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Abstract− In recent years, generalizations of statistical convergence have appeared in the
literature. The notion of perturbed statistical convergence has recently been established as
one such generalization. This recent convergence approach aims to enhance the convergence
behavior of a sequence by utilizing specific perturbation functions, thereby increasing its
flexibility. This paper defines cluster points related to perturbed statistical convergence and
investigates some of their fundamental properties.
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1. Introduction

A wide range of convergence concepts has been developed in recent mathematical research, extending
classical notions and introducing density-based approaches [1–4]. Being one of them, the concept
of statistical convergence has become a crucial tool in density-based research, as it provides a more
flexible framework than classical convergence. Recently, statistical convergence has been extended
through the incorporation of perturbation functions, resulting in a new framework called perturbed
statistical convergence [5]. This approach is more tolerant, compensating for the effects of local
fluctuations in sequences and accounting for measurement errors that are frequently encountered in
real-world problems. Understanding the limiting behavior of sequences implies identifying the limit
and determining how frequently it occurs, similar to classical statistical convergence. Thus, to analyze
convergence in a broader scope, the concept of statistical cluster points was introduced. It is necessary
to develop new types of cluster point ideas, as this structure may not be sufficient in cases of minor
perturbations or noisy data.

As convergence methods have developed, several forms of cluster and limit points have been extensively
investigated to enhance the understanding of the geometric and statistical behavior of sequences [6–8].
However, most of these studies follow existing convergence methods and fail to adequately clarify the
effect of perturbation functions on cluster points.

In this paper, the term cluster point is defined for the first time in the literature concerning perturbed
statistical convergence, and its basic characteristics are investigated. The suggested definition proposes
a more comprehensive framework that takes into account the effects of perturbation functions and is a
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logical extension of standard statistical cluster points. Furthermore, the relationship between these
new cluster points and classical cluster points is demonstrated. This paper has been motivated by the
potential application of such generalized cluster point notions in disciplines such as sequential data
analysis, functional analysis, and fixed point theory.

The rest of the paper is structured as follows: Section 2 presents some basic definitions and supplemen-
tary results. Section 3 introduces the paper’s main results and provides an explanation of the term
perturbed statistical cluster point. The final section presents the results and offers recommendations
for future research.

2. Preliminaries

This section provides an overview of the fundamental ideas that are applied in the present research, as
well as the structures established in earlier articles.

Definition 2.1. [9] A real sequence (xk) is said to be statistically convergent to a real number x if,
for any ε > 0, the subset of indices where the deviation from x is at least ε becomes asymptotically
sparse. In formal terms, define

A(ε) := {m ∈ N : |xm − x| ≥ ε}

Then, the statistical convergence condition is expressed as

lim
n→∞

1
n

∣∣∣ {m ≤ n : |xm − x| ≥ ε}
∣∣∣ = 0

If this condition holds for all ε > 0, then

st- lim
k→∞

xk = x

The notions of statistical limit and cluster points for real sequences trace back to Fridy’s framework
involving nonthin subsequences [10]. In this approach, a subsequence whose index set possesses a
positive natural density is called nonthin. Based on this, a point is a statistical limit (or cluster) point
depending on its limiting relation to such nonthin subsequences. Specifically, a subsequence xn(j) of
the sequence x = (xn) is said to be nonthin if the index set K = {n(j) : j ∈ N} has a positive density.
Based on this framework, Fridy [10] has defined the following:

Definition 2.2. [10] A real number λ is called a statistical limit point of the sequence x if there
exists a nonthin subsequence of x that converges to λ.

Definition 2.3. [10] A real number γ is called a statistical cluster point of the sequence x if, for every
ε > 0, the set {n ∈ N : |xn − γ| < ε} has positive natural density.

Definition 2.4. [11] Let D, P : X × X → [0, ∞) be two functions. Then, D is called a perturbed
metric on X with respect to P if the function d(x, y) := D(x, y) − P (x, y) is a metric on X, i.e., for all
x, y, z ∈ X, the following conditions hold:

i. D(x, y) − P (x, y) ≥ 0

ii. D(x, y) − P (x, y) = 0 if and only if x = y

iii. D(x, y) − P (x, y) = D(y, x) − P (y, x)

iv. D(x, y) − P (x, y) ≤ D(x, z) − P (x, z) + D(z, y) − P (z, y)

In this context, P is called a perturbation, d = D − P is called an exact metric, and the ordered triple
(X, D, P ) is called a perturbed metric space.
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Definition 2.5. [5] Consider a sequence (xk) in a perturbed metric space (X, D, P ). It is said to be
(xk) converges to x ∈ X in the perturbed statistical sense, denoted by pst- lim xk = x, if, for all ε > 0,
the subset of natural numbers Aε := {k ∈ N | D(xk, x) ≥ ε + P (xk, x)} has zero natural density, i.e.,
δ(Aε) = 0.

Here, it must be noted that if the perturbation function is constant, i.e., P (xk, x) = r for some fixed
r ≥ 0, then the concept of perturbed statistical convergence reduces to the notion of r-rough statistical
convergence [12].

The use of a perturbation function P allows for a refined generalization of the classical statistical
convergence structure. Instead of a fixed tolerance ε, the tolerance dynamically adapts to each pair
(x, y), making the approach more robust against local oscillations or measurement noise. This enables
the analysis of convergence properties for sequences that exhibit irregular behavior under traditional
metrics. This is where perturbation comes into play: The function P defines a dynamic tolerance based
on the distance of each term from the target point. This allows us to evaluate the sequence’s behavior
within a more flexible framework. This approach offers a much more sensitive and comprehensive
analysis, particularly for

i. Noisy sequences

ii. Slowly oscillating structures

iii. Sequences that do not converge in the classical sense but exhibit significant limiting behavior

Moreover, perturbed structures provide a new perspective for sequences that fall outside the classical
theory.

3. Main Results

This section investigates cluster points established within the context of perturbed statistical convergence
concepts. Initially, it explores some basic properties of perturbed statistical cluster points; thereafter,
it theoretically demonstrates the existence of these points and their connection to classical convergence.
Additionally, this section provides several examples and counterexamples to clarify the results obtained.
Thus, it clearly illustrates the features and limitations of the newly established cluster point concept.
Definition 3.1 introduces the concept of perturbed statistical limit points, which generalizes the notion
of statistical limit points in the context of perturbed metric spaces.

Definition 3.1. Let (X, D, P ) be a perturbed metric space and (xk) be a sequence in X. Then, a
point x ∈ X is said to be a perturbed statistical limit point of the sequence (xk) if there exists a
subsequence (xkj

) of (xk) such that xkj
→ x in the classical sense, and the set{

j ∈ N : D(xkj
, x) < ε + P (xkj

, x)
}

has positive natural density for all ε > 0.

The set of all perturbed statistical limit points of a sequence (xk) is denoted by Λpst(xk).

Definition 3.2. Let (X, D, P ) be a perturbed metric space and (xk) be a sequence in X. Then, a
point µ ∈ X is called a perturbed statistical cluster point of the sequence (xk) if, for all ε > 0, the set

{k ∈ N : D(xk, µ) < ε + P (xk, µ)}

has positive natural density, i.e.,

δ ({k ∈ N : D(xk, µ) < ε + P (xk, µ)}) > 0
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The set of all perturbed statistical cluster points of a sequence (xk) is called the perturbed statistical
cluster point set of the sequence (xk) and denoted by Γpst(xk).

It must be noted that if P is a constant function, then the concept of rough cluster points [13] is
obtained.

The following example demonstrates that if a sequence converges in the classical sense, then its limit
point serves as a perturbed statistical cluster point. This confirms that our newly introduced concept
is consistent with classical convergence.

Example 3.3. Let X = R and consider the sequence (xk) defined by

xk = 1 + (−1)k

k

Define the perturbation function P (x, y) = 1
1+|x−y| and the corresponding perturbed metric D(x, y) =

|x − y| + P (x, y) on X. Since xk → 1, the following inequality holds for all ε > 0 and for sufficiently
large values of k

D(xk, 1) < ε + P (xk, 1)

Moreover, the set
{k ∈ N : D(xk, 1) < ε + P (xk, 1)}

has natural density 1. Hence, 1 is a perturbed statistical cluster point of the sequence (xk) (see Figure
1).

Figure 1. Comparison of the perturbed metric D(xk, 1) (blue) and the perturbation function P (xk, 1)
(orange) for the sequence xk = 1 + (−1)k/k. The shaded region represents their difference, which is
always positive and tends to zero, confirming that the classical limit 1 is also a perturbed statistical

cluster point.

While the previous example shows that the concept of perturbed statistical cluster points is consistent
with classical convergence, the following example demonstrates that sequences which are not classically
convergent may still admit perturbed statistical cluster points. In fact, such sequences may even have
more than one cluster point, illustrating the richness of the newly defined notion.
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Example 3.4. Let X = R and consider the sequence (xk) defined by

xk =

 1 + 1
k , k is odd

2 − 1
k , k is even

Define the perturbation function P (x, y) = 1
1+|x−y| and the perturbed metric D(x, y) = |x−y|+P (x, y)

on X. This sequence is not convergent, as it oscillates between values tending toward 1 and 2 along
subsequences. However, for both µ = 1 and µ = 2, the inequality

D(xk, µ) < ε + P (xk, µ)

holds on a subset of N with the natural density 1
2 , for all ε > 0. Therefore, both points are perturbed

statistical cluster points, i.e.,
{1, 2} ⊆ Γpst(xk)

Figure 2. Two statistical cluster points µ = 1 and µ = 2 of the sequence (xk) in Example 3.4

As illustrated in Figure 2, the sequence in Example 3.4 possesses two distinct statistical cluster points,
namely µ = 1 and µ = 2.

The following example illustrates the influence of the perturbation function itself. While the previous
examples showed that cluster points can exist consistently with classical convergence or in oscillating
sequences, here we emphasize that the choice of P directly affects whether a point is detected as a
perturbed statistical cluster point.

Example 3.5. Let X = R and define the perturbed metric

D(x, y) = |x − y| + P (x, y)

where P is a perturbation on X × X. Consider the sequence

xk = 1 + (−1)k

k

which oscillates around 1 without being statistically convergent in the classical sense. Moreover,
consider the following perturbation functions:

P1(x, y) = 0.05 and P2(x, y) = 0.2
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Let ε = 0.1. Then, the perturbed tolerance bands are as follows:

ε + P1 = 0.15 and ε + P2 = 0.3

Since the band defined by P2 is wider, more terms of the sequence satisfy the condition

D(xk, 1) < ε + P (xk, 1)

whereas for P1, the condition is more restrictive. Therefore, the point µ = 1 is a perturbed statistical
cluster point of (xk) under P2 but may not be under P1.

Figure 3. Effect of different perturbation functions on the perturbed statistical cluster point
detection for the sequence (xk) in Example 3.5

Figure 3 demonstrates how different perturbation functions affect the detection of perturbed statistical
cluster points for the sequence considered in Example 3.5. This example illustrates that larger
perturbation functions increase the likelihood of a point being a cluster point.

Remark 3.6. Example 3.5 illustrates that the choice of perturbation function significantly affects
the set of perturbed statistical cluster points. A larger perturbation function expands the admissible
band around a candidate point, increasing the likelihood that the sequence will satisfy the perturbed
statistical clustering condition. In particular, if P1(x, y) ≤ P2(x, y), for all x, y ∈ X, then

Γ(P1)
pst (xk) ⊆ Γ(P2)

pst (xk)

This inclusion indicates that using a more permissive perturbation function yields a larger set of cluster
points.

Remark 3.7. At first sight, it may seem that D is always written in terms of P . This is not a
restriction but a structural feature of the framework: By definition, D = d + P , where d = D − P is
a genuine metric capturing the intrinsic geometry, and P represents bounded measurement error or
noise. Hence, the role of P is to enlarge the admissible band around candidate points, as illustrated
in Example 3.5. Larger P yields a larger cluster set, but the underlying metric properties are always
governed by d. Therefore, this dependence does not reduce the generality of the framework but rather
clarifies its intended interpretation as “true distance plus perturbation”. In fact, as the following finite
example shows, even if D is not explicitly written in terms of P , there still remains an implicit relation
between them through the requirement that d = D − P must be a genuine metric. The essential point
is not to avoid such a relation, but the fact that d preserves the metric structure of the space.
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Example 3.8. Let X = {a, b, c}. Define the perturbation function P : X × X → [0, ∞) by

P (x, y) =

 0, x = y

0.5, x ̸= y

and the perturbed distance D : X × X → [0, ∞) by

D(x, y) =

 0, x = y

1.5, x ̸= y

Then the exact metric d = D − P is

d(x, y) =

 0, x = y

1, x ̸= y

which is precisely the discrete metric on X. This shows that D and P can be chosen independently on
a finite set, while d = D − P retains the required metric structure (see Table 1).

Table 1. Values of D, P , and d = D − P for the finite set example X = {a, b, c}. The exact metric d
coincides with the discrete metric

Pair (x, y) D(x, y) P (x, y) d(x, y) = D − P

(a, a) 0 0 0
(b, b) 0 0 0
(c, c) 0 0 0
(a, b) 1.5 0.5 1
(a, c) 1.5 0.5 1
(b, c) 1.5 0.5 1

Consider the sequence

xk =

 a, k odd
b, k even

This sequence is not convergent in the classical sense, as it oscillates between a and b. For µ = a, all
odd terms satisfy D(xk, a) = 0 < ε for every ε > 0, and the even terms satisfy

D(b, a) = 1.5 < ε + P (b, a) = ε + 0.5

whenever ε > 1. Since both the set of odd indices and the set of even indices have natural density 1
2 ,

the point a is a perturbed statistical cluster point. By symmetry, the same argument shows that b is a
perturbed statistical cluster point. However, c is not, because the sets

{k : D(xk, c) < ε + P (xk, c)}

have density zero for all ε > 0.

Consequently,
Γpst(xk) = {a, b}

Example 3.9. Let X = R2 and consider the sequence

xk =
(
cos k, 1

k

)
, k ∈ N

This sequence does not converge in the classical sense, since its first coordinate oscillates as cos k, while
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the second coordinate tends to 0 (see Figure 4).

Figure 4. Scatter plot of the sequence xk = (cos k, 1/k) for the first 200 terms

Define
P (x, y) = sin2(∥x − y∥2)

1 + ∥x − y∥2
, D(x, y) = ∥x − y∥1 + P (x, y)

Here, P is a sinusoidal perturbation depending on the Euclidean norm, while D is based on the
Manhattan norm plus the perturbation. The exact metric is

d(x, y) = D(x, y) − P (x, y) = ∥x − y∥1

which is a genuine metric.

For µ1 = (1, 0), there exists a subsequence of (xk) with cos k → 1 and 1/k → 0, so that xkj
→ (1, 0).

Along this subsequence, the inequality

D(xkj
, µ1) < ε + P (xkj

, µ1)

holds for sufficiently large j. The set of such indices has positive natural density, so µ1 = (1, 0) is
a perturbed statistical cluster point. Similarly, for µ2 = (−1, 0) another cluster point is obtained.
Consequently,

Γpst(xk) ⊇ {(1, 0), (−1, 0)}

This example shows that even when the perturbation P has a sinusoidal form and the sequence oscillates
in a nontrivial way, the framework still yields meaningful perturbed statistical cluster points.

Theorem 3.10. Let (xk) be a sequence in a perturbed metric space (X, D, P ). Then, Γpst(xk) is a
closed subset of X.

Proof. Let (xk) be a sequence in a perturbed metric space (X, D, P ). If Γpst(xk) = ∅, then Γpst(xk)
is closed. Then, assume that Γpst(xk) ̸= ∅ and let (yi) be a sequence in Γpst(xk) such that lim

i→∞
yi = y∗.
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Let ε > 0. Since yi → y∗, there exists an i0 ∈ N such that for all i > i0,

D(yi, y∗) − P (yi, y∗) <
ε

2
Fix such an index j0 > i0, and consider the set

A :=
{

k ∈ N : D(xk, yj0) < P (xk, yj0) + ε

2

}
Since yj0 ∈ Γpst(xk), the set A has positive natural density. Thus, for all k ∈ A,

D(xk, yj0) < P (xk, yj0) + ε

2
Moreover, since D(yj0 , y∗) − P (yj0 , y∗) < ε

2 , by the triangle inequality on perturbed metric spaces,

D(xk, y∗) − P (xk, y∗) ≤ D(xk, yj0) − P (xk, yj0) + D(yj0 , y∗) − P (yj0 , y∗) <
ε

2 + ε

2 = ε

which implies that{
k ∈ N : D(xk, yj0) < P (xk, yj0) + ε

2

}
⊆ {k ∈ N : D(xk, y∗) < P (xk, y∗) + ε}

Since the left-hand side has positive natural density, the right-hand side does as well. Therefore,
y∗ ∈ Γpst(xk). Consequently, Γpst(xk) is closed.

Theorem 3.11. Let (xk) be a sequence in a perturbed metric space (X, D, P ). If (xk) is perturbed
statistically convergent to a point x ∈ X, then x is also a perturbed statistical cluster point of (xk).
That is,

pst- lim xk = x ⇒ x ∈ Γpst(xk)

Proof. Let (xk) be a sequence in a perturbed metric space (X, D, P ) and pst- lim xk = x. Then, for
all ε > 0, the set

Aε := {k ∈ N : D(xk, x) ≥ ε + P (xk, x)}

has natural density zero. Therefore, its complement

Ac
ε = {k ∈ N : D(xk, x) < ε + P (xk, x)}

has density 1 and hence is positive. Thus, for all ε > 0, x satisfies the condition of being a perturbed
statistical cluster point. Therefore, x ∈ Γpst(xk).

Remark 3.12. The converse of Theorem 3.1 is not valid in general. That is, a point may be a perturbed
statistical cluster point of a sequence without being its perturbed statistical limit. To illustrate this,
let X = R and consider the perturbed metric space (X, D, P ), where D(x, y) = |x − y| + P (x, y) and
P (x, y) = 1

1+|x−y| and the sequence

xk =

 1 + 1
k , k is odd

2 − 1
k , k is even

defined on a perturbed metric space (X, D, P ) with D(x, y) = |x − y| + P (x, y) and P (x, y) = 1
1+|x−y| .

It can be observed that the natural densities of the following sets are 1
2 > 0:

{k ∈ N : D(xk, 1) < ε + P (xk, 1)} and {k ∈ N : D(xk, 2) < ε + P (xk, 2)}

Hence, 1 and 2 are perturbed statistical cluster points of the sequence (xk). However, the sequence (xk)
does not perturbed statistically converge to any point, as it keeps oscillating between neighborhoods of
1 and 2, and no single point captures a set of indices with density 1. Therefore, in general, the set of
pst-limits of a sequence is properly contained in Γpst(xk).
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4. Conclusion

This paper investigates perturbed statistical cluster points and perturbed statistical limit points of
a sequence, based on the previously established idea of perturbed statistical convergence. It begins
by providing basic definitions before investigating deeply into the characteristics of these new point
types. Moreover, the paper discusses the relationship between perturbed statistical cluster points
and classical statistical cluster points, illustrating the separate features of the new definition through
several examples and counterexamples. It is demonstrated that any perturbed statistical limit point is
a perturbed statistical cluster point, highlighting that the converse is not always true. Our notion of
perturbed statistical cluster points naturally extends several well-known concepts. If the perturbation
function P is taken as a constant, our definition reduces to the rough cluster points introduced in [13].
When P = 0, it coincides with the classical statistical cluster points studied by Fridy [10]. Moreover,
unlike lacunary statistical or λ-statistical points, which modify the density notion on the index set,
our approach preserves the usual natural density but modifies the distance structure by adding
perturbations. Thus, the proposed framework is orthogonal to these generalizations: it enlarges the
admissible neighborhood of candidate points through P , while remaining consistent with the existing
notions when P takes special forms. In the future, these ideas could find applications in areas, such as
fixed-point theorems, the refinement of convergence methods, and the study of alternative perturbation
structures, thereby opening up new and productive directions in nonlinear analysis research.
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Yalçın / Perturbed Statistical Cluster Points 82

[8] P. Malik, S. Das, AI-statistical limit points and AI-statistical cluster points, Filomat 36 (5) (2022)
1573–1585.

[9] H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (3-4) (1951) 241–244.

[10] J. A. Fridy, Statistical limit points, Proceedings of the American Mathematical Society 118 (4)
(1993) 1187–1192.

[11] M. Jleli, B. Samet, On Banach’s fixed point theorem in perturbed metric spaces, Journal of Applied
Analysis & Computation 15 (2) (2025) 993–1001.

[12] S. Aytar, Rough statistical convergence, Numerical Functional Analysis and Optimization 29 (3-4)
(2008) 291–303.

[13] S. Aytar, Rough statistical cluster points, Filomat 31 (16) (2017) 5295–5304.


	Introduction
	Preliminaries
	Main Results
	Conclusion

