CWRU dataset. 

I. INTRODUCTION 

EARINGS are among the most fundamental and 

mission-critical components in rotating 

machinery, playing a pivotal role in ensuring 

mechanical performance, operational reliability, and safety. 

 Structurally, a typical bearing comprises an inner 

race, an outer race, rolling elements (usually balls or rollers) 

positioned between these races, and a cage that maintains the 

spacing and alignment of the rolling elements. This 

configuration enables the bearing to accommodate both 

radial and axial loads while minimizing friction, thereby 

contributing significantly to the energy efficiency of 

mechanical systems. Bearings are ubiquitous in various 

industrial domains, including aerospace, automotive, wind 

energy, railway transportation, industrial drives, and 

automated production systems. In such applications, they are 

often subjected to harsh operational environments 

characterized by variable loads, elevated temperatures, and 

persistent vibrations. These demanding conditions, over 

extended periods, give rise to a variety of structural 

degradations such as surface fatigue, micro-cracking, plastic 

deformation, pitting, and spalling. If left undetected, such 

defects can evolve rapidly and pose serious risks to the 

mechanical integrity and safety of the overall system. 

Empirical studies report that nearly 40% of failures in 

rotating machinery can be attributed to bearing faults. 

Despite their relatively low cost compared to other 

mechanical subsystems, bearings possess a strategically 

critical function.  A single bearing malfunction has the 

potential to cause collateral damage to adjoining components 

such as shafts, gear trains, and motor assemblies, often 

resulting in costly production downtimes and substantial 

financial losses. Given these risks, real-time monitoring and 

early fault detection in bearings are indispensable for 

preventing unplanned outages and optimizing maintenance 

scheduling. Timely diagnosis of incipient faults not only 

mitigates the likelihood of catastrophic equipment failure but 

also reduces maintenance expenditures, enhances 

operational efficiency, and improves the overall reliability of 

the system [1-3]. 

Over time, bearings undergo deterioration as a result of 

prolonged exposure to adverse operating conditions, 

including excessive mechanical loads, irregular torque 

fluctuations, inadequate lubrication, and environmental 

contaminants such as dust and moisture. Additionally, 

sudden mechanical shocks can accelerate this degradation 

process. Among the most prevalent types of bearing failures 

are defects in the inner race, cracks in the outer race, surface 

wear or pitting on rolling elements, and deformation of the 

cage. As these faults evolve, they lead to increased 

vibrational and acoustic emissions, reduced mechanical 

efficiency, and compromised system stability. Ultimately, 

undetected or untreated bearing damage can culminate in 

critical equipment failures, unplanned production 

interruptions, and considerable economic consequences [4]. 

 

Rotating machinery is extensively utilized across a range 

of industrial domains, including aerospace, automotive, 

energy production, and transportation systems. Within these 

machines, rolling bearings serve as crucial mechanical 

elements due to their role in ensuring smooth and reliable 

operation. Studies have revealed that nearly 40% of 

mechanical malfunctions stem from bearing-related faults, a 

figure that may escalate to 90% in smaller-scale equipment. 

Such malfunctions can pose serious safety hazards, disrupt 

operations, and lead to substantial financial repercussions. 

Consequently, there is an increasing demand for reliable and 

automated bearing fault diagnosis systems. In this context, 

machine learning approaches have emerged as powerful 
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tools for fault detection, isolation, and classification, offering 

the advantage of minimizing reliance on domain-specific 

expertise or manual supervision. Traditional techniques such 

as artificial neural networks (ANN), support vector machines 

(SVM), k-nearest neighbors (k-NN), and principal 

component analysis (PCA) have been widely adopted in this 

domain. However, these methods often involve distinct steps 

for feature extraction and classification, where informative 

features must be manually derived from raw sensor signals. 

Moreover, their performance tends to decline when faced 

with large-scale or complex datasets, indicating limited 

scalability and generalization capacity. In light of these 

challenges, deep learning methodologies have garnered 

attention for their capability to autonomously learn 

discriminative representations from high-dimensional data 

while simultaneously performing classification tasks [5]. 

 

Rotating machinery is extensively utilized in modern 

industrial applications such as compressors, pumps, 

conveyor systems, and electric motors. Among the essential 

components in these machines, rolling bearings are pivotal 

in maintaining the system’s reliability and operational 

integrity. Nevertheless, prolonged operational durations and 

exposure to severe environmental conditions render these 

components susceptible to degradation and eventual failure. 

As such, the development of advanced diagnostic 

methodologies for the early detection of bearing faults is vital 

to ensure equipment reliability, mitigate unplanned 

downtimes, and minimize economic losses. A variety of 

sensing techniques have been implemented in recent years 

for condition monitoring and fault diagnosis of rolling 

bearings. These include, but are not limited to, vibration 

analysis, acoustic emission detection, sound signature 

analysis, thermal imaging, and motor current signal analysis. 

Of these, vibration analysis remains the most prevalent and 

effective diagnostic approach due to its sensitivity to 

mechanical anomalies. It is particularly effective in 

identifying four principal fault categories: defects in the 

outer race, inner race, rolling elements, and cage structures. 

The presence of a fault typically induces repetitive transient 

pulses within the vibration signal, providing diagnostic cues 

for fault detection and classification [6]. 

 

Contemporary industrial machinery frequently operates in 

dynamic and often harsh environments, characterized by 

structural complexity and variable load conditions. These 

factors elevate the risk of minor defects escalating into 

systemic failures, thereby compromising equipment 

reliability and posing potential safety hazards. To mitigate 

such risks, accurate estimation of the remaining useful life 

(RUL) and reliable fault diagnosis of critical components—

such as bearings—are essential. The recent progress in 

machine learning has facilitated the development of 

advanced diagnostic frameworks capable of achieving high 

accuracy in fault identification. In contrast to conventional 

methods, intelligent fault diagnosis systems offer automated 

feature extraction and integrated classification capabilities, 

reducing dependency on manual preprocessing. The 

effectiveness of these systems is influenced not only by the 

robustness of the algorithmic models but also by the quality 

and structure of the datasets employed. Despite widespread 

reliance on balanced datasets in experimental studies, this 

assumption rarely holds true in industrial environments, 

where data imbalance is a common issue—particularly due 

to the scarcity of fault-related data compared to normal 

operating conditions [7]. 

Conventional approaches to bearing fault detection 

predominantly rely on time-frequency domain analyses and 

handcrafted feature extraction. Methods such as Fast Fourier 

Transform (FFT), Wavelet Transform (WT), and Empirical 

Mode Decomposition (EMD) have been widely utilized for 

signal interpretation in diagnostic applications. While these 

techniques have demonstrated effectiveness in controlled 

scenarios, they often exhibit sensitivity to noise and require 

significant expert knowledge for parameter tuning and 

feature design. Such dependencies restrict their applicability 

in complex, real-world environments and hinder automation. 

As a result, there has been a paradigm shift toward data-

driven techniques, particularly those based on machine 

learning (ML) and deep learning (DL), which offer more 

robust and scalable solutions by enabling end-to-end learning 

directly from raw or minimally processed sensor data [4]. 

 

Timely identification of bearing faults is essential to 

enhance system reliability and reduce operational 

maintenance expenses. Conventional diagnostic techniques 

primarily utilize signal processing approaches in the time, 

frequency, and time-frequency domains. Commonly applied 

methods include wavelet transform, short-time Fourier 

transform (STFT), empirical mode decomposition (EMD), 

variational mode decomposition (VMD), and continuous 

wavelet transform (CWT), which aim to reveal hidden fault 

characteristics within vibration signals. Despite their 

widespread use, these methods are often constrained by their 

dependency on manually selected parameters and prior 

domain expertise, which can limit adaptability and reduce 

performance under varying operating conditions [8,9]. 

In recent years, to address the limitations of conventional 

approaches, the adoption of machine learning and deep 

learning techniques in bearing fault diagnosis has gained 

significant momentum. While classical machine learning 

algorithms such as support vector machines (SVM), decision 

trees (DT), k-nearest neighbors (k-NN), and random forests 

(RF) continue to be utilized, more sophisticated deep 

learning architectures have demonstrated remarkable 

performance. These include convolutional neural networks 

(CNN), long short-term memory networks (LSTM), spiking 

neural networks (SNN), autoencoders, generative adversarial 

networks (GAN), and transformer-based models. Their 

ability to autonomously extract hierarchical features from 

raw data and adapt to complex fault patterns makes them 

powerful tools in modern fault diagnosis systems [10,11]. 

 

In conclusion, bearing fault diagnosis is of critical 

importance in modern industry. Studies conducted using the 

CWRU dataset have shown that machine learning and deep 

learning methods can be effectively applied in this domain. 

In this context, the present study utilizes the CWRU dataset 
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to extract time-domain features and comparatively analyze 

the classification performance of different machine learning 

algorithms (RF, SVM, XGBoost, NB). 

II. LITERATURE REVIEW 

In this section, the literature on bearing fault diagnosis is 

summarized. 

Li et al. (2024) developed a novel deep learning 

framework to improve the accuracy of fault identification in 

essential mechanical systems. Addressing the deficiencies of 

conventional methods in extracting fault-related information 

from rotating machinery, the study introduced an attention-

augmented Convolutional Neural Network (CNN) 

architecture, termed Attention Improved CNN (AT-ICNN). 

This architecture combines an enhanced convolutional 

module (IMConv) with a hybrid attention mechanism, 

allowing for the effective extraction of both local and global 

signal characteristics and emphasizing critical fault features. 

Consequently, the proposed model demonstrates superior 

fault classification capabilities. The AT-ICNN was validated 

on the widely-used Case Western Reserve University 

(CWRU) bearing dataset and an in-house laboratory dataset. 

It achieved classification accuracies of 98.12% and 98.72%, 

respectively, surpassing traditional and state-of-the-art 

methods by nearly 9%. These outcomes highlight the 

model’s potential as a reliable and high-performance solution 

for fault diagnosis in industrial mechanical components  [12]. 

 

Borghesani et al. (2023) sought to advance the 

transparent and theoretically grounded development of 

neural networks (NNs) specifically within the domain of 

Machine Condition Monitoring (MCM). They highlighted 

the structural parallels between NN layers and classical 

signal processing operations—such as filtering, decimation, 

and envelope extraction—and conducted a rigorous 

mathematical analysis of these similarities. Given that MCM 

frequently deals with signals characterized by periodic and 

cyclostationary behavior, the authors employed a Fourier-

based framework to elucidate the influence of NN layers on 

such signal types. This analysis provided a foundation for 

establishing design heuristics and parameter optimization 

strategies tailored to MCM tasks, drawing upon long-

standing insights from signal processing literature. The 

research aligns with contemporary movements in 

Explainable Artificial Intelligence (XAI) and Physics-

Informed Neural Networks (PINNs), aiming to rationalize 

parameter choices without deviating from standard NN 

structures. The proposed methodology was substantiated via 

numerical simulations and experimental validation on the 

Case Western Reserve University (CWRU) bearing dataset. 

Overall, the study delivers a structured and interpretable 

framework for constructing neural networks optimized for 

MCM contexts [13]. 

Xu et al. (2021) introduced a hybrid deep learning 

framework designed to improve the accuracy of bearing fault 

diagnosis, which is vital for minimizing economic losses in 

industrial environments. Recognizing that many 

conventional deep learning models, such as CNN and 

gcForest, tend to underemphasize the feature extraction 

stage, the authors integrated these two architectures into a 

complementary hybrid model. In their approach, vibration 

signals from bearings were first converted into time-

frequency representations via Continuous Wavelet 

Transform (CWT). These transformed images served as 

inputs to a Convolutional Neural Network (CNN), which 

extracted discriminative features related to fault 

characteristics. The extracted features were then input into a 

gcForest classifier for final classification. The model was 

validated using bearing fault datasets from both Case 

Western Reserve University (CWRU) and Xi’an Jiaotong 

University (XJTU-SY). Comparative experiments 

demonstrated that the CNN + gcForest combination 

significantly outperformed the individual models, offering 

superior fault detection accuracy. These findings underscore 

the model’s potential applicability in real-world diagnostic 

systems by enhancing robustness and classification precision 

[14]. 

Similarly, Li (2024) introduced a novel deep 

learning architecture named DPW ATTCNN, specifically 

designed to facilitate fast and precise bearing fault diagnosis 

in a cost-effective and deployment-friendly manner. To 

minimize computational complexity, the model utilizes 

Depthwise Separable Convolution (DPW), which 

significantly reduces the number of trainable parameters 

without compromising feature extraction capabilities. 

Additionally, the incorporation of an Efficient Channel 

Attention (ECA) mechanism enables the model to capture 

and emphasize critical inter-channel dependencies, thereby 

improving its representational power. To enhance the 

model’s performance across varying operational 

environments, Adaptive Batch Normalization (AdaBN) was 

employed, allowing effective domain adaptation. The 

model’s performance was rigorously evaluated on the Case 

Western Reserve University (CWRU) bearing dataset, 

achieving an impressive classification accuracy of 99.58%. 

Even under high levels of additive noise, the model 

preserved over 95% accuracy, and domain transfer 

experiments yielded an average recognition rate of 97.35%. 

These results affirm DPW ATTCNN’s high robustness and 

its capacity for generalization in real-world fault diagnosis 

scenarios [15]. 

Wu et al. (2024) presented a comprehensive 

approach to overcome two critical challenges in bearing fault 

diagnosis under varying operational environments: class 

imbalance and domain distribution divergence. These factors 

are known to degrade model generalization and often result 

in poor recognition of minority fault categories, thereby 

limiting diagnostic reliability. To address this, the authors 

developed a novel framework called Iterative Resampling 

Deep Decoupling Domain Adaptation (IRDDDA). The 

IRDDDA architecture integrates four key modules: a feature 

extractor, a domain discriminator, a label predictor, and a 

feature resampler, operating within a decoupled two-phase 

training paradigm. During the initial phase, domain-invariant 

representations are learned from imbalanced datasets across 

source and target domains. In the subsequent phase, a 

feature-wise resampling strategy is employed to alleviate 
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classification bias caused by class imbalance, while the upper 

layers of the feature extractor are iteratively refined to 

enhance model performance. The efficacy of the model was 

assessed using both the publicly available Case Western 

Reserve University (CWRU) dataset and experimental data 

acquired from the authors’ custom-built bearing test 

platform. Empirical results demonstrated that IRDDDA 

consistently achieved higher and more balanced 

classification accuracy, particularly for underrepresented 

fault classes, and delivered robust generalization across 

domains. The study underscores the advantage of jointly 

addressing data imbalance and domain discrepancy in the 

development of reliable fault diagnosis systems [16]. 

Gu et al. (2022) introduced a novel hybrid 

methodology aimed at enhancing the precision of fault 

diagnosis in rolling bearings, which serve as essential 

components in mechanical manufacturing and transport 

systems. The primary objective was to effectively identify 

fault-related features from weak and noise-contaminated 

signals, particularly in cases involving small-sized datasets. 

The proposed method integrates multiple advanced 

techniques, including Variational Mode Decomposition 

(VMD), Continuous Wavelet Transform (CWT), 

Convolutional Neural Networks (CNN), and Support Vector 

Machines (SVM). Initially, vibration signals are 

preprocessed and decomposed into several Intrinsic Mode 

Functions (IMFs) via VMD. These IMFs are then converted 

into two-dimensional time-frequency representations using 

CWT. A CNN model, designed with carefully optimized 

hyperparameters, is employed to learn discriminative 

features from these images. Unlike conventional approaches 

that rely on Softmax layers for classification, this framework 

utilizes an SVM classifier in the final stage to improve 

robustness and accuracy. The proposed strategy was 

validated using both the Case Western Reserve University 

(CWRU) bearing dataset and a spindle fault dataset acquired 

from a dedicated test bench. Experimental evaluations 

revealed that the method achieved an average accuracy of 

99.9% on the CWRU dataset and 90.15% on the spindle fault 

dataset. These results demonstrate the superior performance 

of the hybrid model over traditional CNN-based and feature 

engineering-based methods, confirming its potential in terms 

of diagnostic precision and generalization capacity across 

different fault scenarios [17]. 

Huang and Zhao (2024) presented an innovative 

deep learning architecture designed to enhance both the 

accuracy and efficiency of bearing fault diagnosis, with 

particular emphasis on the early identification of weak fault 

signals—an essential requirement for ensuring the 

dependable operation of rotating machinery. Their proposed 

method integrates three fundamental components. Firstly, an 

Improved Multi-Scale Feature Fusion Residual Network 

(IMSFFRN) is developed, which utilizes convolutional 

layers with diverse dilation rates to extract features at 

multiple scales. This configuration facilitates the effective 

fusion of intermediate representations, thereby enabling the 

model to capture more detailed and hierarchical 

characteristics from vibration signals. Secondly, 

acknowledging that different diagnostic features contribute 

unevenly to fault classification, the authors incorporated a 

Multiple-Winning Consciousness Self-Organizing Map 

(MCSOM) competitive mechanism. This layer enhances the 

discriminative capability of individual neurons by learning 

their sensitivity to particular fault types. Thirdly, to 

strengthen the model's generalization ability, a Support 

Vector Machine (SVM) is employed during the classification 

phase. The performance of the proposed framework was 

rigorously evaluated on three benchmark datasets: CWRU, 

PU, and SEU, where it achieved exceptional classification 

accuracies of 100%, 99.56%, and 100%, respectively—

surpassing several state-of-the-art approaches. Furthermore, 

the model maintained high classification reliability under 

noisy conditions, highlighting its robustness. These findings 

confirm that the multi-scale competitive architecture is 

particularly suitable for early-stage fault detection in real-

world industrial environments where signal degradation and 

noise are prevalent [18]. 

Zhang et al. (2024) proposed a robust and noise-

resilient approach to tackle the significant challenges of 

condition monitoring and fault diagnosis of rolling 

bearings—key components in mechanical systems—under 

high-noise environments commonly encountered in 

industrial settings. Recognizing that traditional diagnostic 

models often struggle with the degradation of signal quality 

due to noise, the authors introduced a novel framework 

named Stochastic Resonance-assisted Deep Neural Network 

(SRDN). This method embeds the Stochastic Resonance 

(SR) mechanism within a Spiking Neural Network (SNN) 

architecture to amplify weak and noisy fault signals. By 

leveraging the SR effect, the model enhances the signal-to-

noise ratio (SNR) of input signals before classification, 

enabling more accurate recognition of subtle fault 

characteristics. The SRDN model was tested on the widely 

used Case Western Reserve University (CWRU) bearing 

dataset, achieving an outstanding classification accuracy of 

99.9%. More notably, even under severe noise conditions 

such as −8 dB SNR, the model sustained an accuracy 

exceeding 92%, indicating exceptional robustness and 

generalization. These results suggest that integrating SR 

mechanisms into neural network architectures significantly 

improves diagnostic performance in noisy environments and 

demonstrates high potential for deployment in real-world 

fault diagnosis systems where signal clarity cannot be 

guaranteed [19]. 

Han and Jeong (2020) highlighted the broader 

implications of bearing fault diagnosis, noting its influence 

not only on mechanical reliability but also on production 

efficiency and operational strategy. Their study sought to 

improve the practical applicability and robustness of deep 

learning models by simulating more realistic industrial 

conditions. While deep learning methods reported in the 

literature often achieve high diagnostic accuracy, these 

outcomes are typically derived from idealized, noise-free 

datasets collected in controlled simulator environments—

conditions that rarely mirror actual factory settings. To 

bridge this gap, the authors augmented the widely used Case 

Western Reserve University (CWRU) bearing dataset with 

Gaussian noise to emulate the signal distortions commonly 
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found in industrial environments. They then proposed a 

Weighted Arithmetic Mean CNN Ensemble Model, which 

demonstrated enhanced classification performance 

compared to both standard CNN and unweighted ensemble 

models. Evaluation metrics, including accuracy and F1-

score, confirmed the ensemble model's superiority in 

handling noisy and limited data. These results underscore the 

importance of robust ensemble strategies for industrial 

deployment, and suggest that the proposed method offers a 

practical and reliable solution for real-world fault diagnosis 

applications under non-ideal conditions [20]. 

Chen et al. (2023) addressed a critical challenge in 

intelligent fault diagnosis: the mismatch of data distributions 

resulting from varying operating conditions, which 

significantly hinders the performance of diagnostic models 

in real-world industrial settings. While conventional transfer 

learning techniques offer partial solutions to this issue, they 

often neglect the seamless integration of low-dimensional 

pre-learned features with high-dimensional deep 

representations, limiting their effectiveness. To resolve this 

limitation, the authors introduced a residual convolutional 

transfer learning framework guided by slow-varying 

features. Initially, Slow Feature Analysis (SFA) was utilized 

to extract latent representations that encapsulate the intrinsic 

and stable characteristics of the mechanical system. These 

features were then passed through a Residual Convolutional 

Network to learn deeper abstract representations. A bypass 

mechanism was employed to fuse low- and high-level 

features, ensuring comprehensive feature integration. 

Moreover, to mitigate domain discrepancies between the 

source and target data, the Maximum Mean Discrepancy 

(MMD) metric was applied in the Reproducing Kernel 

Hilbert Space (RKHS) to align distributions effectively. The 

framework was validated using the Xi’an Jiaotong 

University (XJTU) and Case Western Reserve University 

(CWRU) bearing datasets. Experimental outcomes 

demonstrated that the proposed method achieved over 99% 

classification accuracy across both datasets, confirming its 

strong transfer learning capability and resilience under 

dynamic operational environments. These findings highlight 

the framework's potential for deployment in industrial fault 

diagnosis applications involving significant domain shifts 

[21]. 

Gupta et al. (2024) introduced an innovative 

diagnostic approach termed the Discriminant Analysis-based 

Unimodality Test (DAT), aimed at enhancing the 

classification of time series data into unimodal or multimodal 

categories. Beyond this primary objective, DAT is also 

capable of detecting anomalies, estimating key statistical 

parameters, and identifying data skewness. The method is 

particularly effective in binary classification scenarios and 

demonstrates robust performance across both unimodal and 

multimodal datasets. In comparative analyses with 

established unimodality tests—specifically the dip test and 

the folding test—DAT consistently delivered superior 

accuracy and stability. To further validate its applicability, 

the authors extended DAT’s functionality to fault detection 

tasks by evaluating its performance on the Case Western 

Reserve University (CWRU) bearing dataset. Five different 

machine learning classifiers were employed in this 

validation, and the method demonstrated exceptional 

diagnostic precision, successfully detecting bearing faults as 

small as 0.007 inches with a remarkable 99.999% accuracy. 

These results underscore DAT’s potential as a powerful tool 

for industrial anomaly detection, offering significant 

improvements over traditional techniques, particularly in 

scenarios where high sensitivity to subtle fault signatures is 

required [22]. 

Hou et al. (2023) introduced a novel deep learning 

framework, named Diagnosisformer, which leverages a 

multi-feature parallel fusion strategy embedded within a 

Transformer-based architecture to improve the performance 

of bearing fault diagnosis. Aiming to overcome the 

limitations of conventional deep learning models—

particularly their low diagnostic accuracy and limited 

robustness—the proposed model employs a structured 

approach for enhanced feature representation. Initially, Fast 

Fourier Transform (FFT) is used to extract frequency-

domain features from raw vibration signals, followed by 

normalization and embedding steps. These processed 

features are then input into a parallel fusion encoder capable 

of simultaneously capturing both local and global signal 

characteristics. The resulting feature representations are 

passed through a cross-flipped decoder before reaching the 

classification module. The Diagnosisformer model was 

validated using two datasets: one collected from a 

laboratory-scale rotating machinery test rig and the publicly 

available Case Western Reserve University (CWRU) bearing 

dataset. The model achieved average classification 

accuracies of 99.84% and 99.85% on the respective datasets, 

surpassing benchmark methods. These findings affirm the 

model’s superior diagnostic accuracy, generalization ability, 

and robustness under noisy conditions. The study ultimately 

highlights the potential of attention-based Transformer 

architectures as a robust and efficient solution for intelligent 

fault detection in industrial settings [23]. 

III. CWRU DATASET  

The Case Western Reserve University (CWRU) 

bearing dataset has become a benchmark resource in the field 

of machine condition monitoring and predictive maintenance 

research. Its structured composition, high-fidelity vibration 

measurements captured under well-controlled experimental 

conditions, and detailed categorization of fault types and 

severities make it a widely adopted dataset for evaluating 

diagnostic algorithms. The dataset was generated using a 

custom-designed bearing fault test rig located in the 

Electrical Engineering Laboratory at Case Western Reserve 

University. As shown in Figure 3.1, the experimental system 

consists of a 2-hp induction motor, a torque transducer, a 

dynamometer, and two accelerometers strategically placed at 

the motor’s drive end and fan end. Vibration data were 

typically recorded at high sampling rates of 12 kHz and 48 

kHz, allowing for fine-resolution signal analysis suitable for 

fault detection tasks [24]. 
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Figure 3. 1 CWRU Bearing Test Rig Experimental Platform 

The bearing defects in the CWRU dataset were 

intentionally induced using the Electro-Discharge 

Machining (EDM) technique to simulate real-world fault 

scenarios in a controlled environment. These defects are 

systematically categorized into four primary classes: Normal 

(No Fault), Inner Race Faults, Outer Race Faults, and Ball 

(Rolling Element) Faults. To examine the effects of fault 

severity on diagnostic accuracy, each fault category was 

fabricated in three distinct sizes, corresponding to diameters 

of 0.007 inches, 0.014 inches, and 0.021 inches. This 

gradation of defect sizes enables comprehensive analysis of 

model sensitivity to varying levels of damage [25]. 

As shown in Figure 3.2, there are significant differences 

in vibration amplitude and waveform between the healthy 

condition and various fault types in the dataset (e.g., inner 

race, outer race, and rolling element faults). For instance, the 

ball fault in file B021_1_227 is characterized by more 

irregular and abrupt amplitude changes over time; 

meanwhile, in IR021_1_214, the inner race fault presents 

with prominent vibration peaks. On the other hand, the 

OR021_6_1_239 outer race fault scenario exhibits more 

periodic fault-induced impacts in the signal. In contrast, the 

healthy condition signal in Time_Normal_1_098 displays a 

low-amplitude and more stable pattern. 

 

The CWRU bearing dataset encompasses a total of 161 

individual datasets, systematically grouped according to 

fault location and signal sampling frequency. These groups 

include normal (healthy) condition, 12kHz drive-end fault, 

48kHz drive-end fault, and 12kHz fan-end fault scenarios. 

Each category contains three primary fault types: inner race 

faults (IF), ball (rolling element) faults (BF), and outer race 

faults (OF). Vibration signals were acquired under varying 

operational conditions, with motor speeds ranging from 1720 

to 1797 revolutions per minute (RPM) and at load levels of 

0, 1, 2, and 3 horsepower (HP). Furthermore, measurements 

were taken from multiple sensor placements on the 

experimental platform, including Centered (6:00 

orientation), Orthogonal (3:00 orientation), and Opposite 

(12:00 orientation) positions, providing diverse perspectives 

of fault-induced signal characteristics [26]. 

The CWRU dataset is widely used for benchmarking the 

accuracy of machine learning and deep learning models. 

 
Figure 3. 2 Some example time-domain vibration signals from the CWRU 

bearing dataset. 

Due to its high sampling rate and diversity in motor loads 

and fault sizes, it enables the development of classification, 

transfer learning, data augmentation, signal processing, and 

predictive maintenance algorithms. As one of the most cited 

open datasets in the field of predictive maintenance, the 

CWRU bearing dataset holds significant importance in both 

academic and practical research. It serves as a fundamental 

resource for deep learning-based bearing fault diagnosis 

studies, both at the initial stage and for advanced model 

comparisons. 

IV. METHOD 

A. SUPPORT VECTOR MACHINES (SVM) 

Support Vector Machines (SVM) are a supervised 

learning-based, powerful classification method with high 

generalization capability. The main objective of SVM is to 

define an optimal hyperplane that separates examples 

belonging to different classes with the maximum margin. 

This method operates on a training dataset 

1{( , )}N n

i i i iD x y x R  as input vectors and 

{ 1, 1}iy    as class labels. In linearly separable 

datasets, this hyperplane is represented by the following 

decision function: 

( ) , (1)f x w x b                

Here, www is the normal vector to the hyperplane, and bbb 

is the bias term. To maximize the margin width, SVM solves 

the following optimization problem: 

2

,

1
min

2w b
w subject to   1, (2)T

i iy w x b i     

Since real-world data are often not linearly separable, the 

model is converted into a soft-margin form. In this case, 

slack variables ξi that allow for classification errors and a 

regularization parameter C are introduced, leading to the 

following optimization formulation: 
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2

, ,
1

1
min

2

N

i
w b

i

w C





   subject to 

( ) 1 , 0 (3)T

i i i iy w x b       

 

The hyperparameter C provides a balance between model 

complexity and classification errors. Smaller values of C 

allow for a wider margin, while larger values aim to reduce 

classification errors. 

A significant advantage of SVM is its capacity to solve non-

linear classification problems. For this purpose, input data 

are transformed into a higher-dimensional feature space 

using kernel functions, making them linearly separable in 

that space. The kernel function enables the measurement of 

similarity without explicitly computing the transformation 

 . One of the most widely used kernel functions is the 

Radial Basis Function (RBF) kernel, defined as: 

 

 2

2

1
( , ) exp , (4)

2
i i i jK x y x x 


     

 

This kernel function is particularly well-suited for modeling 

non-linear patterns. During training, only the data points 

closest to the margin—called support vectors—determine 

the decision boundary. As a result, SVM offers a sparse 

model structure that is resistant to overfitting, even in high-

dimensional datasets [27,28]. 

 

B. RANDOM FOREST (RF) METHOD 

Random Forest (RF) is one of the ensemble learning 

algorithms developed by Leo Breiman, consisting of a 

combination of multiple decision trees. This method, which 

can be applied to both classification and regression problems, 

aims to reduce the bias of individual decision trees and 

enhance the model’s generalization ability by training 

multiple trees independently and aggregating their results. 

The fundamental working principle of the RF algorithm is to 

construct each tree using bootstrap sampling of the training 

dataset and to perform node splitting based on a randomly 

selected subset of features. These strategies reduce the 

correlation between trees and significantly lower the risk of 

overfitting by increasing the diversity within the ensemble. 

For classification problems, the RF algorithm performs 

majority voting based on the predictions obtained from each 

decision tree. Mathematically, this process is carried out over 

T decision tree classifiers such as 
1 2( ), ( ),..... ( )Th x h x h x ,   

  

1 2
ˆ mod { ( ), ( ),...... ( )} (5)Ty e h x h x h x  

 

It is expressed as such, where xxx represents the input vector, 

and the output of the RF model is represented by the result 

of the voting process. There are two main hyperparameters 

that significantly influence the performance of the RF 

algorithm: 

• n_estimators (T): The number of trees in the forest. 

Increasing the number of trees generally results in more 

stable outcomes, but also increases computational cost. 

• max_features (m): The number of features considered 

when splitting a node. This parameter helps reduce 

correlation between trees and improves the generalization 

capability of the model. 

During the construction of each decision tree, impurity 

measures such as Gini impurity or entropy are commonly 

used for node splitting. The Gini impurity is calculated as 

follows: 

2

1

( ) 1 (6)
C

i

i

Gini D p


   

Here, D denotes the dataset at a given node, C represents 

the number of classes, and Pi is the proportion of samples 

belonging to the ith class. The entropy criterion is defined 

as: 

2

1

( ) log ( ) (7)
C

i i

i

Entropy D p p


   

The RF algorithm stands out with its robustness against 

overfitting, effective performance on high-dimensional 

datasets, and ability to handle missing data. Moreover, it 

provides interpretability through feature importance 

rankings. Thanks to these advantages, RF is widely used in 

both classification and regression tasks. In recent years, RF-

based approaches have demonstrated successful results in 

various application domains such as financial modeling, 

environmental systems, and subsurface resource 

classification, as highlighted in the literature [29,30]. 

 

C. NAIVE BAYES (NB) ALGORITHM 

The Naive Bayes (NB) algorithm is a supervised 

classification method based on probability theory and rooted 

in Bayes' Theorem. The core assumption of this method is 

that all features used in classification are conditionally 

independent of each other. This assumption increases the 

simplicity of the model and reduces computational time; 

however, in some cases, it may also affect classification 

accuracy. 

The Naive Bayes algorithm, for each class, relies on Bayes' 

Theorem to determine to which class the observed features 

belong when a feature vector 1 2( , ,........... )nX x x x  is 

given: 

( \ ). ( )
( \ ) (8)

( )

k k
k

P X C P C
P C X

P X
  

Here: 

( \ ) :kP C X  It is the posterior probability of class Ck given 

the observation set X. 

( \ ) :kP X C  It is the likelihood of observing X given class 

Ck. 

( ) :kP C  It is the prior probability of class Ck. 

( ) :P X  It is the marginal probability of the observed X. 

 

Naive Bayes is called “naive” because it assumes that the 

features are conditionally independent of each other. Thanks 
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to this assumption, the conditional probability can be 

decomposed as follows: 

1

( \ ) ( \ ) (9)
n

k i k

i

P X C P X C


  

In this case, the classification decision is made by selecting 

the class with the highest probability, as shown below: 

1

ˆ arg max ( ). ( \ ) (10)
k

n

k i k
C

i

C P C P X C


   

The Naive Bayes (NB) algorithm offers several advantages, 

including short training time, high accuracy on small-sized 

datasets, and the ability to perform well even in high-

dimensional feature spaces. Among its strengths are 

computational simplicity, fast model training, and low 

memory usage. However, its most significant drawback is 

the assumption of feature independence, which is not always 

realistic. As a result, the classification accuracy of the model 

may decline in some cases. Nonetheless, in certain fields—

such as text mining and medical data analysis—this 

assumption does not pose a major problem [31-33]. 

 

D. XGBOOST ALGORITHM (EXTREME GRADIENT 

BOOSTING) 

XGBoost (eXtreme Gradient Boosting) is a powerful 

ensemble learning algorithm based on decision trees, 

developed by Chen and Guestrin. It is a robust gradient-

boosted decision tree (GBDT) method that constructs models 

in a sequential manner, where each new tree is optimized to 

correct the errors made by the previous trees, aiming to 

minimize the loss function. Compared to traditional GBDT 

approaches, XGBoost offers higher generalization 

performance, faster processing speed, and greater model 

flexibility. 

XGBoost works by building decision trees sequentially, with 

each new tree focusing on minimizing the residual errors 

from the previous ones. The overall objective function 

optimized by the model can be expressed as follows: 

1 1

ˆ( ) ( , ) ( ) (11)
n t

t

i i k

i k

L l y y f
 

     

Here, ˆ( , )i il y y  represents the loss function that measures 

the prediction error (e.g., log loss or squared error), while 

( )kf  is the regularization term that controls the 

complexity of the model. This regularization term is 

formulated as follows: 

21
( ) (12)

2
f T w     

Here, T represents the number of leaves in the tree, w denotes 

the leaf scores, and γ and λ are the regularization coefficients 

applied to model complexity and weight magnitude, 

respectively. This structure helps prevent overfitting and 

enhances the generalization capability of the model. 

The performance of the XGBoost model heavily depends on 

the proper tuning of its hyperparameters. In this study, the 

following key hyperparameters were optimized for model 

configuration: 

 n_estimators: The total number of decision trees 

to be constructed. More trees generally lead to 

better generalization but increase computational 

cost. 

 max_depth: The maximum depth of each tree. 

Greater depth can create complex decision 

boundaries but may also lead to overfitting. 

 learning_rate: The learning rate; it limits the 

contribution of each individual tree to the final 

model. 

 subsample and colsample_bytree: The 

subsampling ratios for data and features, 

respectively; used to reduce overfitting and 

increase diversity among trees. 

These hyperparameters were optimized using grid search 

and cross-validation methods [34-35]. 

 

E. PERFORMANCE METRICS 

In classification systems developed using machine 

learning and artificial intelligence techniques, performance 

metrics play a critical role in quantitatively evaluating a 

model’s predictive capabilities. These metrics offer a 

comprehensive understanding of the model’s general 

performance as well as its ability to correctly classify 

individual categories. Among the most commonly employed 

and informative evaluation measures are accuracy, precision, 

recall, and F1-score. Each of these metrics captures different 

aspects of classification quality and is elaborated upon in the 

following sections. 

Accuracy  

Accuracy refers to the proportion of correctly classified 

instances among the total number of predictions made by the 

model. While it offers a straightforward and easily 

interpretable measure of overall performance, it may not 

always reflect true effectiveness—particularly in scenarios 

involving imbalanced class distributions. For example, a 

model that consistently misclassifies minority class samples 

might still report high accuracy, thereby providing an overly 

optimistic evaluation of its classification performance. 

Accuracy= (13)
TP TN

TP TN FP FN



  
 

Precision 

Precision quantifies the accuracy of positive predictions by 

calculating the ratio of true positives to the total number of 

instances classified as positive by the model. This metric is 

particularly critical in domains where the consequences of 

false positives are significant—such as in industrial fault 

detection or medical diagnostics. A high precision value 

signifies that the model tends to be cautious in assigning 

positive labels, thereby ensuring that most identified 

positives genuinely belong to the target class. 

Precision= (14)
TP

TP FP
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Recall 

Recall represents the percentage of true positive instances 

that the model successfully detects among all actual positive 

cases. This metric is especially vital in scenarios where 

missing a positive case—i.e., generating a false negative—

can have serious consequences, such as in safety-critical 

systems or medical diagnoses. A high recall score reflects the 

model’s strong ability to capture relevant positive examples, 

ensuring minimal oversight in identifying the target 

condition or class. 

Recall= (15)
TP

TP FN
 

F1 Score 

The F1 score serves as the harmonic mean of precision and 

recall, offering a balanced measure that considers both 

metrics simultaneously. It is especially advantageous in 

scenarios with imbalanced datasets or when it is equally 

important to minimize both false positives and false 

negatives. A high F1 score signifies that the model performs 

well in accurately identifying positive instances while also 

maintaining a low rate of misclassification. 

F1 Score=
Pr Re

2 (16)
Pr Re

ecision x call
x

ecision call
 

Taken together, these metrics provide a more detailed and 

reliable evaluation of a classification model’s overall 

performance and its ability to make accurate predictions 

across different classes [36-37]. 

V. FINDINGS 

In this section, the performance of different machine 

learning algorithms used for bearing fault classification is 

evaluated. Based on signals obtained from the Case Western 

Reserve University (CWRU) bearing dataset, the Random 

Forest, XGBoost, SVM, and Naive Bayes algorithms were 

applied. Each model was analyzed in detail in terms of 

accuracy, precision, recall, and F1-score metrics. 

Additionally, performance comparisons were visualized and 

evaluated based on signal type and feature type. Assessing 

model performance not only at the algorithm level but also 

in terms of feature types (mean, max, min, sd, rms, skewness, 

kurtosis, crest, and form) is of great importance in identifying 

which statistical features are more decisive in fault diagnosis. 

The classification success rates obtained using the four 

machine learning methods are presented in Table 5.1. 

 
TABLE 5. 1 PERFORMANCE COMPARISON OF 

CLASSIFICATION MODELS 

Model Accuracy precision recall  f1-score 

Random Forest 0.9573 0.96 0.96 0.96 

SVM 0.9373 0.94 0.94 0.94 

Naive Bayes 0.9240 0.93 0.92 0.92 

XGBoost 0.9573 0.96 0.96 0.96 

 

As shown in Table 5.1, based on the performance results, the 

most successful classification models are Random Forest and 

XGBoost. Both models stand out with an accuracy of 95.73% 

and precision, recall, and F1-score values of 96%. These 

results indicate that the models demonstrate high 

performance in terms of making correct classifications 

overall. 

The Support Vector Machine (SVM) algorithm, with an 

accuracy rate of 93.73%, emerges as a stable and reliable 

alternative. With each of its precision, recall, and F1-score 

values at 94%, SVM shows a strong capability to distinguish 

between classes and possesses a high generalization ability. 

In contrast, the Naive Bayes model performs lower compared 

to the other algorithms. Although it achieved 92.40% 

accuracy, along with 93% precision and 92% recall and F1-

score, the model still demonstrates acceptable performance 

in basic classification tasks. However, due to its conditional 

independence assumption, this model may have limitations, 

especially when dealing with complex and high-dimensional 

datasets. 

In conclusion, the evaluation results suggest that the Random 

Forest and XGBoost models provided the highest 

classification performance on the dataset used in this study 

and can be considered the most suitable methods for 

accurately diagnosing bearing faults. 

The bar chart in Figure 5.1 below presents a comparison of 

the four classification models (Random Forest, SVM, Naive 

Bayes, and XGBoost) in terms of the four key performance 

metrics: accuracy, precision, recall, and F1-score. The graph 

provides a visual comparison of each model's performance 

level across each metric. 

 

 
Figure 5. 1 Performance Comparison of Random Forest, SVM, Naive 

Bayes, and XGBoost Models 

In Table 5.1, the overall performance of different 

classification algorithms was compared, and it was observed 

that the Random Forest and XGBoost models achieved the 

highest accuracy. This evaluation demonstrated the overall 

accuracy and classification capability of the models across 

the entire dataset. In Table 5.2, this general assessment is 

further detailed by presenting the performance metrics of the 

Random Forest model for each specific fault type (e.g., 

IR_007_1, Ball_021_1). 

As shown in Table 5.2, the Random Forest model achieved 

100% accuracy, precision, recall, and F1-score for the signals 

IR_007_1, IR_014_1, IR_021_1, and Normal_1. These 

results indicate that the model was able to classify these 

signal types almost flawlessly. In particular, the 100% recall 

rate for the "normal" signal suggests that the model is highly 
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successful in accurately identifying the healthy (non-faulty) 

condition. 
 

TABLE 5. 2 SIGNAL-BASED CLASSIFICATION PERFORMANCE OF 
THE RANDOM FOREST MODEL 

Signal Accuracy precision recall  f1-score 

Ball_007_1 0.96 0.97 0.96 0.97 

Ball_014_1 0.88 0.92 0.88 0.90 

Ball_021_1 0.8667 0.90 0.87 0.88 

IR_007_1 1.00 1.00 1.00 1.00 

IR_014_1 1.00 1.00 1.00 1.00 

IR_021_1 1.00 1.00 1.00 1.00 

Normal_1 1.00 1.00 1.00 1.00 

OR_007_6_1 1.00 0.99 1.00 0.99 

OR_014_6_1 0.8933 0.84 0.89 0.86 

OR_021_6_1 0,9867 0.97 0.99 0.98 

 

However, performance drops were observed for signals 

such as Ball_014_1, Ball_021_1, and OR_014_6_1. For 

example, in the Ball_021_1 class, the accuracy drops to 

86.67%, and there are discrepancies between precision and 

recall values. This implies that the model misclassified some 

samples in these classes, confusing them with other fault 

types. Overall, while the model performs with very high 

accuracy on "inner race" (IR) and "outer race" (OR) faults, it 

shows variable performance on "ball" type faults depending 

on the signal characteristics. 

Figure 5.2 below illustrates the classification accuracy 

rates obtained by the model for each bearing fault class. The 

model reaches 100% accuracy for IR_007_1, IR_014_1, 

IR_021_1, and Normal_1, demonstrating highly effective 

classification for these classes. 

 

 
Figure 5. 2 Classification Accuracy Rates for Each Fault Signal Class 

Confusion matrices are provided to illustrate the class-

wise performance of different models. These matrices clearly 

reveal in which classes the models make more errors and in 

which they perform strongly. Figure 5.3 presents the 

confusion matrices for the models used. 

As shown in Figure 5.3, the Random Forest and XGBoost 

models distinguish IR and OR signals with high accuracy, 

while the Naive Bayes model demonstrates comparatively 

lower performance for the Ball class than the other models. 

As shown in Table 5.3, the results indicate that the highest 

classification performance was achieved using the standard 

deviation (sd) feature. This feature demonstrated superior 

performance in terms of both accuracy and F1-score 

compared to the other features. 

 

 
Figure 5. 3 Comparison of Confusion Matrices for Four Different 

Classification Models 

An important contribution of this study is the performance 

analysis conducted at the feature level. Table 3 below 

presents the classification performance of fundamental 

statistical features used in bearing fault diagnosis, evaluated 

using the Random Forest algorithm. Each feature was 

individually tested in the model, and its performance was 

measured using accuracy, precision, recall, and F1-score 

metrics. The results are provided in Table 5.3. 

 
TABLE 5. 3 FEATURE-BASED PERFORMANCE EVALUATION OF 

RANDOM FOREST CLASSIFICATION 

Feature Accuracy precision recall f1-score 

max 0.578261 0.574589 0.578261 0.575498 

min 0.565217 0.551416 0.565217 0.556578 

mean 0.285507 0.284134 0.285507 0.283265 

sd 0.628986 0.634502 0.628986 0.629776 

rms 0.615942 0.618286 0.615942 0.616016 

skewness 0.24058 0.248969 0.24058 0.24235 

kurtosis 0.386957 0.382938 0.386957 0.380831 

Crest 0.275362 0.270234 0.275362 0.271135 

form 0.457971 0.461526 0.457971 0.457787 

 
 Similarly, the Root Mean Square (rms) feature also 

yielded high performance, highlighting that the overall 

energy level of the signal plays a significant role in fault 

classification. On the other hand, features such as skewness 

and mean provided the lowest classification performance. 

This suggests that these features may be insufficient for 

distinguishing bearing faults and do not offer meaningful 

discrimination when used alone. Additionally, features like 

kurtosis and form factor were observed to exhibit moderate 

performance levels. 

Figure 5.4 below presents the feature importance rankings in 

the classification processes of the RF and XGBoost models. 

This comparative analysis is particularly significant from a 
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computational cost perspective, as it enables the 

identification of the most effective features that enhance 

model performance. 

 
Figure 5. 4 Comparison of Feature Importance Rankings According to 

XGBoost and Random Forest Models 

A common finding in both the RF and XGBoost models is 

that the standard deviation (sd) feature holds the highest 

importance score. This indicates that the "sd" feature, which 

represents the dispersion and variance in the data, is a highly 

decisive factor in distinguishing bearing faults. In the 

XGBoost model, features such as kurtosis, mean, max, and 

form exhibit high importance scores, whereas features like 

skewness, crest, rms, and min contribute relatively less. 

Notably, skewness is considered the least contributing 

feature by XGBoost. In the Random Forest model, following 

sd in importance are rms, mean, kurtosis, and min. Similarly, 

skewness and crest are identified as the least important 

features in this model as well. 

VI. DISCUSSION AND CONCLUSİON 

In this study, a comparative analysis of different 

machine learning algorithms for the diagnosis of bearing 

faults was conducted. As emphasized in the introduction, 

bearings are critical components for the continuity and safety 

of mechanical systems. Failure to detect bearing faults in a 

timely manner can lead to reduced operational efficiency and 

significant economic losses. To overcome the limitations of 

traditional signal processing-based methods, machine 

learning and deep learning techniques have gained increasing 

importance in recent years. The study utilized the Case 

Western Reserve University (CWRU) dataset and applied 

four classification algorithms: Random Forest (RF), Support 

Vector Machine (SVM), Naive Bayes (NB), and XGBoost. 

The findings revealed that Random Forest and XGBoost 

achieved the best performance, each with an accuracy of 

95.73% and precision, recall, and F1-score values of 96%. 

These results indicate that both algorithms possess high 

generalization capability and strong discriminative power for 

fault classification. The SVM algorithm demonstrated stable 

performance with an accuracy of 93.73%, while the Naive 

Bayes algorithm performed comparatively worse, primarily 

due to its assumption of conditional independence between 

features. The results also showed notable differences in 

model performance depending on the fault type. Inner race 

(IR) and outer race (OR) faults could be classified with up to 

100% accuracy, whereas ball-type faults exhibited decreased 

success rates depending on signal strength. This suggests that 

the signal characteristics of certain fault types are more easily 

distinguishable by classification models. 

Moreover, the feature-level analysis highlighted 

that standard deviation (sd) and root mean square (RMS) are 

the most decisive features in bearing fault diagnosis. In 

contrast, features such as mean, skewness, and crest 

contributed less to classification performance. The feature 

importance rankings produced by both RF and XGBoost 

models supported these findings, confirming that features 

based on signal variance play a leading role in fault 

classification. In conclusion, this study not only 

demonstrated the effectiveness of various machine learning 

algorithms in bearing fault diagnosis but also systematically 

analyzed which signal features are more influential in the 

classification process. Ensemble learning-based models like 

Random Forest and XGBoost emerged as the most suitable 

methods due to their robust generalization capabilities and 

feature selection strengths. Future work may focus on 

hybridizing these models with deep learning architectures, 

testing on different datasets, and integrating into real-time 

predictive maintenance systems to further enhance the 

efficiency of bearing health monitoring. 
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