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Detection of Bearing Faults from Vibration
Signals

Eyyup Akcan

Abstract— Bearings are critical mechanical components in
rotating machinery, playing a vital role in system safety and
operational continuity. In this study, the Case Western Reserve
University (CWRU) bearing dataset is used to perform fault
classification using four machine learning algorithms: Random
Forest, XGBoost, Support Vector Machine (SVM), and Naive
Bayes. Based on statistical features extracted in the time
domain, the performance of each model is evaluated using
accuracy, precision, recall, and F1-score metrics. The results
reveal that Random Forest and XGBoost algorithms achieved
superior performance with 95.73% accuracy and 96% in
precision, recall, and F1-score. The SVM model, with 93.73%
accuracy, stands out as a robust alternative, while the Naive
Bayes algorithm shows relatively lower performance with
92.40% accuracy. Additionally, an individual feature-based
classification analysis indicates that standard deviation (sd) and
root mean square (RMS) features contribute most significantly
to model performance. This study provides a comprehensive
performance analysis of traditional machine learning
algorithms, offering a valuable reference for early and accurate
detection of bearing faults.

Index Terms— Bearing fault diagnosis, Machine learning,
Random Forest, XGBoost, Support Vector Machine, Naive
Bayes, CWRU dataset.

I. INTRODUCTION

EARINGS are among the most fundamental and

mission-critical ~ components  in  rotating

machinery, playing a pivotal role in ensuring
mechanical performance, operational reliability, and safety.

Structurally, a typical bearing comprises an inner
race, an outer race, rolling elements (usually balls or rollers)
positioned between these races, and a cage that maintains the
spacing and alignment of the rolling elements. This
configuration enables the bearing to accommodate both
radial and axial loads while minimizing friction, thereby
contributing significantly to the energy efficiency of
mechanical systems. Bearings are ubiquitous in various
industrial domains, including aerospace, automotive, wind
energy, railway transportation, industrial drives, and
automated production systems. In such applications, they are
often subjected to harsh operational environments
characterized by variable loads, elevated temperatures, and
persistent vibrations. These demanding conditions, over
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extended periods, give rise to a variety of structural
degradations such as surface fatigue, micro-cracking, plastic
deformation, pitting, and spalling. If left undetected, such
defects can evolve rapidly and pose serious risks to the
mechanical integrity and safety of the overall system.
Empirical studies report that nearly 40% of failures in
rotating machinery can be attributed to bearing faults.
Despite their relatively low cost compared to other
mechanical subsystems, bearings possess a strategically
critical function. A single bearing malfunction has the
potential to cause collateral damage to adjoining components
such as shafts, gear trains, and motor assemblies, often
resulting in costly production downtimes and substantial
financial losses. Given these risks, real-time monitoring and
early fault detection in bearings are indispensable for
preventing unplanned outages and optimizing maintenance
scheduling. Timely diagnosis of incipient faults not only
mitigates the likelihood of catastrophic equipment failure but
also reduces maintenance expenditures, enhances
operational efficiency, and improves the overall reliability of
the system [1-3].

Over time, bearings undergo deterioration as a result of
prolonged exposure to adverse operating conditions,
including excessive mechanical loads, irregular torque
fluctuations, inadequate lubrication, and environmental
contaminants such as dust and moisture. Additionally,
sudden mechanical shocks can accelerate this degradation
process. Among the most prevalent types of bearing failures
are defects in the inner race, cracks in the outer race, surface
wear or pitting on rolling elements, and deformation of the
cage. As these faults evolve, they lead to increased
vibrational and acoustic emissions, reduced mechanical
efficiency, and compromised system stability. Ultimately,
undetected or untreated bearing damage can culminate in
critical ~ equipment  failures, unplanned production
interruptions, and considerable economic consequences [4].

Rotating machinery is extensively utilized across a range
of industrial domains, including aerospace, automotive,
energy production, and transportation systems. Within these
machines, rolling bearings serve as crucial mechanical
elements due to their role in ensuring smooth and reliable
operation. Studies have revealed that nearly 40% of
mechanical malfunctions stem from bearing-related faults, a
figure that may escalate to 90% in smaller-scale equipment.
Such malfunctions can pose serious safety hazards, disrupt
operations, and lead to substantial financial repercussions.
Consequently, there is an increasing demand for reliable and
automated bearing fault diagnosis systems. In this context,
machine learning approaches have emerged as powerful
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tools for fault detection, isolation, and classification, offering
the advantage of minimizing reliance on domain-specific
expertise or manual supervision. Traditional techniques such
as artificial neural networks (ANN), support vector machines
(SVM), k-nearest neighbors (k-NN), and principal
component analysis (PCA) have been widely adopted in this
domain. However, these methods often involve distinct steps
for feature extraction and classification, where informative
features must be manually derived from raw sensor signals.
Moreover, their performance tends to decline when faced
with large-scale or complex datasets, indicating limited
scalability and generalization capacity. In light of these
challenges, deep learning methodologies have garnered
attention for their capability to autonomously learn
discriminative representations from high-dimensional data
while simultaneously performing classification tasks [5].

Rotating machinery is extensively utilized in modern
industrial applications such as compressors, pumps,
conveyor systems, and electric motors. Among the essential
components in these machines, rolling bearings are pivotal
in maintaining the system’s reliability and operational
integrity. Nevertheless, prolonged operational durations and
exposure to severe environmental conditions render these
components susceptible to degradation and eventual failure.
As such, the development of advanced diagnostic
methodologies for the early detection of bearing faults is vital
to ensure equipment reliability, mitigate unplanned
downtimes, and minimize economic losses. A variety of
sensing techniques have been implemented in recent years
for condition monitoring and fault diagnosis of rolling
bearings. These include, but are not limited to, vibration
analysis, acoustic emission detection, sound signature
analysis, thermal imaging, and motor current signal analysis.
Of these, vibration analysis remains the most prevalent and
effective diagnostic approach due to its sensitivity to
mechanical anomalies. It is particularly effective in
identifying four principal fault categories: defects in the
outer race, inner race, rolling elements, and cage structures.
The presence of a fault typically induces repetitive transient
pulses within the vibration signal, providing diagnostic cues
for fault detection and classification [6].

Contemporary industrial machinery frequently operates in
dynamic and often harsh environments, characterized by
structural complexity and variable load conditions. These
factors elevate the risk of minor defects escalating into
systemic failures, thereby compromising equipment
reliability and posing potential safety hazards. To mitigate
such risks, accurate estimation of the remaining useful life
(RUL) and reliable fault diagnosis of critical components—
such as bearings—are essential. The recent progress in
machine learning has facilitated the development of
advanced diagnostic frameworks capable of achieving high
accuracy in fault identification. In contrast to conventional
methods, intelligent fault diagnosis systems offer automated
feature extraction and integrated classification capabilities,
reducing dependency on manual preprocessing. The
effectiveness of these systems is influenced not only by the
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robustness of the algorithmic models but also by the quality
and structure of the datasets employed. Despite widespread
reliance on balanced datasets in experimental studies, this
assumption rarely holds true in industrial environments,
where data imbalance is a common issue—particularly due
to the scarcity of fault-related data compared to normal
operating conditions [7].

Conventional approaches to bearing fault detection
predominantly rely on time-frequency domain analyses and
handcrafted feature extraction. Methods such as Fast Fourier
Transform (FFT), Wavelet Transform (WT), and Empirical
Mode Decomposition (EMD) have been widely utilized for
signal interpretation in diagnostic applications. While these
techniques have demonstrated effectiveness in controlled
scenarios, they often exhibit sensitivity to noise and require
significant expert knowledge for parameter tuning and
feature design. Such dependencies restrict their applicability
in complex, real-world environments and hinder automation.
As a result, there has been a paradigm shift toward data-
driven techniques, particularly those based on machine
learning (ML) and deep learning (DL), which offer more
robust and scalable solutions by enabling end-to-end learning
directly from raw or minimally processed sensor data [4].

Timely identification of bearing faults is essential to
enhance system reliability and reduce operational
maintenance expenses. Conventional diagnostic techniques
primarily utilize signal processing approaches in the time,
frequency, and time-frequency domains. Commonly applied
methods include wavelet transform, short-time Fourier
transform (STFT), empirical mode decomposition (EMD),
variational mode decomposition (VMD), and continuous
wavelet transform (CWT), which aim to reveal hidden fault
characteristics within vibration signals. Despite their
widespread use, these methods are often constrained by their
dependency on manually selected parameters and prior
domain expertise, which can limit adaptability and reduce
performance under varying operating conditions [8,9].

In recent years, to address the limitations of conventional
approaches, the adoption of machine learning and deep
learning techniques in bearing fault diagnosis has gained
significant momentum. While classical machine learning
algorithms such as support vector machines (SVM), decision
trees (DT), k-nearest neighbors (k-NN), and random forests
(RF) continue to be utilized, more sophisticated deep
learning architectures have demonstrated remarkable
performance. These include convolutional neural networks
(CNN), long short-term memory networks (LSTM), spiking
neural networks (SNN), autoencoders, generative adversarial
networks (GAN), and transformer-based models. Their
ability to autonomously extract hierarchical features from
raw data and adapt to complex fault patterns makes them
powerful tools in modern fault diagnosis systems [10,11].

In conclusion, bearing fault diagnosis is of critical
importance in modern industry. Studies conducted using the
CWRU dataset have shown that machine learning and deep
learning methods can be effectively applied in this domain.
In this context, the present study utilizes the CWRU dataset
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to extract time-domain features and comparatively analyze
the classification performance of different machine learning
algorithms (RF, SVM, XGBoost, NB).

Il. LITERATURE REVIEW
In this section, the literature on bearing fault diagnosis is

summarized.

Li et al. (2024) developed a novel deep learning
framework to improve the accuracy of fault identification in
essential mechanical systems. Addressing the deficiencies of
conventional methods in extracting fault-related information
from rotating machinery, the study introduced an attention-
augmented  Convolutional Neural Network (CNN)
architecture, termed Attention Improved CNN (AT-ICNN).
This architecture combines an enhanced convolutional
module (IMConv) with a hybrid attention mechanism,
allowing for the effective extraction of both local and global
signal characteristics and emphasizing critical fault features.
Consequently, the proposed model demonstrates superior
fault classification capabilities. The AT-ICNN was validated
on the widely-used Case Western Reserve University
(CWRU) bearing dataset and an in-house laboratory dataset.
It achieved classification accuracies of 98.12% and 98.72%,
respectively, surpassing traditional and state-of-the-art
methods by nearly 9%. These outcomes highlight the
model’s potential as a reliable and high-performance solution
for fault diagnosis in industrial mechanical components [12].

Borghesani et al. (2023) sought to advance the
transparent and theoretically grounded development of
neural networks (NNs) specifically within the domain of
Machine Condition Monitoring (MCM). They highlighted
the structural parallels between NN layers and classical
signal processing operations—such as filtering, decimation,
and envelope extraction—and conducted a rigorous
mathematical analysis of these similarities. Given that MCM
frequently deals with signals characterized by periodic and
cyclostationary behavior, the authors employed a Fourier-
based framework to elucidate the influence of NN layers on
such signal types. This analysis provided a foundation for
establishing design heuristics and parameter optimization
strategies tailored to MCM tasks, drawing upon long-
standing insights from signal processing literature. The
research aligns with contemporary movements in
Explainable Artificial Intelligence (XAI) and Physics-
Informed Neural Networks (PINNS), aiming to rationalize
parameter choices without deviating from standard NN
structures. The proposed methodology was substantiated via
numerical simulations and experimental validation on the
Case Western Reserve University (CWRU) bearing dataset.
Overall, the study delivers a structured and interpretable
framework for constructing neural networks optimized for
MCM contexts [13].

Xu et al. (2021) introduced a hybrid deep learning
framework designed to improve the accuracy of bearing fault
diagnosis, which is vital for minimizing economic losses in
industrial ~ environments.  Recognizing that many
conventional deep learning models, such as CNN and
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gcForest, tend to underemphasize the feature extraction
stage, the authors integrated these two architectures into a
complementary hybrid model. In their approach, vibration
signals from bearings were first converted into time-
frequency representations via Continuous Wavelet
Transform (CWT). These transformed images served as
inputs to a Convolutional Neural Network (CNN), which
extracted discriminative features related to fault
characteristics. The extracted features were then input into a
gcForest classifier for final classification. The model was
validated using bearing fault datasets from both Case
Western Reserve University (CWRU) and Xi’an Jiaotong
University  (XJTU-SY).  Comparative  experiments
demonstrated that the CNN + gcForest combination
significantly outperformed the individual models, offering
superior fault detection accuracy. These findings underscore
the model’s potential applicability in real-world diagnostic
systems by enhancing robustness and classification precision
[14].

Similarly, Li (2024) introduced a novel deep
learning architecture named DPW ATTCNN, specifically
designed to facilitate fast and precise bearing fault diagnosis
in a cost-effective and deployment-friendly manner. To
minimize computational complexity, the model utilizes
Depthwise  Separable  Convolution (DPW), which
significantly reduces the number of trainable parameters
without compromising feature extraction capabilities.
Additionally, the incorporation of an Efficient Channel
Attention (ECA) mechanism enables the model to capture
and emphasize critical inter-channel dependencies, thereby
improving its representational power. To enhance the
model’s  performance across varying operational
environments, Adaptive Batch Normalization (AdaBN) was
employed, allowing effective domain adaptation. The
model’s performance was rigorously evaluated on the Case
Western Reserve University (CWRU) bearing dataset,
achieving an impressive classification accuracy of 99.58%.
Even under high levels of additive noise, the model
preserved over 95% accuracy, and domain transfer
experiments yielded an average recognition rate of 97.35%.
These results affirm DPW ATTCNN’s high robustness and
its capacity for generalization in real-world fault diagnosis
scenarios [15].

Wu et al. (2024) presented a comprehensive
approach to overcome two critical challenges in bearing fault
diagnosis under varying operational environments: class
imbalance and domain distribution divergence. These factors
are known to degrade model generalization and often result
in poor recognition of minority fault categories, thereby
limiting diagnostic reliability. To address this, the authors
developed a novel framework called Iterative Resampling
Deep Decoupling Domain Adaptation (IRDDDA). The
IRDDDA architecture integrates four key modules: a feature
extractor, a domain discriminator, a label predictor, and a
feature resampler, operating within a decoupled two-phase
training paradigm. During the initial phase, domain-invariant
representations are learned from imbalanced datasets across
source and target domains. In the subsequent phase, a
feature-wise resampling strategy is employed to alleviate
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classification bias caused by class imbalance, while the upper
layers of the feature extractor are iteratively refined to
enhance model performance. The efficacy of the model was
assessed using both the publicly available Case Western
Reserve University (CWRU) dataset and experimental data
acquired from the authors’ custom-built bearing test
platform. Empirical results demonstrated that IRDDDA
consistently achieved higher and more balanced
classification accuracy, particularly for underrepresented
fault classes, and delivered robust generalization across
domains. The study underscores the advantage of jointly
addressing data imbalance and domain discrepancy in the
development of reliable fault diagnosis systems [16].

Gu et al. (2022) introduced a novel hybrid
methodology aimed at enhancing the precision of fault
diagnosis in rolling bearings, which serve as essential
components in mechanical manufacturing and transport
systems. The primary objective was to effectively identify
fault-related features from weak and noise-contaminated
signals, particularly in cases involving small-sized datasets.
The proposed method integrates multiple advanced
techniques, including Variational Mode Decomposition
(VMD), Continuous Wavelet Transform (CWT),
Convolutional Neural Networks (CNN), and Support Vector
Machines (SVM). Initially, vibration signals are
preprocessed and decomposed into several Intrinsic Mode
Functions (IMFs) via VMD. These IMFs are then converted
into two-dimensional time-frequency representations using
CWT. A CNN model, designed with carefully optimized
hyperparameters, is employed to learn discriminative
features from these images. Unlike conventional approaches
that rely on Softmax layers for classification, this framework
utilizes an SVM classifier in the final stage to improve
robustness and accuracy. The proposed strategy was
validated using both the Case Western Reserve University
(CWRU) bearing dataset and a spindle fault dataset acquired
from a dedicated test bench. Experimental evaluations
revealed that the method achieved an average accuracy of
99.9% on the CWRU dataset and 90.15% on the spindle fault
dataset. These results demonstrate the superior performance
of the hybrid model over traditional CNN-based and feature
engineering-based methods, confirming its potential in terms
of diagnostic precision and generalization capacity across
different fault scenarios [17].

Huang and Zhao (2024) presented an innovative
deep learning architecture designed to enhance both the
accuracy and efficiency of bearing fault diagnosis, with
particular emphasis on the early identification of weak fault
signals—an essential requirement for ensuring the
dependable operation of rotating machinery. Their proposed
method integrates three fundamental components. Firstly, an
Improved Multi-Scale Feature Fusion Residual Network
(IMSFFRN) is developed, which utilizes convolutional
layers with diverse dilation rates to extract features at
multiple scales. This configuration facilitates the effective
fusion of intermediate representations, thereby enabling the
model to capture more detailed and hierarchical
characteristics  from  vibration  signals.  Secondly,
acknowledging that different diagnostic features contribute
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unevenly to fault classification, the authors incorporated a
Multiple-Winning Consciousness Self-Organizing Map
(MCSOM) competitive mechanism. This layer enhances the
discriminative capability of individual neurons by learning
their sensitivity to particular fault types. Thirdly, to
strengthen the model's generalization ability, a Support
Vector Machine (SVM) is employed during the classification
phase. The performance of the proposed framework was
rigorously evaluated on three benchmark datasets: CWRU,
PU, and SEU, where it achieved exceptional classification
accuracies of 100%, 99.56%, and 100%, respectively—
surpassing several state-of-the-art approaches. Furthermore,
the model maintained high classification reliability under
noisy conditions, highlighting its robustness. These findings
confirm that the multi-scale competitive architecture is
particularly suitable for early-stage fault detection in real-
world industrial environments where signal degradation and
noise are prevalent [18].

Zhang et al. (2024) proposed a robust and noise-
resilient approach to tackle the significant challenges of
condition monitoring and fault diagnosis of rolling
bearings—Kkey components in mechanical systems—under
high-noise  environments commonly encountered in
industrial settings. Recognizing that traditional diagnostic
models often struggle with the degradation of signal quality
due to noise, the authors introduced a novel framework
named Stochastic Resonance-assisted Deep Neural Network
(SRDN). This method embeds the Stochastic Resonance
(SR) mechanism within a Spiking Neural Network (SNN)
architecture to amplify weak and noisy fault signals. By
leveraging the SR effect, the model enhances the signal-to-
noise ratio (SNR) of input signals before classification,
enabling more accurate recognition of subtle fault
characteristics. The SRDN model was tested on the widely
used Case Western Reserve University (CWRU) bearing
dataset, achieving an outstanding classification accuracy of
99.9%. More notably, even under severe noise conditions
such as —8 dB SNR, the model sustained an accuracy
exceeding 92%, indicating exceptional robustness and
generalization. These results suggest that integrating SR
mechanisms into neural network architectures significantly
improves diagnostic performance in noisy environments and
demonstrates high potential for deployment in real-world
fault diagnosis systems where signal clarity cannot be
guaranteed [19].

Han and Jeong (2020) highlighted the broader
implications of bearing fault diagnosis, noting its influence
not only on mechanical reliability but also on production
efficiency and operational strategy. Their study sought to
improve the practical applicability and robustness of deep
learning models by simulating more realistic industrial
conditions. While deep learning methods reported in the
literature often achieve high diagnostic accuracy, these
outcomes are typically derived from idealized, noise-free
datasets collected in controlled simulator environments—
conditions that rarely mirror actual factory settings. To
bridge this gap, the authors augmented the widely used Case
Western Reserve University (CWRU) bearing dataset with
Gaussian noise to emulate the signal distortions commonly
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found in industrial environments. They then proposed a
Weighted Arithmetic Mean CNN Ensemble Model, which
demonstrated  enhanced  classification  performance
compared to both standard CNN and unweighted ensemble
models. Evaluation metrics, including accuracy and F1-
score, confirmed the ensemble model's superiority in
handling noisy and limited data. These results underscore the
importance of robust ensemble strategies for industrial
deployment, and suggest that the proposed method offers a
practical and reliable solution for real-world fault diagnosis
applications under non-ideal conditions [20].

Chen et al. (2023) addressed a critical challenge in
intelligent fault diagnosis: the mismatch of data distributions
resulting from varying operating conditions, which
significantly hinders the performance of diagnostic models
in real-world industrial settings. While conventional transfer
learning techniques offer partial solutions to this issue, they
often neglect the seamless integration of low-dimensional
pre-learned  features  with  high-dimensional  deep
representations, limiting their effectiveness. To resolve this
limitation, the authors introduced a residual convolutional
transfer learning framework guided by slow-varying
features. Initially, Slow Feature Analysis (SFA) was utilized
to extract latent representations that encapsulate the intrinsic
and stable characteristics of the mechanical system. These
features were then passed through a Residual Convolutional
Network to learn deeper abstract representations. A bypass
mechanism was employed to fuse low- and high-level
features, ensuring comprehensive feature integration.
Moreover, to mitigate domain discrepancies between the
source and target data, the Maximum Mean Discrepancy
(MMD) metric was applied in the Reproducing Kernel
Hilbert Space (RKHS) to align distributions effectively. The
framework was validated using the Xi’an Jiaotong
University (XJTU) and Case Western Reserve University
(CWRU) bearing datasets. Experimental outcomes
demonstrated that the proposed method achieved over 99%
classification accuracy across both datasets, confirming its
strong transfer learning capability and resilience under
dynamic operational environments. These findings highlight
the framework's potential for deployment in industrial fault
diagnosis applications involving significant domain shifts
[21].

Gupta et al. (2024) introduced an innovative
diagnostic approach termed the Discriminant Analysis-based
Unimodality Test (DAT), aimed at enhancing the
classification of time series data into unimodal or multimodal
categories. Beyond this primary objective, DAT is also
capable of detecting anomalies, estimating key statistical
parameters, and identifying data skewness. The method is
particularly effective in binary classification scenarios and
demonstrates robust performance across both unimodal and
multimodal datasets. In comparative analyses with
established unimodality tests—specifically the dip test and
the folding test—DAT consistently delivered superior
accuracy and stability. To further validate its applicability,
the authors extended DAT’s functionality to fault detection
tasks by evaluating its performance on the Case Western
Reserve University (CWRU) bearing dataset. Five different
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machine learning classifiers were employed in this
validation, and the method demonstrated exceptional
diagnostic precision, successfully detecting bearing faults as
small as 0.007 inches with a remarkable 99.999% accuracy.
These results underscore DAT’s potential as a powerful tool
for industrial anomaly detection, offering significant
improvements over traditional techniques, particularly in
scenarios where high sensitivity to subtle fault signatures is
required [22].

Hou et al. (2023) introduced a novel deep learning
framework, named Diagnosisformer, which leverages a
multi-feature parallel fusion strategy embedded within a
Transformer-based architecture to improve the performance
of bearing fault diagnosis. Aiming to overcome the
limitations of conventional deep learning models—
particularly their low diagnostic accuracy and limited
robustness—the proposed model employs a structured
approach for enhanced feature representation. Initially, Fast
Fourier Transform (FFT) is used to extract frequency-
domain features from raw vibration signals, followed by
normalization and embedding steps. These processed
features are then input into a parallel fusion encoder capable
of simultaneously capturing both local and global signal
characteristics. The resulting feature representations are
passed through a cross-flipped decoder before reaching the
classification module. The Diagnosisformer model was
validated using two datasets: one collected from a
laboratory-scale rotating machinery test rig and the publicly
available Case Western Reserve University (CWRU) bearing
dataset. The model achieved average classification
accuracies of 99.84% and 99.85% on the respective datasets,
surpassing benchmark methods. These findings affirm the
model’s superior diagnostic accuracy, generalization ability,
and robustness under noisy conditions. The study ultimately
highlights the potential of attention-based Transformer
architectures as a robust and efficient solution for intelligent
fault detection in industrial settings [23].

1. CWRU DATASET

The Case Western Reserve University (CWRU)
bearing dataset has become a benchmark resource in the field
of machine condition monitoring and predictive maintenance
research. Its structured composition, high-fidelity vibration
measurements captured under well-controlled experimental
conditions, and detailed categorization of fault types and
severities make it a widely adopted dataset for evaluating
diagnostic algorithms. The dataset was generated using a
custom-designed bearing fault test rig located in the
Electrical Engineering Laboratory at Case Western Reserve
University. As shown in Figure 3.1, the experimental system
consists of a 2-hp induction motor, a torque transducer, a
dynamometer, and two accelerometers strategically placed at
the motor’s drive end and fan end. Vibration data were
typically recorded at high sampling rates of 12 kHz and 48
kHz, allowing for fine-resolution signal analysis suitable for
fault detection tasks [24].
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Figure 3. 1 CWRU Bemlatform

The bearing defects in the CWRU dataset were
intentionally  induced using the Electro-Discharge
Machining (EDM) technique to simulate real-world fault
scenarios in a controlled environment. These defects are
systematically categorized into four primary classes: Normal
(No Fault), Inner Race Faults, Outer Race Faults, and Ball
(Rolling Element) Faults. To examine the effects of fault
severity on diagnostic accuracy, each fault category was
fabricated in three distinct sizes, corresponding to diameters
of 0.007 inches, 0.014 inches, and 0.021 inches. This
gradation of defect sizes enables comprehensive analysis of
model sensitivity to varying levels of damage [25].

As shown in Figure 3.2, there are significant differences
in vibration amplitude and waveform between the healthy
condition and various fault types in the dataset (e.g., inner
race, outer race, and rolling element faults). For instance, the
ball fault in file B021_1_ 227 is characterized by more
irregular and abrupt amplitude changes over time;
meanwhile, in IR021_1 214, the inner race fault presents
with prominent vibration peaks. On the other hand, the
OR021_6_1 239 outer race fault scenario exhibits more
periodic fault-induced impacts in the signal. In contrast, the
healthy condition signal in Time_Normal_1 098 displays a
low-amplitude and more stable pattern.

The CWRU bearing dataset encompasses a total of 161
individual datasets, systematically grouped according to
fault location and signal sampling frequency. These groups
include normal (healthy) condition, 12kHz drive-end fault,
48kHz drive-end fault, and 12kHz fan-end fault scenarios.
Each category contains three primary fault types: inner race
faults (IF), ball (rolling element) faults (BF), and outer race
faults (OF). Vibration signals were acquired under varying
operational conditions, with motor speeds ranging from 1720
to 1797 revolutions per minute (RPM) and at load levels of
0, 1, 2, and 3 horsepower (HP). Furthermore, measurements
were taken from multiple sensor placements on the
experimental  platform, including Centered (6:00
orientation), Orthogonal (3:00 orientation), and Opposite
(12:00 orientation) positions, providing diverse perspectives
of fault-induced signal characteristics [26].

The CWRU dataset is widely used for benchmarking the
accuracy of machine learning and deep learning models.
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Figure 3. 2 Some example time-domain vibration signals from the CWRU
bearing dataset.

Due to its high sampling rate and diversity in motor loads
and fault sizes, it enables the development of classification,
transfer learning, data augmentation, signal processing, and
predictive maintenance algorithms. As one of the most cited
open datasets in the field of predictive maintenance, the
CWRU bearing dataset holds significant importance in both
academic and practical research. It serves as a fundamental
resource for deep learning-based bearing fault diagnosis
studies, both at the initial stage and for advanced model
comparisons.

IV. METHOD

A. SUPPORT VECTOR MACHINES (SVM)

Support Vector Machines (SVM) are a supervised
learning-based, powerful classification method with high
generalization capability. The main objective of SVM is to
define an optimal hyperplane that separates examples
belonging to different classes with the maximum margin.
This method operates on a training dataset

D={(x,y)}, x€R"as input vectors and

Y, =e{-1L+1}as class labels. In linearly separable

datasets, this hyperplane is represented by the following
decision function:

f () =(w,x)+b Q)

Here, www is the normal vector to the hyperplane, and bbb
is the bias term. To maximize the margin width, SVM solves
the following optimization problem:

Tv,ibn%”W”z subject to Y (WTXi +b)21, Vi (2

Since real-world data are often not linearly separable, the
model is converted into a soft-margin form. In this case,
slack variables &i that allow for classification errors and a
regularization parameter C are introduced, leading to the
following optimization formulation:
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TJQ%||W||2+ciNzlgi Subject to
y(Wx +b)>1-&, £>0 (3

The hyperparameter C provides a balance between model
complexity and classification errors. Smaller values of C
allow for a wider margin, while larger values aim to reduce
classification errors.

A significant advantage of SVM is its capacity to solve non-
linear classification problems. For this purpose, input data
are transformed into a higher-dimensional feature space
using kernel functions, making them linearly separable in
that space. The kernel function enables the measurement of
similarity without explicitly computing the transformation

¢ . One of the most widely used kernel functions is the
Radial Basis Function (RBF) kernel, defined as:

K(Xi’yi)=exp(_7uxi_XjHZ)’ 7:2i_2 (4)

This kernel function is particularly well-suited for modeling
non-linear patterns. During training, only the data points
closest to the margin—called support vectors—determine
the decision boundary. As a result, SVM offers a sparse
model structure that is resistant to overfitting, even in high-
dimensional datasets [27,28].

B. RANDOM FOREST (RF) METHOD

Random Forest (RF) is one of the ensemble learning
algorithms developed by Leo Breiman, consisting of a
combination of multiple decision trees. This method, which
can be applied to both classification and regression problems,
aims to reduce the bias of individual decision trees and
enhance the model’s generalization ability by training
multiple trees independently and aggregating their results.
The fundamental working principle of the RF algorithm is to
construct each tree using bootstrap sampling of the training
dataset and to perform node splitting based on a randomly
selected subset of features. These strategies reduce the
correlation between trees and significantly lower the risk of
overfitting by increasing the diversity within the ensemble.
For classification problems, the RF algorithm performs
majority voting based on the predictions obtained from each
decision tree. Mathematically, this process is carried out over

T decision tree classifiers such as h, (x),h,(X),.....n; (x),

g =modegh, (), b, (x)......h, (0} (5)

It is expressed as such, where xxx represents the input vector,
and the output of the RF model is represented by the result
of the voting process. There are two main hyperparameters
that significantly influence the performance of the RF
algorithm:

» n_estimators (T): The number of trees in the forest.
Increasing the number of trees generally results in more
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stable outcomes, but also increases computational cost.
» max_features (m): The number of features considered
when splitting a node. This parameter helps reduce
correlation between trees and improves the generalization
capability of the model.

During the construction of each decision tree, impurity
measures such as Gini impurity or entropy are commonly
used for node splitting. The Gini impurity is calculated as
follows:

Gini(D):l—i p2 (6)

Here, D denotes the dataset at a given node, C represents
the number of classes, and Pi is the proportion of samples
belonging to the i*" class. The entropy criterion is defined
as:

Entropy(D) = —Z plog,(p) (7)

The RF algorithm stands out with its robustness against
overfitting, effective performance on high-dimensional
datasets, and ability to handle missing data. Moreover, it
provides interpretability through feature importance
rankings. Thanks to these advantages, RF is widely used in
both classification and regression tasks. In recent years, RF-
based approaches have demonstrated successful results in
various application domains such as financial modeling,
environmental ~ systems, and subsurface resource
classification, as highlighted in the literature [29,30].

C. NAIVE BAYES (NB) ALGORITHM

The Naive Bayes (NB) algorithm is a supervised
classification method based on probability theory and rooted
in Bayes' Theorem. The core assumption of this method is
that all features used in classification are conditionally
independent of each other. This assumption increases the
simplicity of the model and reduces computational time;
however, in some cases, it may also affect classification
accuracy.

The Naive Bayes algorithm, for each class, relies on Bayes'
Theorem to determine to which class the observed features

belong when a feature vector X = (X, Xy, .cvrvee. X ) is

given:

P(X\C,).P(C,)
P(X)

P(C\X)= 8

Here:

P(C, \ X): Itis the posterior probability of class Ck given
the observation set X.

P(X\C,): Itisthe likelihood of observing X given class
Ck.

P(C,) : Itisthe prior probability of class Ck.

P(X) “ltis the marginal probability of the observed X.

Naive Bayes is called “naive” because it assumes that the
features are conditionally independent of each other. Thanks
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to this assumption, the conditional probability can be
decomposed as follows:

P(X\Ck):HP(Xi\Ck) )
i=1
In this case, the classification decision is made by selecting
the class with the highest probability, as shown below:

n
C =argmax P(C)JIP(X\C,) (10)
K i=1
The Naive Bayes (NB) algorithm offers several advantages,
including short training time, high accuracy on small-sized
datasets, and the ability to perform well even in high-
dimensional feature spaces. Among its strengths are
computational simplicity, fast model training, and low
memory usage. However, its most significant drawback is
the assumption of feature independence, which is not always
realistic. As a result, the classification accuracy of the model
may decline in some cases. Nonetheless, in certain fields—
such as text mining and medical data analysis—this
assumption does not pose a major problem [31-33].

D. XGBOOST ALGORITHM (EXTREME GRADIENT
BOOSTING)

XGBoost (eXtreme Gradient Boosting) is a powerful

ensemble learning algorithm based on decision trees,
developed by Chen and Guestrin. It is a robust gradient-
boosted decision tree (GBDT) method that constructs models
in a sequential manner, where each new tree is optimized to
correct the errors made by the previous trees, aiming to
minimize the loss function. Compared to traditional GBDT
approaches, XGBoost offers higher generalization
performance, faster processing speed, and greater model
flexibility.
XGBoost works by building decision trees sequentially, with
each new tree focusing on minimizing the residual errors
from the previous ones. The overall objective function
optimized by the model can be expressed as follows:

L@ =210 90+ X0 (D

Here, 1(y;, y,) represents the loss function that measures

the prediction error (e.g., log loss or squared error), while
Q(f,) is the regularization term that controls the

complexity of the model. This regularization term is
formulated as follows:

1
Q(f) =T + E/IHWMZ (12)

Here, T represents the number of leaves in the tree, w denotes
the leaf scores, and y and A are the regularization coefficients
applied to model complexity and weight magnitude,
respectively. This structure helps prevent overfitting and
enhances the generalization capability of the model.

The performance of the XGBoost model heavily depends on
the proper tuning of its hyperparameters. In this study, the
following key hyperparameters were optimized for model
configuration:
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e n_estimators: The total number of decision trees
to be constructed. More trees generally lead to
better generalization but increase computational
cost.

e max_depth: The maximum depth of each tree.
Greater depth can create complex decision
boundaries but may also lead to overfitting.

e learning_rate: The learning rate; it limits the
contribution of each individual tree to the final
model.

e subsample and colsample_bytree: The
subsampling ratios for data and features,
respectively; used to reduce overfitting and
increase diversity among trees.

These hyperparameters were optimized using grid search
and cross-validation methods [34-35].

E. PERFORMANCE METRICS

In classification systems developed using machine
learning and artificial intelligence techniques, performance
metrics play a critical role in quantitatively evaluating a
model’s predictive capabilities. These metrics offer a
comprehensive understanding of the model’s general
performance as well as its ability to correctly classify
individual categories. Among the most commonly employed
and informative evaluation measures are accuracy, precision,
recall, and F1-score. Each of these metrics captures different
aspects of classification quality and is elaborated upon in the
following sections.

Accuracy

Accuracy refers to the proportion of correctly classified
instances among the total number of predictions made by the
model. While it offers a straightforward and easily
interpretable measure of overall performance, it may not
always reflect true effectiveness—particularly in scenarios
involving imbalanced class distributions. For example, a
model that consistently misclassifies minority class samples
might still report high accuracy, thereby providing an overly
optimistic evaluation of its classification performance.

TP+TN

Accuracy= 13)
TP +TN +FP +FN

Precision

Precision quantifies the accuracy of positive predictions by
calculating the ratio of true positives to the total number of
instances classified as positive by the model. This metric is
particularly critical in domains where the consequences of
false positives are significant—such as in industrial fault
detection or medical diagnostics. A high precision value
signifies that the model tends to be cautious in assigning
positive labels, thereby ensuring that most identified
positives genuinely belong to the target class.

TP
Precision=————  (14)
TP+FP
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Recall

Recall represents the percentage of true positive instances
that the model successfully detects among all actual positive
cases. This metric is especially vital in scenarios where
missing a positive case—i.e., generating a false negative—
can have serious consequences, such as in safety-critical
systems or medical diagnoses. A high recall score reflects the
model’s strong ability to capture relevant positive examples,
ensuring minimal oversight in identifying the target
condition or class.

Recall= _TP (a5)
TP+FN

F1 Score

The F1 score serves as the harmonic mean of precision and
recall, offering a balanced measure that considers both
metrics simultaneously. It is especially advantageous in
scenarios with imbalanced datasets or when it is equally
important to minimize both false positives and false
negatives. A high F1 score signifies that the model performs
well in accurately identifying positive instances while also
maintaining a low rate of misclassification.

F1 Score= 2X Pr ec_ls_lon xRecall (16)
Precision+Recall
Taken together, these metrics provide a more detailed and
reliable evaluation of a classification model’s overall
performance and its ability to make accurate predictions
across different classes [36-37].

V. FINDINGS

In this section, the performance of different machine
learning algorithms used for bearing fault classification is
evaluated. Based on signals obtained from the Case Western
Reserve University (CWRU) bearing dataset, the Random
Forest, XGBoost, SVM, and Naive Bayes algorithms were
applied. Each model was analyzed in detail in terms of
accuracy, precision, recall, and Fl1-score metrics.
Additionally, performance comparisons were visualized and
evaluated based on signal type and feature type. Assessing
model performance not only at the algorithm level but also
in terms of feature types (mean, max, min, sd, rms, skewness,
kurtosis, crest, and form) is of great importance in identifying
which statistical features are more decisive in fault diagnosis.
The classification success rates obtained using the four
machine learning methods are presented in Table 5.1.

TABLE 5. 1 PERFORMANCE COMPARISON OF
CLASSIFICATION MODELS

Model Accuracy | precision | recall fl-score
Random Forest | 0.9573 0.96 0.96 0.96
SVM 0.9373 0.94 0.94 0.94
Naive Bayes 0.9240 0.93 0.92 0.92
XGBoost 0.9573 0.96 0.96 0.96

As shown in Table 5.1, based on the performance results, the
most successful classification models are Random Forest and
XGBoost. Both models stand out with an accuracy of 95.73%
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and precision, recall, and F1-score values of 96%. These
results indicate that the models demonstrate high
performance in terms of making correct classifications
overall.

The Support Vector Machine (SVM) algorithm, with an
accuracy rate of 93.73%, emerges as a stable and reliable
alternative. With each of its precision, recall, and F1-score
values at 94%, SVM shows a strong capability to distinguish
between classes and possesses a high generalization ability.
In contrast, the Naive Bayes model performs lower compared
to the other algorithms. Although it achieved 92.40%
accuracy, along with 93% precision and 92% recall and F1-
score, the model still demonstrates acceptable performance
in basic classification tasks. However, due to its conditional
independence assumption, this model may have limitations,
especially when dealing with complex and high-dimensional
datasets.

In conclusion, the evaluation results suggest that the Random
Forest and XGBoost models provided the highest
classification performance on the dataset used in this study
and can be considered the most suitable methods for
accurately diagnosing bearing faults.

The bar chart in Figure 5.1 below presents a comparison of
the four classification models (Random Forest, SVM, Naive
Bayes, and XGBoost) in terms of the four key performance
metrics: accuracy, precision, recall, and F1-score. The graph
provides a visual comparison of each model's performance
level across each metric.

Performance Comparison of Classification Models

0,97

0,96

0,94
0,93
0,92
0,91

09
Accuracy precision recall f1-score

Random Forest sVM Naive Bayes XGBoost

Figure 5. 1 Performance Comparison of Random Forest, SVM, Naive
Bayes, and XGBoost Models

In Table 5.1, the overall performance of different
classification algorithms was compared, and it was observed
that the Random Forest and XGBoost models achieved the
highest accuracy. This evaluation demonstrated the overall
accuracy and classification capability of the models across
the entire dataset. In Table 5.2, this general assessment is
further detailed by presenting the performance metrics of the
Random Forest model for each specific fault type (e.g.,
IR_007_1, Ball_021_1).

As shown in Table 5.2, the Random Forest model achieved
100% accuracy, precision, recall, and F1-score for the signals
IR_007_1, IR 014 1, IR 021 1, and Normal 1. These
results indicate that the model was able to classify these
signal types almost flawlessly. In particular, the 100% recall
rate for the "normal" signal suggests that the model is highly
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successful in accurately identifying the healthy (non-faulty)

condition.

TABLE 5. 2 SIGNAL-BASED CLASSIFICATION PERFORMANCE OF

THE RANDOM FOREST MODEL

Signal Accuracy | precision | recall fl-score
Ball_007_1 0.96 0.97 0.96 0.97
Ball_014 1 0.88 0.92 0.88 0.90
Ball_021_1 0.8667 0.90 0.87 0.88
IR_007_1 1.00 1.00 1.00 1.00
IR_014_1 1.00 1.00 1.00 1.00
IR_021_1 1.00 1.00 1.00 1.00
Normal_1 1.00 1.00 1.00 1.00
OR_007_6_1 | 1.00 0.99 1.00 0.99
OR 014 6 1 | 0.8933 0.84 0.89 0.86
OR 021 6 1 | 0,9867 0.97 0.99 0.98

However, performance drops were observed for signals
such as Ball_014 1, Ball_021_1, and OR_014 6_1. For
example, in the Ball_021_1 class, the accuracy drops to
86.67%, and there are discrepancies between precision and
recall values. This implies that the model misclassified some
samples in these classes, confusing them with other fault
types. Overall, while the model performs with very high
accuracy on "inner race” (IR) and "outer race" (OR) faults, it
shows variable performance on "ball” type faults depending
on the signal characteristics.

Figure 5.2 below illustrates the classification accuracy
rates obtained by the model for each bearing fault class. The
model reaches 100% accuracy for IR_007_1, IR_014 1,
IR_021_1, and Normal_1, demonstrating highly effective
classification for these classes.

Success Rate by Class
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S ® o B
00 5] =] w =
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R |
v I

&

Bearing Fault Classes

Figure 5. 2 Classification Accuracy Rates for Each Fault Signal Class

Confusion matrices are provided to illustrate the class-
wise performance of different models. These matrices clearly
reveal in which classes the models make more errors and in
which they perform strongly. Figure 5.3 presents the
confusion matrices for the models used.

As shown in Figure 5.3, the Random Forest and XGBoost
models distinguish IR and OR signals with high accuracy,
while the Naive Bayes model demonstrates comparatively
lower performance for the Ball class than the other models.
As shown in Table 5.3, the results indicate that the highest
classification performance was achieved using the standard
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deviation (sd) feature. This feature demonstrated superior
performance in terms of both accuracy and F1-score
compared to the other features.

g 8 & a2 g 8 &
edicted edicted

Figure 5. 3 Comparison of Confusion Matrices for Four Different
Classification Models

An important contribution of this study is the performance
analysis conducted at the feature level. Table 3 below
presents the classification performance of fundamental
statistical features used in bearing fault diagnosis, evaluated
using the Random Forest algorithm. Each feature was
individually tested in the model, and its performance was
measured using accuracy, precision, recall, and F1-score
metrics. The results are provided in Table 5.3.

TABLE 5. 3 FEATURE-BASED PERFORMANCE EVALUATION OF
RANDOM FOREST CLASSIFICATION

Feature Accuracy | precision recall fl-score
max 0.578261 | 0.574589 | 0.578261 | 0.575498
min 0.565217 | 0.551416 | 0.565217 | 0.556578
mean 0.285507 | 0.284134 | 0.285507 | 0.283265
sd 0.628986 | 0.634502 | 0.628986 | 0.629776
rms 0.615942 | 0.618286 | 0.615942 | 0.616016
skewness | 0.24058 0.248969 | 0.24058 0.24235
kurtosis 0.386957 | 0.382938 | 0.386957 | 0.380831
Crest 0.275362 | 0.270234 | 0.275362 | 0.271135
form 0.457971 | 0.461526 | 0.457971 | 0.457787

ISSN: 2147-284X

Similarly, the Root Mean Square (rms) feature also
yielded high performance, highlighting that the overall
energy level of the signal plays a significant role in fault
classification. On the other hand, features such as skewness
and mean provided the lowest classification performance.
This suggests that these features may be insufficient for
distinguishing bearing faults and do not offer meaningful
discrimination when used alone. Additionally, features like
kurtosis and form factor were observed to exhibit moderate
performance levels.

Figure 5.4 below presents the feature importance rankings in
the classification processes of the RF and XGBoost models.
This comparative analysis is particularly significant from a
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computational cost perspective, as it enables the
identification of the most effective features that enhance
model performance.

XGBoost - Feature Importances

Importance (%)
w 5 & 8
mean
ms
crest

kurtosis
skewness

Features

Random Forest - Feature Importances

kurtosis
skewness

Features.

Figure 5. 4 Comparison of Feature Importance Rankings According to
XGBoost and Random Forest Models

A common finding in both the RF and XGBoost models is
that the standard deviation (sd) feature holds the highest
importance score. This indicates that the "sd" feature, which
represents the dispersion and variance in the data, is a highly
decisive factor in distinguishing bearing faults. In the
XGBoost model, features such as kurtosis, mean, max, and
form exhibit high importance scores, whereas features like
skewness, crest, rms, and min contribute relatively less.
Notably, skewness is considered the least contributing
feature by XGBoost. In the Random Forest model, following
sd in importance are rms, mean, kurtosis, and min. Similarly,
skewness and crest are identified as the least important
features in this model as well.

VI. DISCUSSION AND CONCLUSION

In this study, a comparative analysis of different
machine learning algorithms for the diagnosis of bearing
faults was conducted. As emphasized in the introduction,
bearings are critical components for the continuity and safety
of mechanical systems. Failure to detect bearing faults in a
timely manner can lead to reduced operational efficiency and
significant economic losses. To overcome the limitations of
traditional signal processing-based methods, machine
learning and deep learning techniques have gained increasing
importance in recent years. The study utilized the Case
Western Reserve University (CWRU) dataset and applied
four classification algorithms: Random Forest (RF), Support
Vector Machine (SVM), Naive Bayes (NB), and XGBoost.
The findings revealed that Random Forest and XGBoost
achieved the best performance, each with an accuracy of
95.73% and precision, recall, and F1-score values of 96%.
These results indicate that both algorithms possess high
generalization capability and strong discriminative power for
fault classification. The SVM algorithm demonstrated stable
performance with an accuracy of 93.73%, while the Naive
Bayes algorithm performed comparatively worse, primarily
due to its assumption of conditional independence between
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features. The results also showed notable differences in
model performance depending on the fault type. Inner race
(IR) and outer race (OR) faults could be classified with up to
100% accuracy, whereas ball-type faults exhibited decreased
success rates depending on signal strength. This suggests that
the signal characteristics of certain fault types are more easily
distinguishable by classification models.

Moreover, the feature-level analysis highlighted
that standard deviation (sd) and root mean square (RMS) are
the most decisive features in bearing fault diagnosis. In
contrast, features such as mean, skewness, and crest
contributed less to classification performance. The feature
importance rankings produced by both RF and XGBoost
models supported these findings, confirming that features
based on signal variance play a leading role in fault
classification. In conclusion, this study not only
demonstrated the effectiveness of various machine learning
algorithms in bearing fault diagnosis but also systematically
analyzed which signal features are more influential in the
classification process. Ensemble learning-based models like
Random Forest and XGBoost emerged as the most suitable
methods due to their robust generalization capabilities and
feature selection strengths. Future work may focus on
hybridizing these models with deep learning architectures,
testing on different datasets, and integrating into real-time
predictive maintenance systems to further enhance the
efficiency of bearing health monitoring.
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