Sakarya University Journal of Science, 22 (6), 1799-1803, 2018.

SAKARYA UNIVERSITY JOURNAL OF SCIENCE

e-ISSN: 2147-835X http://www.saujs.sakarya.edu.tr

<u>Received</u> 03-05-2018 <u>Accepted</u> 26-06-2018

<u>Doi</u> 10.16984/saufenbilder.420612

Extending property on *EC*-Fully Submodules

Adnan TERCAN¹, Ramazan YAŞAR^{*2}

Abstract

There are several generalizations of CS-modules in literature. One of the generalization is based on fully invariant submodules. Recall that a module M is called FI-extending if every fully invariant submodule is essential in a direct summand. We call a module EFI-extending if every fully invariant submodule which contains essentially a cyclic submodule is essential in a direct summand. Initially we obtain basic properties in the general module setting. For example, a direct sum of EFI-extending modules is EFI-extending. Again, like the FI-extending property, the EFI-extending property is shown to carry over to matrix rings.

Keywords: fully invariant, ec-fully submodule, FI-extending, extending

1. INTRODUCTION

In recent years, the theory of extending modules and rings and their generalizations has come to play an important role in the theory of rings and modules. Recall that a module M is called an *extending* (or *CS*) module if every submodule of Mis essential in a direct summand of M (see [4], [9] or [10]).

One of the extremely useful generalization of *CS* concept is *FI*-extending property (see [1] or [2]). Recall a module M is called *FI*-extending if every fully invariant submodule of M is essential in a direct summand. Following [3] and [5], by an *ec*-fully submodule N of a module M, we mean a fully invariant submodule N which contains essentially a cyclic submodule i.e., there exists an element x in N such that xR is essential in N.

In this paper, we are concerned with the study of modules M that every *ec*-fully submodule is essential in a direct summand of M. We call such a module as *EFI-extending*. Moreover, a ring R is

called right *EFI*-extending ring if R_R is an *EFI*extending module. Clearly the notion of an *EFI*extending module generalizes that of a *FI*extending module by requiring that only every *ec*fully submodule is essential in a direct summand rather than every fully invariant submodule.

In Section 2, we provide basic properties of *ec*-fully submodules. After defining *EFI*-extending modules, in Section 3 we prove basic results and properties of *EFI*-extending modules. It is shown that any direct sum of *EFI*-extending modules is *EFI*-extending and that the *EFI*-extending property of a ring *R* carries over to the full matrix ring $M_n(R)$, $n \ge 1$.

Throughout this paper, all rings are associative with unity and R denotes such a ring. All modules are unital right R-modules.

Recall that a submodule *X* of *M* is called *fully invariant* if for every $\alpha \in End_R(M)$, $\alpha(X) \subseteq X$. If *M* is an *R*-module and $A \subseteq M$, then we use $A \leq M$, $A \leq_e M, A \subseteq M, A \subseteq_{ec} M$, and E(M) to denote that *A* is a submodule, essential submodule, fully

¹ Hacettepe University, Faculty of Science, Department of Mathematics, Beytepe, Ankara, Turkey

^{*} Corresponding Author

² Hacettepe University, Faculty of Science, Department of Mathematics, Beytepe, Ankara, Turkey

invariant submodule, ec-fully submodule, and the injective hull of M, respectively.

Moreover $M_n(R)$ denotes the full ring of *n*-by-*n* matrices over *R*. For other terminology and notation, we refer to [2], [4], [7] and [10].

2. EC-FULLY SUBMODULES

Since *ec*-fully submodules are building bricks to the establishment of *EFI*-extending notion; first, we deal with this kind of submodules. To this end, we begin this section by recording some basic facts about them.

2.1. Lemma.

Let *M* be a module.

- (i) If $X \trianglelefteq_{ec} Y$ and $Y \trianglelefteq_{ec} M$ then $X \trianglelefteq_{ec} M$.
- (ii) If $M = \bigoplus_{i \in \Lambda} X_i$ and $S \trianglelefteq_{ec} M$, then $S = \bigoplus_{i \in \Lambda} \pi_i(S) = \bigoplus_{i \in \Lambda} (S \cap X_i)$, where π_i is the *i*th-projection homomorphism of M.

Proof. The proof is routine.

The class of ec-fully submodules is properly contained in the class of fully invariant submodules. Next example provides a fully invariant submodule which is not ec-fully submodule. For details on this example, we refer to [8] or [10].

2.2. Example.

Let \mathbb{R} be the real field and *S* the polynomial ring $\mathbb{R}[x, y, z]$. Then the ring $R = \frac{S}{SS}$, where $s = x^2 + y^2 + z^2 - 1$, is a commutative Noetherian domain. The free *R*-module $M = R \oplus R \oplus R$ contains an indecomposable submodule X_R of uniform dimension 2.

Now, let us build up the trivial extension of R with X_R i.e., let

$$T = \begin{bmatrix} R & X \\ 0 & R \end{bmatrix} = \left\{ \begin{bmatrix} r & x \\ 0 & r \end{bmatrix} : r \in R, x \in X \right\}.$$

Then $N = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix} \leq T_T$ but *N* is not *ec*-fully submodule of T_T .

Proof. It is easy to check that *R* is a commutative Noetherian domain. Let $\phi: M \to R$ be the homomorphism defined by $\phi(a + Ss, b + Ss, c + Ss) = ax + by + cz + Ss$ for all $a, b, c \in S$. Clearly, ϕ is an epimorphism, and hence, its kernel *X* is a direct summand of *M*, i.e., $M = X \bigoplus X'$ for some submodule $X' \cong R$. Observe that *R* is uniform i.e., X' has uniform dimension 1 and hence X_R has uniform dimension 2.

Note that X is the R-module of regular sections of tangent bundle of the 2-sphere S^2 . the Furthermore, a celebrated result in differential geometry yields that X_R is an indecomposable module. Now the trivial extension of R with X_R i.e., $T = \begin{bmatrix} R & X \\ 0 & R \end{bmatrix}$ is a commutative ring and hence $N = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$ is a fully invariant submodule of T. Assume that N contains essentially a cyclic submodule, say $\begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} T$, where $x \in X$. Thus xRis essential in X_R . It follows that xR has uniform dimension 2. However, this is impossible, because the mapping $\alpha: xR \to R$, defined by $\alpha(xr) = r$, where $r \in R$, is an *R*-isomorphism. Thus *xR* has uniform dimension 1. Therefore N does not contain essentially a cyclic submodule. Hence N is not *ec*-fully submodule of T_T .

Notice that the rank of free *R*-module *M* in the previous example can be replaced by any odd integer n > 3 (see [8]). There are more examples in this trend. We refer reader to look at [6] for the construction of this kind of examples. Following easy lemma shows that certain fully invariant submodules are *ec*-fully submodules.

2.3. Lemma.

Let M be a module which contains essentially a cyclic submodule. If K is a fully invariant direct summand of M, then K is an *ec*-fully submodule of M.

Proof. Suppose Y = xR is an essential submodule of M, where $x \in M$. Let $\pi: M \to K$ be the canonical projection map. Then $xR \cap K = Y \cap$ $K \le \pi(Y) = \pi(x)R \le K$. Since xR is essential in M then $xR \cap K$ is essential in K. It follows that $\pi(x)R$ is essential in K. Hence K is an *ec*-fully submodule of M. It is natural to think of which modules (even rings) have the property that every *ec*-fully submodule is a direct summand. Next result provides a class of rings which satisfy the aforementioned property. First, recall the following module condition:

 C_2 : If $X \le M$ is isomorphic to a direct summand of M, then X is a direct summand of M (see [4] or [10]).

It is well-known that (von Neumann) regular rings satisfy the C_2 condition (see, for example [7]).

2.4. Proposition.

Let R be a (von Neumann) regular ring. Then an *ec*-fully submodule of R-module R is a direct summand.

Proof. Let *I* be an *ec*-fully submodule of R_R . Then there exists $x \in I$ such that xR is essential in *I*. By assumption, xR is a direct summand of R_R . Thus $R_R = xR \bigoplus L$ for some $L \leq R_R$. Now $xR \cap L$ is essential in $I \cap L$ which yields that $I \cap L = 0$. Therefore $R = xR \bigoplus L = I \bigoplus L$. It follows that $I \cong xR$. Since R_R has C_2 condition, *I* is a direct summand of R_R as required.

3. *EFI*-EXTENDING MODULES

In this section, we define and obtain basic properties of *EFI*-extending modules. Let us start by mentioning the definition of this new class of modules.

3.1. Definition

A module M is called *EFI-extending* if every *ec*-fully submodule of M is essential in a direct summand of M.

Obviously *FI*-extending modules (and hence extending modules) are *EFI*-extending modules. Moreover, (von Neumann) regular rings enjoy with the *EFI*-extending property. On the other hand, the ring of integers is an *EFI*-extending ring which is not regular. One might expect that whether *EFI*-extending property implies *FI*-extending or not? However, the following examples show that the class of *FI*-extending modules are properly contained in the class of *EFI*-extending modules.

3.2. Example

Let *F* be any field and let $F_i = F$, $i \in \Lambda$, where Λ is infinite. Define $R = \bigoplus_{i \in \Lambda} F_i + F1$, which is an *F*-subalgebra of $\prod_{i \in \Lambda} F_i$, where 1 is the identity of $\prod_{i \in \Lambda} F_i$. It is known that *R* is a regular (and hence *EFI*-extending ring by Proposition 2.4) ring which is not *FI*-extending (see [2, Ex. 2.3.32]).

3.3. Example [7, Ex. 7.54]

Let *F* be a field, and let $A = F \times F \times \cdots$. So this ring is commutative. Now, let *R* be the subring of *A* consisting of sequences $(a_1, a_2, ...) \in A$ that are eventually constant. For any $(a_1, a_2, ...) \in R$, define $x = (x_1, x_2, ...)$ by; $x_n = a_n^{-1}$ if $a_n \neq 0$, and $x_n = 0$ if $a_n = 0$. Then $x \in R$ and a = axa. Therefore, *R* is (von Neumann) regular. By Proposition 2.4, *R* is *EFI*-extending. Note that *R* is not a Baer ring. Hence *R* is not an *FI*-extending ring by [1, Theorem 4.7(iii)].

It is an open problem to determine if a direct summand of an *FI*-extending (or, also *EFI*-extending) module is always *FI*-extending (*EFI*-extending) (see [1]). The following result is in related with the *EFI*-extending version of the aforementioned problem.

3.4. Proposition

Let *M* be a module and $X \trianglelefteq_{ec} M$. If *M* is *EFI*-extending, then *X* is *EFI*-extending.

Proof. Assume *M* is *EFI*-extending module. Let $S \trianglelefteq_{ec} X$. By Lemma 2.1 (i), $S \trianglelefteq_{ec} M$. Hence there exists a direct summand *D* of *M* such that $S \leq_e D$. Let $\pi: M \to D$ be the canonical projection endomorphism. Then $S = \pi(S) \leq \pi(X) \cap D = \pi(X)$. Hence $S \leq_e \pi(X)$ and $\pi(X)$ is a direct summand of *X*.

Next result deals with characterization of EFIextending modules in terms of endomorphisms of injective hulls of the modules and complements of ec-fully submodules. To this end, the proof of the next theorem is based on the proof of the corresponding result for FI-extending modules (see [2, Proposition 2.3.2]).

3.5. Theorem

Let M be a module. Then the following are equivalent:

- (i) *M* is *EFI*-extending
- (ii) For $X \trianglelefteq_{ec} M$, there is $e^2 = e \in End(E(M))$ such that $X \le_e eE(M)$ and $eM \le M$.
- (iii) Each $X \trianglelefteq_{ec} M$ has a complement which is a direct summand.

Proof. (*i*) \Rightarrow (*ii*). Assume that $X \trianglelefteq_{ec} M$. Then there is $f^2 = f \in End(M)$ such that $X \leq_e fM$. Let $e: E(M) \rightarrow E(fM)$ be the canonical projection. Then we see that $X \leq_e eE(M)$ and $eM = fM \leq M$.

 $(ii) \Rightarrow (iii)$. Let $X \trianglelefteq_{ec} M$. Then there exists $e^2 = e \in End(E(M))$ such that $X \le_e eE(M)$ and $eM \le M$. Now, let us put $c = (1 - e)|_M$. Then $c^2 = c \in End(M)$. We show that cM is a complement of X. For this, first note that $cM \cap X = 0$ as cM = (1 - e)M. Say $K \le M$ such that $cM = (1 - e)M \le K$ and $K \cap X = 0$. From $M = (1 - e)M \bigoplus eM, K = (1 - e)M \bigoplus (K \cap eM)$ by the modular law. As $K \cap X = 0$ and $X \le_e eE(M)$, $K \cap eE(M) = 0$ and so $K \cap eM = 0$. Thus, we get that K = (1 - e)M, then K = cM. Therefore cM is a complement of X.

(*iii*) \Rightarrow (*i*). Let $X \trianglelefteq_{ec} M$. There exists $g^2 = g \in End(M)$ so that gM is a complement of X. As $X \trianglelefteq_{ec} M$, $gX \le X \cap gM = 0$. Hence X = (1 - g)X. To show that M is EFI-extending, we claim that $X \le_e (1 - g)M$. For this, assume that $K \le (1 - g)M$ such that $X \cap K = 0$. Then note that $gM \cap K = 0$. Take $gm + k = n \in (gM \bigoplus K) \cap X$ with $m \in M$, $k \in K$, and $n \in X$. Then (1 - g)gm + (1 - g)k = (1 - g)n, so $k = n \in X \cap K$ because $K \le (1 - g)M$ and X = (1 - g)X. Now as $X \cap K = 0$, k = n = 0. Thus, $(gM \bigoplus K) \cap X = 0$. Since gM is a complement of X, $gM \bigoplus K = gM$ and so K = 0. Therefore, $X \le_e (1 - g)M$. It follows that M is EFI-extending.

It is well-known that a direct sum of *FI*-extending modules is also *FI*-extending module. Now, we intend to have the corresponding result for *EFI*-extending modules.

3.6. Theorem

Let $M = \bigoplus_{i \in \Lambda} N_i$. If each N_i is an *EFI*-extending module, then *M* is an *EFI*-extending module.

Proof. Let $S \trianglelefteq_{ec} M$. By Lemma 2.1(ii), $S = \bigoplus_{i \in \Lambda} (S \cap N_i)$, and $S \cap N_i \trianglelefteq N_i$ for each $i \in \Lambda$. Assume *S* contains essentially the cyclic submodule *xR*, where $x \in S$. Let $\pi: S \to S \cap N_i$ be the projection map. Then $xR \cap (S \cap N_i) \le \pi(xR) = \pi(x)R \le S \cap N_i$. Since $xR \le_e S$ then $xR \cap (S \cap N_i) \le_e S \cap N_i$. It follows that $\pi(x)R \le_e S \cap N_i$. Hence $S \cap N_i \trianglelefteq_{ec} N_i$ for each $i \in \Lambda$. As N_i is *EFI*-extending, there is a direct summand D_i of N_i with $S \cap N_i \le_e D_i$ for every $i \in \Lambda$. Thus $S = \bigoplus_{i \in \Lambda} (S \cap N_i) \le_e \bigoplus_{i \in \Lambda} D_i$. Since $\bigoplus_{i \in \Lambda} D_i$ is a direct summand of M we have that M is an *EFI*-extending module.

3.7. Corollary

If M is a direct sum of FI-extending (e.g., extending) modules, then M is EFI-extending.

Proof. Immediate by Theorem 3.6.

Applying Theorem 3.6 to Abelian groups (i.e., Z-modules) we obtain the following corollary.

3.8. Corollary

Let *M* be a \mathbb{Z} -module. If *M* satisfies any of the following conditions, then *M* is an *EFI*-extending \mathbb{Z} -module.

- (i) *M* is finitely generated
- (ii) *M* is of bounded order (i.e., nM = 0 for some positive integer *n*)
- (iii) *M* is divisible.

Proof. (i) and (ii) M is a direct sum of uniform submodules. Then the result follows from Theorem 3.6.

(iii) *M* is extending and hence *FI*-extending. Thus *M* is *EFI*-extending.

Observe that an easy modification yields that the Corollary 3.8 above remains true when the ring of integers replaced with a Dedekind domain.

One more application of the Theorem 3.6 gives an affirmative answer for the direct summand

problem of *EFI*-extending Abelian groups which as follows.

3.9. Theorem

Let M be a direct sum of uniform \mathbb{Z} -modules. Then any direct summand of M is an *EFI*-extending module.

Proof. Let N be a direct summand of M. Then N is also a direct sum of uniform modules by [9, Theorem 4.45] (see, also [10]). Now, Theorem 3.6 gives that N is an *EFI*-extending module.

Our next objective is to carry over *EFI*-extending property to full matrix ring. First of all, we give an example of *EFI*-extending ring which shows that *EFI*-extending property is not left-right symmetric.

3.10. Example

Let $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z} \end{bmatrix}$. Then the ring *R* is right *EFI*-extending, but it is not left *EFI*-extending.

Proof. Note that *R* is right *FI*-extending by [2, Example 2.3.14]. Hence *R* is right *EFI*-extending ring. On the other hand, let $I = \begin{bmatrix} 0 & \mathbb{Z}_2 \\ 0 & 0 \end{bmatrix} \leq_{ec} {}_{R}R$. It is easy to check that *I* is not essential in a direct summand of ${}_{R}R$. It follows that *R* is not left *EFI*-extending ring.

3.11. Theorem

Let R be a right EFI-extending ring. Then $M_n(R)$ is a right EFI-extending ring for all positive integer n.

Proof. Let $N \trianglelefteq_{ec} M_n(R)$. Then it is easy to see that $N = M_n(I)$ for some $I \trianglelefteq_{ec} R$. As R is right *EFI*-extending, there exists $e^2 = e \in R$ such that $I_R \trianglelefteq_e eR_R$. This yields that as a right ideal of $M_n(R)$, N is essential in a direct $(eI)M_n(R)$ of $M_n(R)$, where I is the identity matrix of $M_n(R)$. Thus $M_n(R)$ is right *EFI*-extending, as required.

REFERENCES

- [1] Birkenmeier, G. F., Müller, B. J. and Rizvi S. T., "Modules in which every fully invariant submodule is Essential in a Direct Summand," *Communications in Algebra*, vol. 30, no.3, pp. 1395-1415, 2007.
- [2] Birkenmeier, G. F., Park, J. K. and Rizvi, S. T., *Extensions of rings and modules*, New York: Birkhäuser, 2013.
- [3] Celep, C. and Tercan A., "Modules whose ec-closed submodules are direct summand," *Taiwanese Journal of Mathematics*, vol.13, no.4, pp. 1247-1256, 2009.
- [4] Dung, N. V., Huynh, D. V., Smith, P. F., and Wisbauer, R., *Extending Modules*, Pitman Research Notes in Mathematics Series, 313, Longmon, New York, 1994.
- [5] Kamal, M. A., and Elmnophy, O. A., "On Pextending modules," *Acta Math. Univ. Comenianae*, vol. 74, no. 2, pp. 279-286, 2005.
- [6] Kara, Y., Tercan, A. and Yaşar R., "PIextending modules via nontrivial complex bundles and Abelian endomorphism rings," Bulletin of the Iranian Mathematical Society, vol. 43, no. 1, pp. 121-129, 2017.
- [7] Lam, T.Y., *Lectures on modules and rings*, vol. 189. Springer Science and Business Media, 2012.
- [8] Smith, P. F., and Tercan, A., "Direct summands of modules which satisfy (C-11)," *Algebra Colloquium*, vol. 11, pp. 231-237, 2004.
- [9] Smith, P. F., and Tercan, A., "Generalizations of CSmodules," *Communications in Algebra*, vol. 21, no.6, pp.1809-1847, 1993.
- [10] Tercan, A. and Yücel, C. C., *Module theory, extending modules and generalizations*, Basel: Birkhäuser, 2016.