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On the Padovan p-numbers

Ömür DEVEC� ∗ and Erdal KARADUMAN†

Abstract

In this paper, we de�ne the Padovan p-numbers and then we obtain
their miscellaneous properties such as the generating matrix, the Binet
formula, the generating function, the exponential representation, the
combinatorial representations, the sums and permanental representa-
tion. Also, we study the Padovan p-numbers modulo m. Furthermore,
we de�ne Padovan p-orbit of a �nite group and then, we obtain the
length of the Padovan p-orbits of the quaternion group Q2n , (n ≥ 3).
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1. Introduction and Preliminaries

The well-known the Fibonacci sequence is de�ned by initial values F0 = 0 , F1 = 1 and
recurrence relation

Fn+2 = Fn+1 + Fn for n ≥ 0.

The Padovan sequence is the sequence of integers P (n) de�ned by initial values P (0) =
P (1) = P (2) = 1 and recurrence relation

P (n) = P (n− 2) + P (n− 3) for n ≥ 3.

The Padovan sequence is

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . . .
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The Padovan numbers are generated by a matrix Q,

Q=

 0 1 0
0 0 1
1 1 0

 ,
The powers of Q give

Qn=

 P (n− 5) P (n− 3) P (n− 4)
P (n− 4) P (n− 2) P (n− 3)
P (n− 3) P (n− 1) P (n− 2)

 .
For more information on this sequence, see [13].
Kalman [14] mentioned that these sequences are special cases of a sequence which is
de�ned recursively as a linear combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,

where c0, c1, · · · , ck−1 are real constants. In [14], Kalman derived a number of closed-form
formulas for the generalized sequence by companion matrix method as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Then by an inductive argument he obtained that

Ank


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1

 .
Many of the numbers obtained by using homogeneous linear recurrence relations and their
miscellaneous properties have been studied by some authors; see for example, [9, 10, 11,
12, 15, 16, 19, 20, 21, 22, 24, 25, 27, 28, 29, 31]. In Section 2, we de�ne the Padovan
p-numbers. Then we obtain the generating matrix, the Binet formula, the generating
function, the exponential representation, the combinatorial representations, the sums and
permanental representation of the Padovan p-numbers. The study of the linear recurrence
sequences in algebraic structures began with the earlier work of Wall [30] where the
ordinary Fibonacci sequences in cyclic groups were investigated. Recently, many authors
have studied some special linear recurrence sequences in algebraic structures; see for
example, [1, 3, 5, 6, 7, 8, 17, 23, 26]. In Section 3, we study the Padovan p-numbers
modulo m. Also in this section, we give the de�nition of Padovan p-sequences in groups
generated by two or more elements. Then we examine these sequences in �nite groups.
Furthermore, we obtain the periods of the Padovan p-sequences of the quaternion group
Q2n , (n ≥ 3) as the applications of obtained results in Section 3.

2. The Padovan p-Numbers

Now we de�ne the Padovan p-numbers by the following homogeneous linear recurrence
relation for any given p (p = 2, 3, 4, . . .) and n ≥ 1

(2.1) Pap (n+ p+ 2) = Pap (n+ p) + Pap (n)
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with initial conditions Pap (1) = Pap (2) = · · · = Pap (p) = 0, Pap (p+ 1)= 1 and
Pap (p+ 2)= 0.
When p = 2 in (2.1), we obtain Pa2 (2n+ 1) = Fn for n ≥ 1.
By equation (2.1), we have


Pap (n+ p+ 2)
Pap (n+ p+ 1)

...
Pap (n+ 2)
Pap (n+ 1)

 =



0 1 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · 0 1 0




Pap (n+ p+ 1)
Pap (n+ p)

...
Pap (n+ 1)
Pap (n)


for the sequence of the Padovan p-numbers. Letting

M =



0 1 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 · · · 0 1 0


.

The matrix M is said to be a Padovan p-matrix. Also, we obtain that

(2.2) Mn =


Pap(n+p+1) Pap(n+p+2) Pap(n+1) Pap(n+2) ··· Pap(n+p)
Pap(n+p) Pap(n+p+1) Pap(n) Pap(n+1) ··· Pap(n+p−1)

...
...

...
...

...
...

Pap(n+1) Pap(n+2) Pap(n−p+1) Pap(n−p+2) ··· Pap(n)
Pap(n) Pap(n+1) Pap(n−p) Pap(n−p+1) ··· Pap(n−1)


for n ≥ 1, which can be proved by mathematical induction. We easily derive that

(2.3) detM = (−1)p+1 .

By equation (2.3), we have detMn = (−1)np+n. Now, we can give a formula for Padovan
p-numbers (n ≥ 1 ) by using this determinantal representation.

2.1. Lemma. The characteristic equation of the Padovan p-numbers xp+2 − xp − 1 = 0
does not have multiple roots.

Proof. Let α be a root of f (x) = 0 where f (x) = xp+2 − xp − 1 so that α /∈ {0, 1}. If

possible, α is a multiple root in which case f (α) = f
′
(α) = 0. Now f

′
(α) = 0 and α 6= 0

give α2 = p
p+2

while f (α) = 0 shows αp
(
α2 − 1

)
−1 = 0 so that

(
p
p+2

) p
2 ·
(
−2
p+2

)
= 1, an

impossibility since the left hand side is less than 1 for p ≥ 2. This contradiction proves
the Lemma. �

Let f (u) be the characteristic polynomial of the Padovan p-matrix M , then f (u) =
up+2 − up − 1. If u1, u2, . . . , up+2 are eigenvalues of the matrix M , then by Lemma 2.1,
they are distinct. Let Vp be a (p+ 2)× (p+ 2) Vandermonde matrix such that

(2.4) Vp =


up+1
1 up+1

2 · · · up+1
p+2

up1 up2 · · · upp+2

...
... · · ·

...
u1 u2 · · · up+2

1 1 · · · 1

 .
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Let V
(i,j)
p be a (p+ 2)× (p+ 2) matrix obtained from Vp by replacing the jth column of

Vp by A
i
p, where, A

i
p is a (p+ 2)× 1 matrix as follows:

Aip =


un+p+2−i
1

un+p+2−i
2

...

un+p+2−i
p+2

 .
Now we consider the Binet formula for the Padovan p-numbers. We give the following
Theorem.

2.2. Theorem. Let Mn = [mij ] . Then, mij =
det

(
V

(i,j)
p

)
det(Vp)

.

Proof. Since the eigenvalues of the matrixM are distinct, the matrixM is diagonalizable.
Let D = (u1, u2, . . . , up+2), then it is easy to see thatMVp = VpD. Since Vp is invertible,

(Vp)
−1MVp = D. Thus, the matrix M is similar to D. So we get MnVp = VpD

n for
n ≥ 1. Then we have the following linear system of equations for n ≥ 1:

mi1u
p+1
1 +mi2u

p
1 + · · ·+mip+2 = un+p+2−i

1

mi1u
p+1
2 +mi2u

p
2 + · · ·+mip+2 = un+p+2−i

2

...

mi1u
p+1
p+2 +mi2u

p
p+2 + · · ·+mip+2 = un+p+2−i

p+2 .

So, for each i, j = 1, 2, · · · , p+ 2, we obtain mij as follows:

mij =
det
(
V

(i,j)
p

)
det (Vp)

.

Theorem 2.1 gives immediately: �

2.3. Corollary. Pap (n) =
det

(
V

(p+2,1)
p

)
det(Vp)

=
det

(
V

(2,3)
p

)
det(Vp)

=
det

(
V

(p+1,p+2)
p

)
det(Vp)

.

Now we give the generating function of the Padovan p-numbers and an exponential
representation for the Padovan p-numbers with the following Theorem.

2.4. Theorem. The generating function g (x) of the Padovan p-numbers is given by

g (x) =
1

1− x2 − xp+2

for 0 ≤ x2 + xp+2 < 1 and it has exponential representation

g (x) = exp

(
∞∑
i=1

x2i

i
(1 + xp)i

)
.

Proof. Let g (x) be a generating function for the Padovan p-numbers. Then

(2.5)
g (x) = Pap (p+ 1) + Pap (p+ 2)x+ Pap (p+ 3)x2 + · · ·+

+Pap (p+ n+ 1)xn + Pap (p+ n+ 2)xn+1 + · · · .
By the de�nition of the Padovan p-numbers, we can write

g (x)− x2g (x)− xp+2g (x) = Pap (p+ 1) = 1.

So we get

g (x) =
1

1− x2 − xp+2
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for 0 ≤ x2 + xp+2 < 1. Also by a simple calculation, we obtain

ln g (x) = − ln
{
1− x2 (1 + xp)

}
=

∞∑
i=1

x2i

i
(1 + xp)i .

Thus the proof is complete. �

Now we give a combinatorial representation for the Padovan p-numbers by the following
Theorem.

2.5. Theorem.

Pap (n+ p+ 1) =
∑

n
p+2
≤m≤n

(
m
j

)
where j = n−2m

p
.

Proof. From (2.5), it is clear that the coe�cient of xn in g (x) is Pap (p+ n+ 1). Since

g (x) =
1

1− x2 − xp+2
=

1

1− (x2 + xp+2)
= 1 +

(
x2 + xp+2)+

+
(
x2 + xp+2)2 + · · ·+ (x2 + xp+2)n + · · ·

= 1 + x2 (1 + xp) + x4
2∑
j=0

(
2
j

)
xpj + · · ·+ x2n

n∑
j=0

(
n
j

)
xpj + · · · ,

we only consider the �rst n + 1 terms on the right-side. By the binomial theorem, we
can write(

x2 + xp+2)m =
(
x2 (1 + xp)

)m
= x2m

m∑
j=0

(
m
j

)
xpj .

Then by the above equation we see that the coe�cient of xn in
(
x2 + xp+2

)m
for positive

m and n is(
m
j

)
where j = n−2m

p
. Thus the proof is complete. �

Let E (e1, e2, . . . , el) be the l × lcompanion matrix

E (e1, e2, · · · , el) =


e1 e2 e3 · · · el
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

 .

2.6. Theorem. (Chen and Louck [4]). The (i, j) entry e(n)
ij

(e1, e2, . . . , el) in the

matrix En (e1, e2, . . . , el) is given by the following formula:

(2.6)

e(n)
ij

(e1, e2, . . . , el) =
∑

(t1,t2,··· ,tl)

tj + tj+1 + · · ·+ tl
t1 + t2 + · · ·+ tl

×
(
t1 + t2 + · · ·+ tl
t1, t2, . . . , tl

)
et11 · · · e

tl
l

where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+ ltl = n− i+j,(
t1 + t2 + · · ·+ tl
t1, t2, . . . , tl

)
= (t1+t2+···+tl)!

t1!t2!···tl!
is a multinomial coe�cient, and the coe�cients

in (2.6) are de�ned to be 1 if n = i− j.
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Now we give other combinatorial representations than the above for the Padovan p-
numbers.

2.7. Corollary. i.

Pap (n) =
∑

(t1,t2,...,tp+2)

(
t1 + t2 + · · ·+ tp+2

t1, t2, · · · , tp+2

)
where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(p+ 2) tp+2 =
n− p− 1.

ii.

Pap (n) =
∑

(t1,t2,...,tp+2)

tp+2

t1 + t2 + · · ·+ tp+2

(
t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(p+ 2) tp+2 =
n+ 1.

iii.

Pap (n) =
∑

(t1,t2,··· ,tp+2)

t3 + t4 + · · ·+ tp+2

t1 + t2 + · · ·+ tp+2

(
t1 + t2 + · · ·+ tp+2

t1, t2, . . . , tp+2

)
where the summation is over nonnegative integers satisfying t1+2t2+ · · ·+(p+ 2) tp+2 =
n+ 1.

Proof. If we take i = p+2 and j = 1 for case i., i = p+1 and j = p+2 for case ii. and
i = 2 and j = 3 for case iii. in Theorem 2.4, then we can directly see the conclusions
from equation (2.2). �

Let the sums of the Padovan p-numbers from p+ 1 to p+ n be denoted by Sn, that is,

(2.7) Sn =

n∑
i=1

Pap (p+ i)

and let T and Kn be the (p+ 3)× (p+ 3) matrices

T =



1 0 0 0 · · · 0 0
1 0 1 0 · · · 0 1
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 1 0


=



1 0 0 · · · 0 0
1
0
0 M
...
0


and

Kn =



1 0 0 · · · 0 0
Sn
Sn−1

... Mn

...
Sn−p−1


.

Then by induction on n, it is easy to see that Kn = Tn.
Now we can give the sums of the Padovan p-numbers by the following Theorem.
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2.8. Theorem. Let the sums of the Padovan p-numbers from p + 1 to p + n, Sn be as
in (2.7). Then

Sn =

p+1∑
i=0

Pap (n+ p+ 2− i)− 1.

Proof. Let U and D1 be the (p+ 3)× (p+ 3) matrices

U =



1 0 0 · · · 0

−1 up+1
1 up+1

2 · · · up+1
p+2

−1 up1 up2 · · · upp+2

...
...

... · · ·
...

−1 u1 u2 · · · up+2

−1 1 1 · · · 1


and

D1 =


1
u1

. . .

up+2


where u1, u2, . . . , up+2 are the roots of the equation up+2 − up − 1 = 0. Expanding
det (U) by the Laplace expansion of the determinant with respect to the �rst row gives us
det (U) = det (Vp) where Vp is as in (2.4). It is easy to see that (1− u)

(
up+2 − up − 1

)
=

0 is the characteristic equation of the matrix U and the eigenvalues of U are 1, u1, u2, . . . , up+2.
By Lemma 2.1, it is known that 1, u1, u2, · · · , up+2 are distinct. Hence, the matrix U
is diagonalizable. Also, we can write TU = UD1. Since the matrix U is invertible,
U−1TU = D1. Thus, the matrix T is similar to the matrix D1. Then T

nU = UDn
1 , and

hence KnU = UDn
1 . Since Sn = k2,1 where Kn = [kij ], by using matrix multiplication,

we can write

Sn −

(
p+1∑
i=0

Pap (n+ p+ 2− i)

)
= −1.

So we get

Sn =

p+1∑
i=0

Pap (n+ p+ 2− i)− 1.

�

Now we consider the relationship between the Padovan p-numbers and the permanent
of a certain matrix which is obtained using the Padovan p-matrix M .

2.9. De�nition. An n ×m real matrix C = [cij ] is called a contractible matrix in the
αth column (resp. row.) if the αth column (resp. row.) contains exactly two non-zero
entries.

Let u1, u2, . . . , un be row vectors of the matrix C and let C be contractible in the αth

column with ciα 6= 0, cjα 6= 0 and i 6= j. Then the (n− 1) × (m− 1) matrix Cij:α
obtained from C by replacing the ith row with ciαuj + cjαui and deleting the jth row
and the αth column is called the contraction in the αth column relative to the ith row
and the jth row.
In [2], Brualdi and Gibson showed that per (A) = per (B) if A is a real matrix of order
n > 1 and B is a contraction of A.
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Let p be a �xed integer such that p ≥ 2 and let Anp = [aij ] be the n × n super-diagonal
matrix with ai,i+1 = ai+1,i = ai,i+p+1 = 1 and for all i and 0 otherwise, that is,

(p+ 2) th
↓

Anp =



0 1 0 · · · 0 1 0 · · · 0
1 0 1 0 · · · 0 1 0
0 1 0 1 0 · · · 0 1 0
0 0 1 0 1 0 · · · 0 1
0 0 0 1 0 1 0 · · · 0
...

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .

0 0 0 · · · 0 0 1 0 1
0 0 0 0 · · · 0 0 1 0



.

Note that if n = 1, A1
p = 0.

2.10. Theorem. The permanent of Anp (n ≥ 1, p ≥ 2) is Pap (n+ p+ 1).

Proof. We prove this by induction. First, let us consider the case n < p + 2. From
the de�nitions of the matrix Anp and the Padovan p-numbers it is clear that perA1

p =

Pap (p+ 2) = 0 and perA2
p = Pap (p+ 3) = 1. Also, we obtain the following matrix for

3 ≤ λ ≤ p+ 1

Aλp =


0 1 0
1 0 1

. . .
. . .

. . .

1 0 1
0 1 0

 .

Then

perAλp =

{
1 if λ is even,
0, if λ is odd.

Furthermore, we know that

Pap (λ+ p+ 1) =

{
1 if λ is even,
0, if λ is odd,

for 3 ≤ λ ≤ p+ 1.

So we get perAnp = Pap (n+ p+ 1) for 1 ≤ n ≤ p+ 1.
Now, let us consider the case n ≥ p+ 2. Suppose that the equation holds for n ≥ p+ 2.
Then we show that the equation holds for n+1. If we expand the perAnp by the Laplace
expansion of the permanent, we obtain

perAn+1
p = perAn−1

p + perAn−p−1
p .

Since perAn−1
p = Pap (n+ p) and perAn−p−1

p = Pap (n), we get

perAn+1
p = Pap (n+ p+ 2).

So, the proof is complete. �
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3. The Padovan p-Sequences in Groups

We consider the Padovan p-numbers modulo m.
Reducing the Padovan p-sequence {Pap (n)} by a modulus m, we can get the repeating
sequence, denoted by

{Papm (n)} = { Papm (1) , Papm (2) , . . . , Papm (p+ 2) , . . . , Papm (i) , . . .}

where Papm (i) ≡ Pap (i) (mod m). It has the same recurrence relation as in (2.1).
A sequence is periodic if, after a certain point, it consists only of repetitions of a �xed
subsequence. The number of elements in the shortest repeating subsequence is called
the period of the sequence. For example, the sequence a, b, c, d, b, c, d, b, c, d, ... is periodic
after the initial element a and has period 3. A sequence is simply periodic with period k
if the �rst k elements in the sequence form a repeating subsequence. For example, the
sequence a, b, c, d, a, b, c, d, a, b, c, d, ... is simply periodic with period 4.

3.1. Theorem. The sequence {Papm (n)} is simply periodic.

Proof. Let Xp = { (x1, x2, · · · , xp+2)| xi′s are integers such that 0 ≤ xi ≤ m− 1}, then
|Xp| = mp+2. Since there are mp+2 distinct (p+ 2)-tuples of elements of Zm, at least
one of the (p+ 2)-tuples appears twice in the sequence {Papm (n)}. Therefore, the sub-
sequence following this (p+ 2)-tuple repeats; hence, the sequence {Papm (n)} is periodic.
So if

Papm (u+ 1) = Papm (v + 1) , Papm (u+ 2) = Papm (v + 2) , . . . ,

Papm (u+ p+ 2) = Papm (v + p+ 2)

and v > u, then v ≡ u (mod p+ 2). From the de�nition, we can easily derive that

Pap (n) = Pap (n+ p+ 2)− Pap (n+ p) .

Thus we obtain

Papm (u) = Papm (v) , Papm (u− 1) = Papm (v − 1) , . . . ,
Papm (2) = Papm (v − u+ 2) , Papm (1) = Papm (v − u+ 1) ,

which implies that the sequence is simply periodic. �

We denote the period of the sequence {Papm (n)} by hPapm.

3.2. Example. The sequence {Pa32 (n)} is

{0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . .} .

Since Pa32 (32) = Pa32 (1) = 0, Pa32 (33) = Pa32 (2) = 0, Pa32 (34) = Pa32 (3) = 0,
Pa32 (35) = Pa32 (4) = 1 and Pa32 (36) = Pa32 (5) = 0, the sequence is simply periodic
with period hPa32 = 31.

Given an integer matrix A = [aij ], A (mod m) means that all entries of A are reduced
modulo m, that is, A (mod m) = (aij (mod m)). Let us consider the set 〈A〉m ={
Ai (mod m)

∣∣ i ≥ 0
}
. If gcd (m, detA) = 1, then the set 〈A〉m is a cyclic group. Let

the notation
∣∣〈A〉m∣∣ denote the order of the set 〈A〉m. By equation (2.2), it is clear that

the set 〈M〉m is a cyclic group for every positive integer m.
Now we can give the relationship between the Padovan p-matrix M and the period
hPapm by the following Theorem.

3.3. Theorem. If m has the prime factorization m = tα where t is prime and α is a
positive integer, then hPaptα =

∣∣〈M〉tα ∣∣.
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Proof. Let
∣∣〈M〉tα ∣∣ = u. Then by equation (2.2), it is easy to see that Pap (u+ 1) ≡

Pap (u+ 2) ≡ · · · ≡ Pap (u+ p) ≡ 0 (mod tα) , Pap (u+ p+ 1) ≡ 1 (mod tα) and
Pap (u+ p+ 2) ≡ 0 (mod tα), that is, Pap (u+ 1) ≡ Pap (1) (mod tα), Pap (u+ 2) ≡
Pap (2) (mod tα), . . . , Pap (u+ p) ≡ Pap (p) (mod tα), Pap (u+ p+ 1) ≡ Pap (p+ 1) (mod tα)
and Pap (u+ p+ 2) ≡ Pap (p+ 2) (mod tα). Since hPaptα is the period of the sequence
{Paptα (n)}, we obtain hPaptα |u. Now we need only to prove that hPaptα is divis-
ible by

∣∣〈M〉tα ∣∣. From equation (2.2), we obtain MhPaptα (mod tα) ≡ I, where I is

the (p+ 2) × (p+ 2) identity matrix. So we get
∣∣〈M〉tα ∣∣∣∣hPaptα . Thus the proof is

complete. �

The auxiliary equation for the Padovan p-numbers can be written as

xp+2 = xp + 1.

3.4. Lemma. Let n ≥ p+ 2 and p ≥ 2, then

(3.1) xn = Pap (n)xp+1 + Pap (n+ 1)xp +

p−1∑
i=0

Pap (n− 1− i)xi.

Proof. This follows directly from induction on n. �

Let t be a prime and let Gt
α

p =
{
xn (modtα) : n ∈ Z, xp+2 = xp + 1

}
such that α is a

positive integer. Then, it is clear that the set Gt
α

p is a cyclic group.
Now we can give a relationship between the characteristic equation of the Padovan p-
numbers and the period hPapm by the following Theorem.

3.5. Theorem. The cyclic group Gt
α

p is isomorphic to the cyclic group 〈M〉tα , where t
is prime and α is a positive integer.

Proof. Let t be a prime and let α be a positive integer. It is clear that hPaptα >
2p + 2. Then by equation (3.1) we see that xhPaptα ≡ 1 (mod tα). Thus we obtain∣∣∣Gtαp ∣∣∣ =hPaptα . So by Theorem 3.3 we have Gt

α

p
∼= 〈M〉tα . �

Now we give some properties of the period hPapm by the following Theorem.

3.6. Theorem. i. Let t be a prime and let u be the smallest positive integer where
hPaptu+1 6= hPaptu , then hPaptσ = tσ−u ·hPaptu for every integer σ > u. In particular,
if hPapt 6= hPapt2 , then hPaptσ = tσ−1 · hPapt holds for every integer σ > 1.

ii. If m =
∏v
i=1 t

ei
i , (v ≥ 1) where ti's are distinct primes, then

hPapm = lcm
[
hPapte11

, hPapte22
, . . . , hPaptevv

]
.

Proof. i. By Theorem 3.3 we see that for each positive integer a,MhPap
ta+1 ≡ I

(
mod ta+1

)
,

hence MhPap
ta+1 ≡ I (mod ta), which means that hPapta divides hPapta+1 . On the

other hand, writing MhPapta = I +
(
m

(a)
ij · t

a
)
, by the binomial theorem, we obtain

MhPapta ·t =
(
I +

(
m

(a)
ij · t

a
))t

=

t∑
i=0

(
t
i

)(
m

(a)
ij · t

a
)i
≡ I

(
mod ta+1) ,

which implies that hPapta+1 divides hPapta ·t. Thus, hPapta+1 = hPapta or hPapta+1 =

hPapta ·t, and the latter holds if and only if there is am(a)
ij which is not divisible by t. Due

to fact that we assume u is the smallest positive integer such that hPaptu+1 6= hPaptu ,

there is an m
(u)
ij which is not divisible by t. Since there is an m

(u)
ij such that t does not

dividem
(u)
ij , it is easy to see that there is anm

(u+1)
ij which is not divisible by t. This shows
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that hPaptu+2 6= hPaptu+1 . Then we see that hPaptu+2 = t · hPaptu+1 = t2 · hPaptu .
So by induction on u we obtain hPaptσ = tσ−u · hPaptu for every integer σ > u. Also,
if u = 1, then hPaptσ = tσ−1 · hPapt for every integer σ > 1.

ii. Since hPapteii
is the length of the period of the sequence

{
Papteii

(n)
}
, the se-

quence
{
Papteii

(n)
}

repeats only after blocks of length λ · hPapteii , (λ ∈ N). Also,

hPapm is the length of the period {Papm (n)}, which implies that
{
Papteii

(n)
}

re-

peats after hPapm terms for all values i. Thus, hPapm is the form λ · hPapteii for

all values of i, and since any such number gives a period of {Papm (n)}. So we get

hPapm =lcm
[
hPapte11

, hPapte22
, . . . , hPaptevv

]
. �

We consider the Padovan p-sequences in p-generated groups such that p ≥ 2.
Let G be a �nite p-generator group and let
X = {(x1, x2, . . . , xp) ∈G×G× · · · ×G︸ ︷︷ ︸

p

|< {x1, x2, . . . , xp} >= G}. We call (x1, x2, . . . , xp)

a generating p-tuple for G.

3.7. De�nition. For a p-tuple (x1, x2, . . . , xp) ∈ X, we de�ne the Padovan p-orbit
Pap (G;x1, x2, . . . , xp) = {ai} by

a0 = e, a1 = x1, a2 = x2, . . . , ap= xp, ap+1 = e, an+p+1 = an−1 · an+p−1,

n ≥ 1.

3.8. Theorem. A Padovan p-orbit of a �nite group is simply periodic.

Proof. Let n be the order of G. Since there are np+2 distinct (p+2)-tuples of elements
of G, at least one of the (p+2)-tuples appears twice in a Padovan p-orbit of G. There-
fore, the subsequence following this (p+2)-tuple repeats; hence, the Padovan p-orbit is
periodic. �

Since the Padovan p-sequence is periodic, there exist natural numbers u and v, with
u > v, such that

au+1 = av+1, au+2 = av+2, . . . , au+p+2 = av+p+2.

By de�nition 3.7, we know that

au = (au+p+2) · (au+p)−1 and av = (av+p+2) · (av+p)−1 .

Therefore, au = av, and hence,

au−v = av−v = a0, au−v+1 = av−v+1 = a1, . . . , au−v+p+1 = av−v+p+1 = ap+1,

which implies that the Padovan p-orbit is simply periodic.
We denote the length of the period of the Padovan p-orbit Pap (G;x1, x2, . . . , xp) by
LPap (G;x1, x2, . . . , xp) and we call this length the Padovan p-length with respect to
the generating p-tuple (x1, x2, . . . , xp). From the de�nition it is clear that the Padovan
p-length of a �nite group depends on the chosen generating set and the order in which
the assignments of x1, x2, . . . , xp are made.
The classic Padovan p-sequence in a cyclic group C = 〈x〉 can be written as Pap(C;x, x, . . . , x︸ ︷︷ ︸

p+2

).

It is clear that the period of hPapm is the period of the Padovan p-sequence in the cyclic
group of order m.
We will now address the lengths of the Padovan p-orbits of the quaternion group Q2n .
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The quaternion group Q2n , (n ≥ 3) is de�ned by the presentation

Q2n =
〈
x, y : x2

n−1

= e, y2 = x2
n−2

, y−1xy = x−1
〉
.

Note that |Q2n | = 2n, |x| = 2n−1 and |y| = 4.

3.9. Theorem. Consider the quaternion group Q2n , (n ≥ 3) with generators x, y. Then
the lengths of the periods of the Padovan 2-orbits LPa2 (Q2n ;x, y) and LPa2 (Q2n ; y, x)
are 2n−1 · 3.

Proof. We prove the result by direct calculation. We �rst note that xy = yx−1 and yx =
x−1y.

First, let us consider the Padovan 2 -orbit Pa2 (Q2n ;x, y). Then we have the sequence

e, x, y, e, y, x, y2, x, y3, x2, y, x3, e, x5, y, x8,
y, x13, y2, x21, y3, x34, y, x55, e, x89, y, x144, . . . .

Using the above, the sequence becomes:

a0 = e, a1 = x, a2 = y, e, . . . ,
a12 = e, a13 = x5, a14 = y, a15 = x8, . . . ,
a24 = e, a25 = x89, a26 = y, a27 = x144, . . . ,
a48 = e, a49 = x28657, a50 = y, a51 = x46368, . . . ,

a12·2i = e, a12·2i+1 = x2
i+2·λ1+1, a12·2i+2 = y, a12·2i+3 = x2

i+3·λ2 , . . . ,

where λ1 and λ2 are odd integers and i is an nonnegative integer. So we need the
smallest integer i such that 2n−1

∣∣ 2i+2 for n ≥ 3. If we choose i = n − 3, we obtain
x2n−1·3 = e,x2n−1·3+1 = x x2n−1·3+2 = y, x2n−1·3+3 = e . Since the elements succeeding
x2n−1·3, x2n−1·3+1, x2n−1·3+2 and x2n−1·3+3 depend on e, x, y and e for their values, the

cycle begins again with the
(
2n−1 · 3

)nd
element. Thus, LPa2 (Q2n ;x, y) = 2n−1 · 3.

Now consider the Padovan 2 -orbit Pa2 (Q2n ; y, x). Then we have the sequence

e, y, x, e, x, y, x2, y, x3, y2, x5, y3, x8, y, x13, e,
x21, y, x34, y, x55, y2, x89, y3, x144, y, x233, e, . . . .

Using the above, the sequence becomes:

a0 = e, a1 = y, a2 = x, e, . . . ,
a12 = x8, a13 = y, a14 = x13, a15 = e, . . . ,
a24 = x144, a25 = y, a26 = x233, a27 = e, . . . ,
a48 = x46368, a49 = y, a50 = x75025, a51 = e, . . . ,

a12·2i = x2
i+3·β1 , a12·2i+1 = y, a12·2i+2 = x2

i+2·β2+1, a12·2i+3 = e, . . . ,

where β1 and β2 are odd integers and i is an integer such that i ≥ 0. Similar to the
above, we obtain that LPa2 (Q2n ; y, x) = 2n−1 · 3. �

4. Further Questions

There are many open problems in this area. Below are a few of them:

(1) Does there exist a relationship among the Padovan sequence and the considered
sequences in this paper?

(2) Does there exist a formula for calculating the period hPapm?
(3) As it is known that the quaternion group Q2n is a special class of the binary

polyhedral group 〈l,m, n〉, the polyhedral group (l,m, n) is a factor group of
〈l,m, n〉 and (n, 2, 2) is isomorphic to the dihedral group Dn. Furthermore, the
quaternion group Q2n is known as dicyclic group and it is a metacyclic group.
Due to these relations and goal for contributing further researches, we select the
quaternion group Q2n for applications of the Padovan p-sequences in groups. In
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terms of a further research, one can consider the question �What are the lengths
of Padovan p-orbits of the groups which are related to the quaternion group
Q2n �.

(4) What general theories can be obtained regarding the length of the period of the
Padovan p-orbit of a general group? For example does there exist a decision
process to determine whether, or not, a given group has �nite length?

(5) Let us consider in�nite groups such that the lengths of the periods of the Padovan
p-orbits of these groups are �nite. To �nd these lengths it would be useful to
have a program. This would possibly rely on using the Knuth-Bendix method,
see [18].
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