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Abstract— For many years, quadcopters are quite popular in the academic field because of its 

structural simplicity. However, this property comes out the problem of designing an effective 

controller. Designing a controller for quadcopter is rather complicated because tuning of the controller 

parameters of multi-rotor structure to achieve a desired performance for agility, flying efficiency and 

immediate reaction is a challenging problem. To deal with such a difficulty, Ant Colony Optimization 

(ACO), Invasive Weed Optimization (IWO) and Firefly Optimization (FO) algorithms are used to 

obtain optimal parameters of Sliding Mode Controller (SMC). SMC is used for both attitude and 

position control of the quadcopter. By taking into consideration all six variables with different number 

of parameters (total number of parameters to be optimized are nineteen). This makes it a complicated 

tuning problem. In this numerical study, performance results of optimization algorithms are compared 

with respect to convergence rate and cost function. 

Keywords :quadcopter, ant colony optimization, firefly optimization, invasive weed optimization, 

sliding mode control 

 

1. Introduction 

The main advantage of a quadcopter comparing to a helicopter is the fixed rotor propulsion.  The 

roll, pitch and yaw angles of quadcopter can be changed by altering the throttle measure of each rotor. 

On a quadcopter, four rotors are placed on the edges of cross shaped body frame. Opposing rotors 

rotate in the same direction. (S. Gupte, Paul Infant Teenu Mohandas and J. M. Conrad, 2012). To 

ensure the movement on roll axis(𝜑), left and right rotors, in respect to the front end, change their 

speed as to one another. Same as roll axis; to ensure the pitch movement(𝜃) front and rear rotors 

change their speed comparing to one another. To provide a movement on the yaw axis(𝜓) rotors in the 

same direction change their speed in inverse proportion to the rotors in opposite direction. So, an 

unbalance occurs on the yaw axis forces while total trust remains the same. Angles and body frame 

axis of a sample quadcopter can be seen in Figure1. 

For controlling quadcopters, many different control strategies applied since it becomes a popular 

academic research topic. Most of these algorithms and quadcopter mathematical modelling can be 

found in (Lebao Li, Lingling Sun and Jie Jin, 2015; I. C. Dikmen, A. Arisoy and H. Temeltas, 2009) 

and references therein. Some of the control strategies are PID, LQR, LQG, H∞, sliding mode, 

feedback linearization, robust, model predictive, back stepping, adaptive, fuzzy logic, nested 

saturation, neural network, reinforcement learning, iterative learning, memory and learning based 

intelligent controllers. To run these algorithms effectively, control parameters must be optimized in the 

range of usage and physical specifications (P. D. Sheth and A. J. Umbarkar, 2015). 
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There are many inspirations of the invention of heuristic optimization algorithms. Some of them 

are biology-based, while some are music-based (Bo Xing, Wen-Jing Gao, 2014). Variety of 

optimization algorithms successfully applied to the parameter optimization problem of the quadcopter 

(Bouabdallah, 2007) (Gustavsson, 2015) (SundarapandianVaidyanathan, 2017). In this study, ACO, 

IWO and FO algorithms are applied to the stability and position control problem of quadcopter 

separately. Total 19 parameters of the controller; 3 for each pitch, roll and yaw axis, 3 for X position, 3 

for Y position and 2 for altitude (Z) are optimized to achieve desired performance. Simulation results 

of ACO, IWO and FO optimization algorithms are compared according to colony population and cost 

function efficiency. 

 

Figure1. Quadcopter’s body frame axis and Euler angles. 

2. Methodology 
2.1. Quadcopter Modelling 

Quadcopter can only be controlled by changing rotors speeds independently. Thereby, changing 

forces; torques and moments can be generated on the body. The quadcopter model used in this paper is 

shown in Figure1. In the figure, 𝑥𝐵, 𝑦𝐵 and 𝑧𝐵 are unit vectors with respect to the body frame. 𝜑,𝜃 and 

𝜓 are Euler angles that represents roll, pitch and yaw angles. Let 𝑉𝑖be speed and τi be trust of ith rotor. 

Total trust applied to the system is 

 𝑈4  =  τ1 + τ2 + τ3 + τ4 (1) 

The roll, pitch and yaw moments can be achieved by varying the trust of rotors respectively as 

following, 

 𝑈1  =  𝑙(τ4– τ2) (2) 

 𝑈2 = 𝑙(τ3– τ1) (3) 

 𝑈3 = −τ1 + τ2 −  τ3 + τ4 (4) 

The trust (𝜏𝑖)and torque (𝐷𝑖) produced by propellers can be defined by square of rotor speed which 

is denoted by Ω2. 

 
𝜏𝑖 = 𝑏𝛺𝑖

2

𝐷𝑖 = 𝑑𝛺𝑖
2} (𝑏, 𝑑: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (5) 

One can write control signals of quadcopter as 

 [

𝑈1

𝑈2

𝑈3

𝑈4

] = [

0 −𝑏𝑙 0 𝑏𝑙
−𝑏𝑙 0 𝑏𝑙 0
−𝑑 𝑑 −𝑑 𝑑
𝑏 𝑏 𝑏 𝑏

]

[
 
 
 
 
Ω1

2

Ω2
2

Ω3
2

Ω4
2]
 
 
 
 

 (6) 

where, U4 is for altitude control input, U1, U2, U3 are for roll, pitch and yaw angle control inputs 

respectively. The dynamic model is derived using Lagrange formulism under the assumptions 

(Bouabdallah, 2007): 



16 

 

 The structure of the body is rigid and symmetrical. 

 Propellers are rigid. 

 Thrust and drag are proportional to the square of rotor speed. 

 Center of mass and body frame origins are coinciding. 

The Lagrangian (ℒ)  can be shown as potential energy (𝐸𝑃𝑜𝑡)  subtracted from the sum of 

translational(𝐸𝑇𝑟)and rotational energy(𝐸𝑃𝑜𝑡). 

 ℒ(𝑞𝑖, �̇�𝑖) =  𝐸𝑇𝑟 + 𝐸𝑅𝑜𝑡 − 𝐸𝑃𝑜𝑡  (7) 

 𝛤𝑖 = [
𝐹
𝜏
] =

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
 (8) 

where, �̇�𝑖  represents generalized coordinates and 𝛤𝑖  represents generalized forces and torques. 

Quadcopter’s angular motion equations can be written as follows; 

 �̈� =
(𝐼y − 𝐼z)

𝐼x
�̇��̇� −

J
r

Ix
�̇�Ω𝑟 +

𝑙

𝐼x
𝑈1 (9) 

 �̈� =
(𝐼z − 𝐼x)

𝐼𝑦
�̇��̇� +

J
r

𝐼𝑦
�̇�Ω𝑟 +

𝑙

𝐼𝑦
𝑈2 (10) 

 �̈� =
(I𝑥 − I𝑦)

𝐼𝑧
�̇��̇� +

1

𝐼𝑧
𝑈3 (11) 

Translational equation of motions can be written as; 

 �̈� =
𝑈4

𝑚
(cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓) (12) 

 �̈� =
𝑈4

𝑚
(cos𝜑 sin𝜃 sin𝜓 − sin𝜑 cos𝜓) (13) 

 �̈� =
𝑈4

𝑚
(g − cos𝜑 cos𝜓) (14) 

The symbols used above are given in Table I.  

 

Symbol Definitions 

𝜑 Roll angle J𝑟 Propeller inertia 

𝜃 Pitch angle 𝑙 Arm length 

𝜓 Yaw angle 𝐼 Inertia moment 

Ω Rotor speed 𝑏 Trust factor 

Ωr Disturbance 𝑑 Drug factor 

𝑚 Total mass g Gravitational acceleration 

 

2.2. Simulation 

For this paper, full control of a quadcopter simulation is prepared in MATLAB R2015. An IMU 

can provide linear acceleration and angular velocity information rather fast, more than 1000 Hz. 

(Gustavsson, 2015). Therefore, typical sampling frequency is taken as 200Hz, that is, the sensor delay 

is taken as 5 milliseconds for the simulation. 

 

Table 1.  List of symbols used in modeling 
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2.3. Sliding Mode Controller Design(SMC) 

To obtain straightforward and robust control structure, Lyapunov stability method can be used for 

SMC algorithm (Sundarapandian Vaidyanathan, 2017). For ease of terminology and expressing 

equations, control method is taken into two sections. First one is the attitude controller and second one 

is the position controller. The state vector of the simulation consists of both attitude and position state 

vectors. 

Attitude controller: 

Suppose 𝑋𝑎𝑡𝑡 represents the state vector of attitude controller. 

 𝑋𝑎𝑡𝑡 = [𝜑, �̇�, 𝜃, �̇�, 𝜓, �̇�] (15) 

Here𝜑, 𝜃, 𝜓 are roll, pitch and yaw;�̇�, �̇�, �̇� are angular velocities respectively.  So, one can write 

the state vector as 

 𝑋𝑎𝑡𝑡 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6] (16) 

 �̇�1 = 𝑥2, �̇�3 = 𝑥4, �̇�5 = 𝑥6 (17) 

Then, a sliding surface should be determined. For this, the order of switching functions should be 

less than the order of the plant. To provide these requirements the sliding surface should be chosen as 

(Samir Bouabdallah, Roland Siegwart, 2005); 

 𝑠 = 𝑥2 + 𝐶𝑥1 (18) 

 �̇� = �̇�2 + 𝐶�̇�1 = 𝐴�̇�2 + 𝐵𝑈 + 𝐶𝑥2 (19) 

After choosing the sliding surface, control law can be stated. This control law has to converge the 

system to the sliding surface. When it reaches the sliding surface it must remain on the surface. In 

order to achieve this, a Lyapunov function is chosen as; 

 𝑉 =
1

2
𝑠2 (20) 

It’s time derivative is, �̇� = 𝑠�̇�, from Eq.19 

 �̇� = 𝑠[𝐴�̇�2 + 𝐵𝑈 + 𝐶𝑥2] (21) 

 𝐴�̇�2 + 𝐵𝑈 + 𝐶𝑥2 = 0 (22) 

Here, 𝑈(𝑥)~𝛽(𝑥). 

 𝛽(𝑥) = −
𝐴�̇�2 + 𝐶𝑥2

𝐵
 (23) 

 

Stability is provided if 

 𝑈 {

< 𝛽(𝑥) , 𝑠 > 0

= 𝛽(𝑥),          𝑠 = 0

> 𝛽(𝑥),          𝑠 < 0

 (24) 

So, this is ensured by using the control law 

 𝑈 = 𝛽(𝑥) − 𝐾𝑠𝑖𝑔𝑛(𝑠)            𝐾 > 0 (25) 

Signum function in Eq.25 causes chattering on the controller so the system is affected negatively. 

To overcome this case, the most common way is to replace signum function with an equivalent one 

(Sundarapandian Vaidyanathan, 2017). In our case, we preferred to replace the control function with 

hyperbolic tangent function. Hence the input function becomes; 

 𝑈 = 𝛽(𝑥) − 𝐾𝑡𝑎𝑛ℎ(𝜆𝑠)          𝜆 > 0 (26) 
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We are able to adjust the smoothness of hyperbolic tangent function by changing λ parameter. In 

this study λ is taken 0.5. In order to implement SMC to quadcopter dynamics, the sliding surfaces for 

roll, pitch and yaw angles are defined respectively as, 

 𝑠𝜑 = (�̇�𝑟𝑒𝑓 − �̇�)+ C1(𝜑𝑟𝑒𝑓 − 𝜑) (27) 

 𝑠𝜃 = (�̇�𝑟𝑒𝑓 − �̇�) + C3(𝜃𝑟𝑒𝑓 − 𝜃) (28) 

 𝑠𝜓 = (�̇�𝑟𝑒𝑓 − �̇�) + C5(𝜓𝑟𝑒𝑓 − 𝜓) (29) 

From Eq.23, Eq.26 and Eq.27; input control function for roll angle is derived as follows, 

 𝛽1(𝑥) = −
𝑎1�̇��̇� + 𝑎2�̇�𝛺𝑟 + 𝐶2�̇�

𝑏1
 (30) 

 𝑈1 =
𝑎1�̇��̇� + 𝑎2�̇�𝛺𝑟 + 𝐶2�̇�

𝑏1
− 𝐾1𝑡𝑎𝑛ℎ(𝜆𝑠𝜑) (31) 

The input functions 𝑈2 and 𝑈3 for roll and yaw angle control can be derived with the same steps 

from Eq. 20, 22 and 23 as below, 

 𝛽2(𝑥) = −
𝑎3�̇��̇� + 𝑎4�̇�𝛺𝑟 + 𝐶4�̇�

𝑏2
 (32) 

 𝑈2 = −
𝑎3�̇��̇� + 𝑎4�̇�𝛺𝑟 + 𝐶4�̇�

𝑏2
− 𝐾2𝑡𝑎𝑛ℎ(𝜆𝑠𝜃) (33) 

 𝛽3(𝑥) = −
𝑎5�̇��̇� + 𝐶6�̇�

𝑏3
 (34) 

 𝑈3 = −
𝑎5�̇��̇� + 𝐶6�̇�

𝑏3
− 𝐾3𝑡𝑎𝑛ℎ(𝜆𝑠𝜓) (35) 

 

 

Variable Definitions 

𝑎1 (𝐼y − 𝐼z)/𝐼x 𝑎5 (𝐼x − 𝐼y)/𝐼z 

𝑎2 −Jr/Ix b1 1 𝐼x⁄  

𝑎3 (Iz − Ix)/Iy b2 1 𝐼y⁄  

𝑎4 Jr/Iy b3 1 𝐼z⁄  

 

Position controller: 

Suppose 𝑋𝑝𝑜𝑠 represents the state vector of position controller. 

 𝑋𝑝𝑜𝑠 = [𝑥, �̇�, 𝑦, �̇�, 𝑧, �̇�] (36) 

where 𝑥, 𝑦, 𝑧are positions with respect to earth frame; �̇�, �̇�, �̇� are angular velocities respectively.  

So, one can write the state vector as 

 𝑋𝑝𝑜𝑠 = [𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12] (37) 

 �̇�7 = 𝑥8, �̇�9 = 𝑥10, �̇�11 = 𝑥12 (38) 

From here on same step can be applied until the control inputs obtained. To do that first sliding 

surfaces should be determined. 

Table2.Variables used in controller design 
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 𝑠𝑥 = (�̇�𝑟𝑒𝑓 − �̇�)+ C7(𝑥𝑟𝑒𝑓 − 𝑥) (39) 

 𝑠𝑦 = (�̇�𝑟𝑒𝑓 − �̇�)+ C10(𝑦𝑟𝑒𝑓 − 𝑦) (40) 

 𝑠𝑧 = (�̇�𝑟𝑒𝑓 − �̇�)+ C13(𝑧𝑟𝑒𝑓 − 𝑧) (41) 

𝑈𝑥,𝑈𝑦and 𝑈𝑧are the control inputs for position and altitude. Accordingly, one can write control 

inputs as, 

 𝑈𝑥 = 
𝑚

𝑈4
(𝐾4𝑡𝑎𝑛ℎ(𝜆𝑠𝑥) + 𝐶8𝑠𝑥 + �̈�𝑑 + 𝐶9(�̇�𝑑 − �̇�)) (42) 

 𝑈𝑦 = 
𝑚

𝑈4
(𝐾5𝑡𝑎𝑛ℎ(𝜆𝑠𝑦) + 𝐶11𝑠𝑦 + �̈�𝑑 + 𝐶12(�̇�𝑑 − �̇�)) (43) 

 𝑈𝑧 = 
𝑚

cos𝜑 cos 𝜃
(𝐾6𝑡𝑎𝑛ℎ(𝜆𝑠𝑧) + 𝐶14𝑠𝑧 + 𝑔 + �̈�𝑑 + 𝐶15(�̇�𝑑 − �̇�)) (44) 

 

 

Figure 2.Blog diagram of the SMC controller 

2.4. Ant Colony Optimization Algorithm 

Some problems such as scheduling, vehicle routing, timetabling, are considered as real-world 

problems and they are solved with the help of heuristic algorithms. This algorithm is first introduced 

by Marco Dorigo in his Ph.D. thesis (Dorigo, 1992) and it is inspired by foraging behavior of ants. The 

common behaviors of ants are mathematically modeled for the algorithm. Similar to searching of ants 

for the food, they start to explore the surrounding area around their nest randomly. When an ant finds a 

food source, it takes some portion of food and then carries it back to their nest. On the way back to the 

nest, ant leaves a pheromone track on the ground. Pheromone quantity on the ground is proportional to 

the quality and amount of the food found. So, this trail gives information and guides other ants to the 

food source. This pheromone based, circuitous communication between ants helps them finding the 

shortest track between the food and their nest (Marco Dorigo, Mauro Birattari, Thomas Stützle, 2006). 

This communication technique is known as stigmergy (Abraham, Grosan, & Ramos, 2006). 

 

 

Table3.ACO Pseudo Code 

ACO Pseudo Code 

Initialize 

While Termination conditions are not met 

do For all population 

Generate paths and calculate fitness 

Pheromone update 

Update paths 

end 

end 
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2.5. Invasive Weed Optimization 

This optimization algorithm is first proposed by Mehrabian and Lucas (Mehrabian AR, Lucas C., 

2006;). It is based on the natural selection rule. For the selection some prominent characteristic 

properties of weeds, namely adaptation, robustness, aggressiveness, and invasion, became dominant. 

In general, natural intrusion is an event in which the groups of life forms (for example weeds) move to 

new place for better conditions and contend with local populaces (Nanako Shigesada, Kohkichi 

Kawasaki, 1997). In fact, it is not a new discovery anyway, it is a standout amongst the most vital 

effects on the world's environments (Shibu Jose, Harminder Pal Singh, Daizy Rani Batish, Ravinder 

Kumar Kohli, 2013). Additionally, it can be utilized as an essential system in designing effective 

optimization algorithms (I. De Falco, A. Della Cioppa, D. Maisto, U. Scafuri, E. Tarantino, 2012). 

Table4.IWO Pseudo Code 

IWO Pseudo Code 

Initialize 

While Termination conditions are not met 

Do For all population 

Calculate Fitness 

Produce Seeds 

Distribute Seeds 

end 
Competitive Exclusion 

end 

 

 

2.6. Firefly Algorithm 

This algorithm is first proposed by Xin-SheYang (Yang, 2008) and inspired by nature. It is based 

on flashing behavior of fireflies. To do that three rules are to be set. These are; 

 All fireflies are unisex 

 Attractiveness is proportional to their brightness 

 Brightness of a firefly is determined by its fitness.  

In this algorithm first fireflies are distributed in the search space in a random manner. Interaction 

between fireflies is calculated considering their individual brightness, environment and distance 

between. The attractiveness is inversely proportional to the distance between two individuals. If there is 

no other firefly brighter than one firefly it will move randomly. 

 

Table5.FA Pseudo Code 

FA Pseudo Code 

Initialize 

While Termination conditions are not met 

do For all population 

Evaluate Light Intensity 

Calculate Attractiveness 

Move  

end 

end 
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3. Implementation  

3.1. Control 

Sliding mode controller is used as low level controller for attitude control and used as high level 

controller for position control. Thus the performance of this controller under noise and disturbance is 

needed to be studied in order to present the effective control of quadcopter. When the effective control 

is ensured then parameter optimization is to be studied. All simulations are run with optimum 

parameters for 38 seconds. Running time period is chosen as this because the completion of a one full 

round of reference paths takes 38 seconds as shown in Figure 3. 

 

 

Figure 3. Reference Flight Trajectory and Time on the Spot 

3.1.1. Low level controller with noise 

Sensor noise is added to the feedback signal on the model as shown in Figure 4. Noise power is 

taken as 0.1 with 0.001 sampling time. Noise added simulation results for attitude controller is shown in 

Figure 5. 

 

Figure 4. Noise and sensor delay application on the model. 

Noise 

Sensor output 
Sensor delay 
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Figure 5. Attitude controller with noisy sensor feedback. 

3.1.2. High level controller with noise 

Sensor noise is added to the feedback signal on the model as shown in Figure 6. Noise power is 

taken as 0.1 with 0.001 sampling time. Noise added simulation results for position controller is shown 

in Figure 7.  

 

 

Figure 6. Noise and sensor delay application on the model. 

 

 

Figure 7. Position controller with noisy sensor feedback. 

 

 

Noise 

Sensor output 
Sensor delay 
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3.1.3. Low level controller with disturbance 

Attitude controller’s performance under disturbance is presented in Figure 8. Disturbance is applied 

to pitch angle twice on 10th and 25thsecond. Amplitude of the disturbance signal is chosen as 1. It can 

be seen that controller can stabilize the system in less than two seconds. 

Figure 8.Attitude controller with disturbance. 

 

 

3.1.4. High level controller with disturbance 

Position controller’s performance under disturbance is presented in Figure 9. Disturbance is applied 

to X positiontwice on 10th and 25th second. Amplitude of the disturbance signal is chosen as 1. It can 

be seen that controller can stabilize the system in less than one second. 

 

 

Figure 9. Position controller with disturbance. 

 

 

 

 



24 

 

1.1. Optimization 

A cost function (CF) should be defined to apply these algorithms to the problem. In our case, cost 

function is chosen as following squared error fitness function, 

 

𝐶𝐹 =
1

3
[(∑ 𝑒𝑥(𝑘)

𝑁

𝑘=1

)

2

+ (∑ 𝑒𝑦(𝑘)

𝑁

𝑘=1

)

2

+ (∑ 𝑒𝑧(𝑘)

𝑁

𝑘=1

)

2

] (45) 

where position error values are represented by 𝑒𝑥 , 𝑒𝑦 and 𝑒𝑧. To calculate such a cost function a 

reference flight trajectory is generated. That is shown in Figure 2. It can be seen where the quadcopter 

should be on a specific time. Time scale in the figure is given in seconds. All algorithms are executed 

on the same trajectory in order to satisfy the equality of comparison terms. Twelve parameters of the 

model are tuned in total. C parameters, presented at the end of Section II-B, 𝐶7, 𝐶10 and 𝐶13 are belong 

to the sliding surfaces. 𝐶8, 𝐶9, 𝐶11, 𝐶12, 𝐶14 and 𝐶15 are belong to 𝛽(𝑥) functions. K parameters are 

belong to 𝑡𝑎𝑛ℎ(𝜆𝑥)  functions. All parameters are optimized within the range of [0-10] due to 

hardware limitations.It is observed that population of 25 individuals can givesatisfactory results by 

means of time and cost function efficiency. Also 50 iterations are enough to observe that the algorithm 

reached a satisfactory result which was proven by means of convergence rates and converged values. 

Thus, for time and processing efficiency, all results presented in this paper were evaluated with 50 

iterations. The parameters used for the algorithms are given in Table6. Under these conditions the 

quadcopter simulation run in accelerated mode for 40 seconds. After takeoff, the vehicle should settle 

on an altitude of 5 meters and follows an elliptic trajectory for a one complete round.  

 

Table6.Parameters Used in Algorithms 

ACO 

Sample size: 40 

Intensification factor: 0.5 

Deviation-Distance ratio: 1 

IWO 

Initial population size: 10 

Min / Max number of seeds: 0 / 10 

Variance reduction exponent: 3 

Standard deviation initial value: 0.8 

Standard deviation final value: 0.001 

FA 

Light absorption coefficient: 1 

Attraction coefficient base value: 2 

Mutation coefficient: 0.2 

Mutation coefficient damping ratio: 0.98 

Uniform mutation range: 0.5 
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Figure 10. Simulated Flight Path of the Vehicle and its Orientation 

 

2. Results 

According to the results obtained all three algorithms displayed satisfactory performances. 

Simulated flight trajectory and vehicle’s orientation can be seen on Fig 3. During the simulation 

position errors are decreased to 1-2 cm. This is achieved by optimizing control parameters with the 

presented algorithms. Comparison of convergence rate of algorithms is shown in Figure 11, where FA 

algorithm converged to the smallest value with the highest convergence speed. This makes it ideal to 

run it for small number of iterations. 

All algorithms are performed under equal conditions. The difference between iteration time, total 

time spent and best costs achieved are shown in Table 8. FA has the best performance however it 

needs the highest processing power.  

 

Figure 11. Fitness Comparison of the algorithms on SMC 

Position errors with optimized parameters are shown in figures 12-14. 

Simulated Flight Path and Orientation 
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Figure 12. Position Error with ACO 

 

Figure 13. Position Error with IWO 

 

Figure 14. Position Error with FA 
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Table 7. Time and Best Cost Comparison of the Algorithms 

 

Average Time Per 

Iteration Total Time Best Cost 

ACO 00:00:30 00:25:33 0.4303 

IWO 00:01:03 00:53:19 0.2031 

FA 00:03:36 03:00:44 0.0006 

 

3. Conclusion 

It is observed that using heuristic optimization algorithms for the quadcopter’s parameter 

optimization problem provides satisfactory results. As seen in Figure12, Figure13and Figure14, 

position errors decrease to centimeter scale. This indicates that high precision control of quadcopter 

can be achieved by optimizing control parameters. In comparison of algorithms FA presented the best 

effectiveness. To run such an algorithm in real-time, it will need more computation power comparing 

to IWO and ACO. To overcome this problem, algorithm can be run on a separate processor at some 

reasonable time intervals. As seen in Figure 11, convergence rate of FA is good enough to run it for 

around five or six iterations. With a high computation power this may take small enough time to run it 

real time. 

For future studies real-time optimization of the control parameters can be studied to provide high 

precision control under highly variable conditions like atmospheric changes (gusty wind, humidity 

changes, temperature changes etc.), near field explosions, getting shot and even electromagnetic 

warfare conditions.  
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