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Abstract: The Hybrid Energy Storage System signifies a substantial advancement in the domain of 

energy storage technology, particularly within the context of electric vehicles. The system integrates 

batteries and supercapacitors, offering a combination that is regarded as one of the most crucial 

technologies in this domain. The primary advantage of Hybrid Energy Storage System lies in its ability 
to provide high efficiency in terms of storage capacity and the immediate availability of power when it 

is required. The estimation of the state of charge is of paramount importance, given its impact on 
enhancing the performance, efficiency, and safety of vehicles. The estimation of the state of charge is a 

considerable challenge due to the variable charging and discharging currents present in both the battery 

and the supercapacitor. In response to this challenge, researchers have developed numerous methods 
to estimate the state of charge. The present study proposes a novel approach to charge state estimation, 

underpinned by a sophisticated algorithm that aims to minimize complexity and enhance accuracy. The 
K-Nearest Neighbors algorithm is utilized in this study due to its simplicity and interpretability, 

rendering it well-suited for prediction tasks in complex and non-linear systems, such as those found in 

battery and supercapacitor technologies. The experimental results demonstrated an average absolute 

error of 0.0021 and a mean square error of 0.0031. These figures are indicative of the model's high 

degree of accuracy and its capacity to closely mirror the true values. The supercapacitor also 
demonstrates robust performance. The correlation coefficient was measured at 0.9864. This finding 

suggests a strong correlation between the independent variables and the dependent variable, as well as 
a high degree of model fidelity. This high correlation indicates that the model predictions are consistent 

with the true values. The proposed study calculated the mean absolute error to be 0.0075 and the root 

mean square error to be 0.0835. These findings suggest that the model predictions are in close proximity 

to the true values, thereby demonstrating the model's overall high performance. 

Keywords: KNN neural network, Electric vehicle, hybrid energy storage systems, lithium-ion batteries, 

supercapacitors, state of charge. 
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1. Introduction 

In the context of international forums dedicated to the preservation of our planet, the identification 

of solutions to mitigate global warming has emerged as a pivotal agenda item. A pivotal solution under 

consideration is the increased reliance on electric vehicles, which are regarded as a more 

environmentally sustainable option when compared with diesel-powered vehicles in the land 

transportation sector. This sector is recognized as a primary contributor to climate change, accounting 

for approximately 23% of total harmful emissions [1-3]. Nevertheless, concerns regarding the viability 

of electric vehicles (EVs) as a viable public transportation solution persist. These concerns encompass 

economic factors and the limited range of EV batteries, which is a salient issue given its impact on the 
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lifespan of the batteries. The maximum battery capacity is pivotal in determining the driving range of 

the electric vehicle. However, enhancing the driving range necessitates an increase in battery capacity, 

which, in turn, increases vehicle prices and the size of the battery [6].Despite the utilization of lithium 

batteries in electric vehicles, which are characterized by their high energy, relatively low cost per watt-

hour, and environmental friendliness [7], their power density remains inadequate to satisfy the maximum 

energy demand during acceleration. This deficiency, when compounded by the consequences of sudden 

changes, results in elevated battery temperatures, which, in turn, diminishes the battery's lifespan and 

performance efficiency [8]. The aforementioned factors have resulted in the advent of the hybrid energy 

storage system (HESS) [9-10], which incorporates lithium batteries and supercapacitors, representing a 

significant advancement in this domain [11-12].Furthermore, hybrid renewable energy systems offer a 

dynamic solution to the challenge of achieving sustainable electricity generation by seamlessly 

integrating hydroelectric power, geothermal, wind turbines and solar energy conversion systems [13-

15]. 

In HESS, the battery and the capacitor perform complementary functions, each exhibiting its own 

unique characteristics. Supercapacitors exhibit superior characteristics in comparison to conventional 

batteries, including higher power density, enhanced performance efficiency, extended cycle life, 

expedited charging speed, and a broader temperature range. However, they are also accompanied by 

lower power density and discharge rate. The implementation of a HESS system, characterized by its 

enhanced energy efficiency, reduced voltage, and elevated cost per watt-hour [16-17], is poised to 

enhance the vehicle's acceleration, augment its driving range, and mitigate the impact on battery 

modules and weight. This integration is projected to reduce the overall cost of the vehicle, thereby 

enhancing its economic viability. The life cycle of the battery has been shown to be an environmentally 

friendly system [18]. In order to facilitate the operation of the HESS system with optimal capacity and 

efficiency, this article proposes a contemporary method for estimating the state of charge (SoC). This 

technology is of paramount importance in enhancing the dynamic performance of electric vehicles, 

particularly in anticipation of the anticipated widespread adoption of HESS [19-20]. The accurate 

estimation of the SOC is pivotal in optimizing energy management through effective utilization of the 

battery and supercapacitor capacity. This, in turn, mitigates the deleterious effects of excessive charging 

and discharging, thereby extending the lifespan of the battery and ensuring the sustainability of the 

HESS system during the operational period. It is evident that the implementation of this system will 

result in enhanced safety measures, as the inaccurate estimation of temperature can precipitate a 

heightened risk of thermal runaway, in addition to the potential for conflagrations or detonations. These 

factors will have a detrimental effect on the reliability of electric vehicles and will serve to reduce their 

cost. Consequently, this field has become increasingly prominent on the global stage [21-22]. 

In the domain of research, a plethora of methodologies have been proposed for the estimation of 

the SoC. These include the Coulomb calculation method, the Kalman filter and the voltage method. 

Despite the success of these methods, there are many disadvantages to each. For instance, the Coulomb 

calculation method relies on the calculation of charges to estimate SOC by multiplying the current by 

the time the charge takes to move. This method is regarded as straightforward and uncomplicated to 

implement; however, it is vulnerable to cumulative errors and imprecise calculations that frequently 

arise from fluctuations in temperature and capacity. Consequently, it is deemed inappropriate for 

sophisticated applications, such as electric vehicles [23]. Recently, several enhanced methodologies for 

the Coulomb method have been proposed, some of which are predicated on recalibrating the maximum 

variable releasable capacity of the battery during operation. In this context, SoC is defined as the 

percentage of the releasable capacity in comparison to the rated capacity of the battery. The employment 

of this algorithm will facilitate a more accurate and reliable estimation of SoC. This approach was 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 10, Number 2, 2025 

Doi: 10.55088/ijesg.1716660 

 

 60 

developed to address the shortcomings of the traditional coulomb calculation method. The algorithm is 

regarded as straightforward and efficacious in its implementation, with a wide range of devices, 

including electric cars, being compatible with its application. It exhibits a minimal estimation error of 

1%, a figure that is noteworthy in the field [24]. The voltage method is predicated on the premise that 

the SoC can be estimated through the measurement of the open circuit voltage (OCV). The relationship 

between SoC and OCV is a linear relationship that is easily implemented, which has contributed to the 

overcoming of uncertainty in estimating the value of SoC and reducing the resulting cumulative errors. 

Concerning the imprecision of sensors. Notwithstanding the aforementioned advantages, it is important 

to note that estimating SoC is not without its potential disadvantages, primarily due to its sensitivity to 

temperature and the dynamic nature of battery life. In order to achieve this objective, three distinct 

strategies were put forward with the intention of reconstructing the OCV to estimate the SoC. These 

strategies comprised the utilization of the recursive least squares (RLS) algorithm, the employment of 

the extended Kalman filter (EKF) as a control for the estimation condition, and the gradual 

reconstruction of the OCV curve from high SoC to low SoC. In the course of the offloading process, it 

is imperative to achieve a substantial enhancement in the accuracy of the SoC [25]. The Kalman filter 

(KF) is an algorithm that operates in two stages: the prediction stage and the correction stage. It employs 

a reliable mathematical model to describe the dynamic voltage behavior of the system under different 

load conditions. This method is regarded as reliable, but it is known to consume a significant amount of 

computation time. Consequently, the extended Kalman filter (EKF) and the scented Kalman filter (UKF) 

were utilized in conjunction with the conventional Kalman filter in complex nonlinear systems. This 

method is considered appropriate for applications where high estimation accuracy is imperative, with 

an estimated error margin of only 1% being a key strength [26].However, it should be noted that the 

aforementioned methods generally exhibit computational flaws arising from modified operating 

conditions. Consequently, researchers have proposed data-driven state-of-charge estimation methods as 

a solution. The efficacy of these methodologies is contingent upon the availability of key parameter 

data, including current, voltage, and temperature, with the potential to yield precise estimations in a 

reduced development timeframe. However, it should be noted that these methods necessitate substantial 

data volumes for their implementation. It is possible to circumvent the disadvantages that have been 

observed in the aforementioned models. In their paper, E. Chemali and his colleagues set out a 

methodology for the accurate estimation of the state of charge of lithium-ion batteries. This methodology 

employs a recurrent neural network (RNN) with long short-term memory (LSTM). The method 

demonstrated a low mean absolute error (MAE) of 0.573% at a constant ambient temperature. Another 

study adopted a novel approach by employing deep feedforward neural networks (DNNs). This study 

attained a mean absolute error (MAE) of 1.10% and 2.17% for a range of data and temperature 

variations. Consequently, the neural network algorithm is regarded as a novel approach for estimating 

the SOC based on deep learning for the super/lithium-ion battery in electric vehicles. These models are 

regarded as optimal for predicting complex and non-invasive systems. Linear ones, including batteries 

and supercapacitors, are also employed [27]. In the present study, the K-Nearest Neighbors (KNN) 

algorithm will be utilized. This algorithm is regarded as straightforward to implement and comprehend; 

however, it is also robust and does not presuppose any assumptions concerning the distribution of the 

underlying data. The work of the system is dependent on a number of stages, including the training stage 

and the prediction stages (classification and transformation) [28]. The primary contribution of this study 

is the development of an estimation model for the SOC of a battery/supercapacitor system, with the 

objective of reducing complexity and achieving a minimal estimation error. Furthermore, the study aims 

to ascertain the practical application of this model in electric vehicles [29-30]. The proposed model was 

simulated in a MATLAB environment, with a lithium battery and a super capacitor connected in parallel. 
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The values for the HESS system are obtained, stored, and subsequently utilized in the proposed K-

Nearest Neighbours (KNN) model [31-32]. The contributions of this paper can be enumerated as 

follows: 

- The model for estimating the SoC for the HESS system based on the KNN algorithm has been 

presented in this study. This model offered a straightforward and efficient solution, characterized by its 

minimal errors and complexity. It was instrumental in analyzing a substantial volume of data, thereby 

facilitating the generation of precise estimates regarding the state of charge. 

-The KNN approach was utilized for the first time in the performance evaluation of the HESS 

system, yielding results with minimal error rates. 

-A comparison was made between the present method and traditional methods for estimating the 

state of charge. The KNN algorithm has been demonstrated to provide accuracy in evaluation and 

response, and work on developing this algorithm will be useful in the early detection of potential 

problems in the HESS system. Consequently, reliance on KNN can be regarded as a predictive and 

analytical instrument in future applications. 

2. Proposed System 

As illustrated in Figure 1, the proposed system uses a HESS [29]. In this configuration, voltage 

and current data are collected and analyzed. The data are then characterised and evaluated. The KNN 

model is then trained on the data and its performance evaluated. If performance is deemed satisfactory, 

an SoC estimate is provided. If not, the data preparation phase is repeated. 

 

 

Figure 1. Flowchart of the proposed SoC estimation using KNN for HESS 

 

Figure 1 shows the model for estimating the SoC. The actual voltage and current data collected 

from the battery and supercapacitor during charging and discharging are used separately in Step 1. These 
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data are then used as input variables for the model. In step 2, the data are prepared and divided into 

training and testing sets. Further properties are then explored and important patterns are transformed 

into the model in step 3. The training sets are then used to train the KNN model, determining the number 

of nearest neighbours in step (4). In step 5, future battery and supercapacitor states are classified. The 

model's performance is evaluated using metrics such as precision and recall in the final step. If the 

performance evaluation shows that the performance is acceptable, the SOC estimate for the system is 

approved and the process is completed. Otherwise, we return to the data exploration and preparation 

phase. Additionally, a study of the actual system components and the SOC estimation method using 

KNN has been conducted. The physical components of the system and the method of estimating SOC 

using KNN have been reviewed. 

A hybrid energy storage system combines two elements to effectively store energy. These 

elements may be physical, chemical or electromagnetic energy devices. Among the most advanced 

energy storage technologies are lithium batteries and supercapacitors. Batteries have high energy density 

and capacity, as well as low self-discharge, so they are used to store energy over long periods. However, 

they have a low voltage, and their performance deteriorates after several charging and discharging 

cycles. In contrast, the capacitor has a high-power density and a longer cycle life than a battery and is 

therefore used to improve overall performance by providing immediate power in cases of sudden 

demand. However, it has a low energy density and a high self-discharge rate, meaning the supercapacitor 

cannot be used as the main energy storage device. The HESS system was developed to address the 

weaknesses of these two components and combine their advantages. It is a typical and effective solution 

for energy management, providing high energy capacity and density. The aim of implementing an 

effective HESS system is to extend battery life and reduce unnecessary charging and discharging cycles, 

while also considering battery size to reduce mass and consumption. This system will be commonly 

used in electric vehicles and renewable energy applications. There are several ways to connect the 

battery and capacitor. In this research, the two elements are connected in parallel, with each connected 

to a boost converter with the required load. Accurately estimating the SoC is important for improving 

the system’s performance and ensuring its efficient and effective sustainability. The SoC generally refers 

to the current percentage of charge in the battery or capacitor (Q(t)), compared to its nominal capacity 

(Q(n)). Nominal capacity indicates the maximum charge that an item can store. This is indicated by the 

working Equation in (1). 

SOC(t) =
Q(t)

Q(n)
                       (1) 

 

A battery is a rechargeable energy storage device that converts chemical energy into electrical 

energy. One of the most popular types of battery in recent years is the lithium battery, which has 

transformed portable and stationary energy applications and is primarily used in electric vehicles and 

renewable energy systems. The benefits of lithium batteries are clear: they have high specific energy 

and endurance capabilities, a long cycle and shelf life, and high capacity. However, accurately and 

effectively estimating the state of charge (SoC) is crucial for optimizing the performance, efficiency and 

longevity of the battery, as well as for addressing risks related to use and sudden malfunctions. There 

are several methods to estimate the SoC in a battery, which expresses the amount of energy remaining 

in the battery compared to the total energy stored by the battery. Some of these methods rely on direct 

mathematical equations, while others, such as calculation methods using neural networks, are more 

accurate. We use the current and voltage of the battery in the necessary laws. Table 1 provides the 

specific values for lithium-ion battery data represented by the HESS model. Utilizing this data is 

instrumental in achieving the ultimate energy objective. The data signifies the battery's complete charge 

status and encompasses current and voltage measurement ranges. 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 10, Number 2, 2025 

Doi: 10.55088/ijesg.1716660 

 

 63 

Table 1. Battery Parameters in HESS Model [33] 

Charging Status Battery Parameters 

26.4 Nominal Voltage (V) 

6.6 Rated Capacity (Ah) 

30 Battery Response Time (s): 

100 Initial State-of-Charge (%) 

 

The nominal voltage (V) is defined as the standard voltage that the battery can provide under 

normal operating conditions. The nominal capacity (Ah) is defined as the maximum amount of charge 

that the battery can store. Battery response time (s) is defined as the time it takes for the battery to 

respond to changes in current and voltage. 

2.1. Supercapacitor:  

Despite the prevalence of battery technology in energy storage, there are certain drawbacks to its 

use, including its weight, size and inadequate energy density. These limitations have given rise to 

concerns regarding the potential environmental impact of the project. In view of the advances witnessed 

in associated technologies, researchers have been prompted to explore alternative solutions, including 

the integration of batteries with other technologies via specific connection processes. In this regard, 

supercapacitors are particularly promising and are considered a significant contender in the field of 

energy storage devices. Supercapacitors are large-capacity capacitors that combine the characteristics 

of batteries and capacitors in a single device. The following features are of particular significance: high 

power density; rapid charging and discharging; environmental friendliness; an absence of emissions; a 

long operational lifespan; and low internal resistance. As shown in Table 2, a comparison is made of the 

performance of a lithium battery and a supercapacitor. 

Table 2. Comparison between the performance of a lithium battery and supercapacitor [34] 

Battery Super capacitor Storage device characteristics 

1 < t < 5 h 1- 30 S Charging time 

T > 0.3 h 1 - 30 S Discharging time 

10 - 100 1 – 10 Energy density (Wh/kg) 

1000 106  Life time (Cycle number) 

< 1000 10.000 Power density (W/kg) 

0.7 – 0.85 0.85-0.98 Charge / discharge efficiency 

 

The subsequent table illustrates the specific values of the supercapacitor data represented by the 

HESS model. The utilization of these data will facilitate the realization of the desired energy target. The 

data presented herein signifies the 100% charge state of the supercapacitor, incorporating current and 

voltage measurement ranges. 
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Table 3. Super capacitor Parameters in HESS Model 

Charging Status Super capacitor Parameters 

500 Rated Capacitance (F) 

16 Rated Voltage (V) 

16 Number of Series Capacitors 

1  Number of Parallel Capacitors 

16 Initial Voltage (V) 

The quantities stipulated in the Table 3 are the fundamental criteria for determining the 

performance of the super capacitor and accurately estimating its state of charge. The term 'nominal' is 

used to denote the amount of electrical charge at a specified voltage. The maximum voltage that can be 

applied to the capacitor is referred to as the 'nominal voltage' of the super capacitor. 

2.2. SoC Estimation:  

The specific capacity of a battery or super capacitor is denoted by the SoC ratio, which is defined 

as the ratio of the charging current to the maximum capacity. The quantity of charge remaining in a 

battery or super capacitor is typically expressed as a percentage. Mathematically, the SoC can be 

expressed as follows: t is the current passing through the battery or super capacitor. Cn is defined as the 

nominal capacity of the battery or super capacitor, representing the maximum charge capacity. 

 

SOC(t) = 100 % ­ 
1

Cn
∫ I(t) ⅆt
t

0
                    (2) 

 

The state of charge percentage (SOC) at a given moment in time is denoted by the term “SOC 

(t)”. This concept is applicable to both batteries and supercapacitors. This formula demonstrates how 

the specific gravity of the solution (SOC) decreases over time during the process of discharge and current 

flow. It has been hypothesized that the device is completely discharged when the SOC approaches zero. 

3. KNN Learning Algorithm 

KNN is a simple yet powerful algorithm that can be used to classify new points based on the 

classification of nearby points in the dataset [35]. This process is known as the weighting method, which 

indicates the extent to which each of the nearest neighbours influences the prediction. In the weighting 

function, when a new point is received for classification, the distance between this new point and all 

points in the dataset is calculated [36]. The K nearest neighbours are then identified, and their 

classification is based on the classification of these proximate points. This algorithm has a multitude of 

applications, including the estimation of the state of charge of a battery or supercapacitor. The simplicity 

and efficiency of the algorithm render it a highly useful tool in a variety of contexts. However, challenges 

pertaining to performance are to be noted, insofar as the necessity of a substantial data set is requisite 

for effective operation. In order to successfully apply the KNN algorithm, it is necessary to connect the 

battery and the super capacitor in parallel, and to collect the data extracted from these devices using 

MATLAB. A total of 5,000 data units of charging current and voltage are collected for the purpose of 

charging estimation. The subsequent stage of the process is the selection of the objective of estimating 

the state of charge. Following this, the data is divided into training and testing sets, with the number of 

neighbours K being tested. The determination of the optimal K value is a crucial factor in the 

management of the KNN algorithm. In this model, K was tested within the range of 2 to 100 to ascertain 

the optimal performance of the algorithm. The prevailing consensus in the relevant literature is that low 
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K values are indicative of heightened sensitivity to noise, while high values are suggestive of the 

converse. The optimum value for K is determined by cross-validation, which is regarded as the most 

reliable method for determining the value. The model is trained on the basis of the proposed data. 

Subsequent to this training stage, the model progresses to the evaluation or rating stage, where the 

performance is then assessed for acceptability. Should the performance prove satisfactory, an estimation 

is made of the state of charge of both the battery and the super capacitor. The implementation of the 

KNN algorithm is contingent upon the adherence to a series of mathematical principles. The distance 

measure is utilized to calculate the distance between the unknown element and each element in the data 

set. The data point from the dataset is denoted by xi, the query point by xq, the feature values of the 

points by x, and the predicted class for the query point by yq. In this study, the number of nearest 

neighbours considered is denoted by K, the class label of the I nearest neighbour is denoted by yi, the 

indicator function that accounts for how many neighbours belong to class yi is denoted by δ(yi-y), and 

the weight function that assigns importance to each neighbour is denoted by ω(I). The weight function 

is defined in Equations 3, 4 and 5. 

 

ⅆ(xi. xq) ≡ √(Σk=1
n (𝑋𝑖 − 𝑋𝑞)

2
                 (3) 

The principle of the nearest neighbour rule dictates that the classification of an unknown element 

is determined by the categorization of its nearest neighbours. 

 

Yq = argymax∑ δ(yı − y)K
ı=1                (4) 

The number of neighbours, denoted by K, is a crucial factor in determining the number of 

neighbours to be utilized. The neighbour weight rule is utilized in order to ensure that a proportion of 

neighbours are able to exert a greater influence on the classification. As demonstrated in the following 

example, the weight function w(i) can be utilized and incorporated into the ultimate classification. 

 

yq = argymax∑ ω(i)δ(yı ∙ y)
K
ı=1      (5) 

 

Prior to the initiation of the KNN algorithm, it is imperative to establish a set of requisite hyper-

parameters, as these parameters remain constant throughout the training period. Conversely, normal 

parameters can be ascertained following the initiation of the training process. A crucial aspect that 

necessitates adjustment in KNN training pertains to the battery and the super capacitor, as evidenced by 

Tables 4 and 5, respectively. 

Table. 4. Battery and Super capacitor hyper parameters used in KNN algorithm 

Batch Size 100 

The nearest neighbors search algorithm LineerNNSearch 

Distance Function Euclidean Distance 

Cross Validation 10 

 

It is imperative to acknowledge the pivotal role of these hyperparameters in enhancing model 

performance and ensuring the precision of predictions. The term 'SoC(T)' is used to denote the actual 

SoC value, whereas 'SoC(p)' is the predicted SoC by KNN. RSS is defined as the sum of squared errors, 

whereas TSS is expressed as the total sum of squares. 
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In order to evaluate the accuracy of the model in estimating the state of charge, the KNN algorithm 

is employed, with mathematical error metrics such as mean absolute error (MAE), root mean square 

error (RMSE) and R² being utilized. 

 

𝑅𝑀𝑆𝐸 = √
1

N
∑ (SoC(T)

N

i=1
− SoC(p))2                  (6) 

 

𝑀𝐴𝐸 =
1

N
∑ |𝑆𝑜𝐶(𝑇) − 𝑆𝑜𝐶(𝑝)|

N

i=1
                       (7) 

 

R2 =
RSS

TSS
                                                              (8) 

 

4. Simulation Model and Results 

The HESS model consists of a lithium battery and a supercapacitor. It is anticipated that the model 

will be utilised during charging and discharging operations in electric vehicles. As demonstrated in 

Figure 2, the HESS system consists of a lithium battery and a super capacitor connected in parallel. 

The battery is connected to a step-up transformer, while the super capacitor is connected to a step-

up/step-down transformer. It is evident that this configuration guarantees that the system is capable of 

meeting the necessary electrical load. Furthermore, the system incorporates a pulse-width modulation 

(PWM) control system. The model under consideration was designed using MATLAB simulation 

software. The collection of the current and voltage values from the model was achieved by utilising the 

(to workspace) block feature. These values were then employed in KNN algorithms to estimate the SoC 

value, which constitutes the objective of the research. The HESS system that employs the MATLAB 

software is illustrated in Figure 2. 

 

 
Figure 2. HESS MATLAB Simulink Model [29] 
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4.1. Battery Results:  

This section is dedicated to the examination of battery results in relation to current, voltage, and 

SoC charge state. The results obtained from the MATLAB are represented by means of curves. 

 

Figure 3. Output Current and voltage of battery (discharging) 

In Figure 3, the output voltage and current of the battery in the HESS system are shown. The 

battery starts working when it is 100% charged. The voltage starts at 26.4 volts and the current starts at 

zero. 

  Upon initiation of the loading process, a decline in voltage is observed, accompanied by an 

increase in current. This phenomenon can be attributed to the device's response to fluctuating power 

demands and sudden alterations in the system. 

 

Figure 4. SOC for battery 
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Figure 4, a graph showing the battery's SoC is displayed to estimate the state of charge. If the 

battery is fully charged, the SoC percentage is 100%. After startup, the ratio starts to decrease. 

4.2. Supercapacitor Results:  

In this section, the results of the supercapacitor for the current, voltage and 

charge state of the SoC obtained from the MATLAB program are examined by 

representing them with curves. 

 

 

Figure 5. Current and Voltage of Supercapacitor (discharging) 

As demonstrated in Figure 5, the output voltage and current of a supercapacitor within a system 

are shown. The HESS supercapacitor is characterized by its ability to commence operation upon 

attainment of a complete charge. When a load is applied, the voltage begins to fall and the current peaks. 

Subsequently, both the voltage and current undergo changes in response to fluctuations in power demand 

and emergency conditions. 

 

Figure 6. SoC for Supercapacitor  
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As demonstrated in Figure 6, a graph is provided for the purpose of estimating the SoC of a 

supercapacitor. During the charging cycle, the SoC ratio is elevated; however, subsequent to startup, a 

decline in the ratio becomes observable. 

4.3. The Result of Battery and supercapacitor Using KNN:  

In the course of the prediction process, the dataset is segmented into two distinct components. 

80% of the budget is allocated for training, while the remaining 20% is designated for testing purposes. 

In the proposed methodology, the dataset was subjected to a KNN algorithm test, with the optimal result 

calculated for K values ranging from 2 to 100. The issue of under-learning and over-learning is 

addressed by employing a 10-fold cross-validation approach. As a consequence of the experimental 

studies, the optimal performance outcomes were obtained for the Li-ion battery at K=5, with an RMSE 

value of 0.0022618, and for the super capacitor at K=2, with an RMSE value of 0.002986. Following 

meticulous consideration of the evaluation scale, it is evident that the results obtained are satisfactory. 

    A comprehensive evaluation of the resulting graphs from the evaluation process for lithium-

ion batteries and super capacitors has unequivocally demonstrated the efficacy of the proposed 

methodology. The K values and metrics for the battery model are illustrated in Figure 7. 

 

Figure 7. K values and metrics (RMSE, MAE, R2) for battery 

As illustrated in Table V, the most optimal metrics for the battery are presented, along with the 

respective K values at which these metrics are attained. An experimental study was conducted on the 

MATLAB platform, with the K value ranging from 2 to 100. The optimal result was obtained, as 

illustrated in Table 5. 

Table 5. The best value for K and metrics for battery 

K RMSE MAE R2 

5 0.0022618 -0.00178 0.999646 

 

As demonstrated in Figure 8, a graphical representation of the mathematical error measures 

(RMSE, MAE, R2) is presented alongside the K values. The graph illustrates the most balanced K value 

between bias and variance. It is optimal for the root mean square error (RMSE) and the mean absolute 

error (MAE) to reach their lowest possible values, while the R-squared (R2) should ideally reach its 

highest possible value. The findings of this analysis demonstrate that the model exhibits a strong 

correlation in the absence of noise. The optimality of these values is achieved when K=2 for the super 

capacitor. 
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Figure 8. K values and metrics (RMSE, MAE, R2) for supercapacitor 

As illustrated in Table VI, the most optimal metrics for the super capacitor are indicated, along 

with the K value that was achieved. The experimental studies were conducted on the MATLAB platform 

for K values ranging from 2 to 100, and the optimal results are presented in Table 6. 

Table 6. The best value for K and metrics for super capacitor 

K RMSE MAE R2 

2 0.002986 -0.001498 0.999979 

Moreover, an analysis of the training curves for the battery and super capacitor demonstrated that 

the discrepancy between the training and validation error of the proposed model diminished as the data 

set size increased. This finding approximated the actual value with a high degree of accuracy. The 

alterations in training error and validation error for the battery at K=5 are illustrated in Fig. 9. 

 

Figure 9. Training error and Validation error for Battery (K=5) 

As demonstrated in Figure 10, there is a clear demonstration of the alterations in both training 

error and validation error for the supercapacitor when K is set at a value of 2. 

A comparison of these results with those obtained from a real data set provided by the CALCE 

Research Group [37] was undertaken. The data was collected using various drive cycles on a cylindrical 

INR1865020 R LiNiMnCoO2/NMC Li-ion battery cell, using standard charging and discharging 

protocols. The cell was initially charged in accordance with a constant current/constant voltage protocol, 

after which it was discharged at three distinct temperatures (0 °C, 25 °C, and 45 °C). The technical 

specifications of the battery utilised in the present study are detailed in Table 7. 

 



IJESG
e-ISSN 2636-7904 

International Journal of Energy and Smart Grid 
Vol 10, Number 2, 2025 

Doi: 10.55088/ijesg.1716660 

 

 71 

 
Figure 10. Training error and Validation error for supercapacitor (K=2) 

Table 7. The specifications of the battery 

Type Capacity (Ah) Voltage (V) Cut-off voltage (V) Max Current(A) Life cycle 

18.650 NMC 2.0 3.60 2.4/4.2 22 1000-2000 

 

A KNN model was trained on this data to predict SOC based on voltage, current, and temperature. 

The optimal results were achieved at K=5, as illustrated in Table 8. 

Table 8. The best results at K=5 

Temperature RMSE MAE R2 

0 0.0188 0.0032 0.9990 

25 0.0330 0.0024 0.9937 

45 0.0035 0.00025 0.9998 

 

The findings demonstrate a remarkable precision of the model. A comparison of these results with 

those previously obtained using MATLAB reveals a high degree of similarity, thereby enhancing the 

reliability of the former results. 

4.4. Effect of temperature on SOC mode:  

Temperature is a significant factor that has a detrimental effect on the performance of lithium-ion 

batteries, thus complicating the estimation of the state of charge (SOC). The objective of this section is 

to analyse the behaviour of the model under different temperatures (0°C, 25°C, and 45°C) in order to 

evaluate the accuracy of the estimation and the dynamic performance of the model. In this section, two 

types of lithium-ion batteries were utilised: LiFeMgFo4 (12.8 V, 40 Ah) and LiCoO2 (11.1 V, 6600 

mAh). The data collected from these batteries was then evaluated using MATLAB in order to ascertain 

their performance. The quantity of samples is 1,000 for each individual sample. The purpose of this 

experiment is twofold: firstly, to demonstrate the differences between the two variables; and secondly, 

to further clarify the effect of temperature. 

As illustrated in Table 9, the results obtained for the LiFeMgFo4 battery are presented. 

Conversely, Table 10 details the results for the LiCoO2 battery. It is evident that the optimal outcomes 

were attained when K=2 for both batteries. 
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Table 9. The result of battery LiFeMgFo4 

TEMPERATURE MAE RMSE R2 

0 °C 0.098 0.221 0.998 

25°C 0.072 0.168 0.999 

45°C 0.086 0.172 0.999 

Table 10. The result for LiCoO2 

TEMPERATURE MAE RMSE R2 

0 °C 0.147 0.191 0.998 

25°C 0.079 0.122 0.999 

45°C 0.098 0.182 0.999 

 

The obtained results display variations in values, thereby demonstrating the direct effect of 

temperature on the battery dynamic performance. As demonstrated in Figure 11, Panel (a) presents a 

comparison of MAE as a function of temperature, while Panel (b) offers a comparison between voltage 

and SoC as a function of temperature for the LiFeMgFo4 battery. The following comparisons should be 

made: (c) a comparison of MAE by temperature, and (d) a comparison of SoC prediction accuracy at 

different temperatures. 

 

  
(a) (b) 

  
(c) (d) 

Figure 11: Comparison of (MAE, SoC and voltage, SoC prediction) at different temperature. 
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The Figure shows how the voltage gradually increases with the SoC. The maximum voltage is 

observed to be 25 C, indicating that the system is operating at its most efficient level at this temperature. 

At 0°C, the level is considerably lower, indicative of elevated resistance and diminished efficiency in 

chemical processes.  

     The result demonstrates that battery properties are evidently influenced by temperature, with 

prediction SOC, voltage and current exhibiting enhanced accuracy at 25°C and 45°C in comparison to 

a lower temperature of 0°C. This discrepancy can be attributed, in part, to the suboptimal accuracy of 

the battery at low temperatures, as evidenced by the dynamic hysteresis observed in the relationship 

between voltage and SoC, as depicted in the curves. At a temperature of 25°C, a reduced number of 

errors were observed in the estimation of voltage and other parameters when compared to a higher 

temperature of 45°C. This finding indicates that the model performs with greater consistency and 

exhibits a greater proximity to the actual battery behaviour under these conditions. It is evident that the 

model, when operating at a temperature of 25°C, demonstrates negligible deviation from the actual data. 

This observation facilitates enhanced accuracy in the estimation of SoC. Despite the alterations in 

battery parameters under varying temperatures, operating conditions and battery types, the KNN model 

exhibited remarkable efficacy in mitigating the impact of these external factors, a feat attributable to its 

capacity to update parameters in real time. It is evident that the model's adaptive capacity facilitates the 

estimation of reliable SOC values across a substantial temperature range. 

4.5. Comparison of Battery Types: 

Battery technology has witnessed significant advancements over the past decade, driven by the 

growing need for highly efficient power sources, especially in the electric vehicle (EV) sector. In recent 

decades, there has been considerable progress in the field of battery technology, primarily driven by the 

imperative for highly efficient power sources, particularly within the context of electric vehicles (EVs). 

The operation of these vehicles is contingent upon the utilisation of high-performance batteries in 

conjunction with effective battery management systems (BMS), thereby ensuring safe and reliable 

functionality. Lithium-ion (Li-ion) and nickel-metal hydride (NiMH) batteries are among the most 

widely used types in EV applications due to their high efficiency and distinctive specifications. It has 

been demonstrated that NiMH batteries exhibit superior specific energy and lifetime performance in 

comparison to nickel-cadmium batteries, thus positioning them as a more environmentally sustainable 

alternative [38]. Conversely, Li-ion batteries offer high energy density and high open-circuit voltage, 

thereby enabling reduced battery pack size and weight, as well as operation over a wide temperature 

range. The objective of this section is to provide a comparative analysis of the performance 

characteristics of these two types of batteries, with a particular focus on the impact of temperature on 

the state of charge (SoC) and open-circuit voltage (OCV). In addition, a review of the fundamental 

characteristics of different battery types and their implications for the design of storage systems in 

electric vehicles (EVs) will be conducted. 

As illustrated in Table 11, the fundamental requirements for two distinct categories of EV 

application are outlined. It is evident from the data presented in Table I that the battery parameters under 

consideration will be identical for both batteries. This observation is indicative of the application 

conditions being analogous for both batteries. 
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Table 11. Requirements for NiMH and Li-ion batteries for EV applications: 

Requirement  NiMH Li-ion 

Specific energy  40-80 Wh/kg 130-200 Wh/kg 

Specific power  900-1600 Wh/kg 1200-4000 Wh/kg 

Energy density  90-160 Wh/L 10-320 Wh/L 

Charge/discharge efficiency 80-95% 85-96% 

Self-discharge rate  8-15% month <5% month 

Cycle durability 800-1200 cycles 1500-2000cycles 

 

The coefficient of determination indicates the extent to which the data aligns with the model, with 

a strong effect size observed for both Li-ion and NiMH. The Root Mean Square Error (RMSE) was 

found to be 0.197. The residual measure of the farness of the data points from the regression line is given 

by MAE=0.103. The Root Mean Square Error (RMSE) values are minimal, thus substantiating the 

hypothesis that the data is approximately linear. 

 

 

Figure12. Comparison of SoC and OCV for Li-ion and NiMH 

A comparison of the SoC and OCV curves reveals that lithium-ion batteries are distinguished by 

their high voltage, high energy efficiency, and suitability for applications requiring high energy density, 

such as electric vehicles. This renders them a preferable option in comparison to NiMH batteries, which 

offer chemical stability but are coupled with lower voltage. The limited use of NiMH batteries in modern 

high-performance applications is thus explained. However, the extremely flat OCV-SoC curve in 

lithium-ion batteries poses a challenge for accurate SoC estimation and cell balancing in battery 

management systems. In order to meet the requirements for high energy density and low internal 

resistance, as well as to ensure a lifespan, it is essential to adopt well-trained battery models in 

conjunction with reliable estimation methods as KNN. This will enable independent or joint estimation 

of the battery's state of charge, internal temperature, and dynamic resistance. 
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4.6. Reasons for the Success of the KNN Algorithm in SoC Prediction:  

The high performance of the KNN algorithm for SoC prediction in the HESS system is based on 

several key factors. Firstly, the non-parametric nature of KNN renders it independent of any assumptions 

when modelling the complex and nonlinear behavior of batteries and supercapacitors. This enables the 

precise capture of the dynamic and non-linear characteristics induced by the variable charging and 

discharging currents in the HESS system. Secondly, the dataset under consideration provides a 

substantial training set comprising 5,000 data points (current and voltage measurements) collected from 

the battery and super capacitor. This substantial data set enhanced the precision of the KNN's neighbor-

based prediction mechanism and fortified the model's generalization capabilities. 

   The low training and validation errors (e.g., RMSE=0.0022618 for battery and 

RMSE=0.002986 for super capacitor) were achieved by determining the optimal K values of the KNN 

algorithm (K=5 and K=2) through 10-fold cross-validation. The low K values enabled the model to 

capture local patterns in the dataset, while cross-validation increased the generalization capacity of the 

model by minimizing the risks of overfitting and underfitting. As demonstrated in Figures 9 and 10, the 

training and validation error curves reveal a decline in error rates and an enhancement in the model's 

proximity to true values as the dataset size is augmented. Furthermore, the straightforward and 

interpretable structure of KNN reduces the computational complexity, providing a practical advantage 

in real-time applications such as SoC prediction. 

     The observation that the performance of KNN offers lower error rates in comparison with 

conventional methods (e.g. Coulomb counting method or Kalman filter) indicates that the algorithm is 

suitable for the dynamic conditions specific to the battery and super capacitor/box2>or HESS system. 

This finding indicates that the KNN model exhibits superior performance in terms of both accuracy and 

computational efficiency. 

5. Conclusion 

This research presented a relatively novel approach to estimate the state of charge (SoC) in the 

HESS system using the KNN algorithm. The KNN is regarded as an accessible and comprehensible 

algorithm. The approach has been developed to address the complex nonlinear behaviors of the battery 

and the super capacitor. The proposed approach has been implemented using a real data set for both 

current and voltage for both components. The hybrid system test results indicated a mean absolute error 

of 0.0021 and a mean square error rate of 0.0031. The minimal error values indicate a strong correlation 

between the model predictions and the actual values, thereby substantiating the model's high degree of 

accuracy. The model exhibited a high degree of precision in predicting the SoC of the two components, 

particularly in the context of electric vehicle applications. In view of these findings, it is anticipated that 

this model can play a pivotal role in the future of energy management systems in electric vehicles. 
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