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The �rst Zagreb and forgotten topological indices
of d-ary trees
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Abstract

The �rst Zagreb index of a graph is equal to the sum of the square of
the vertex degrees of the graph and the forgotten topological index (F-
index) of a graph is de�ned as the sum of cubes of the vertex degrees of
the graph. These parameters have applications in chemistry and drug
structures. For any �xed integer d ≥ 2, the d-ary tree is a rooted tree
in which each node has no more than d children. We determine the
mean value of these indices in d-ary trees. Also, we obtain some useful
relations and equalities related to these indices and other graphical
parameters.
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1. Introduction

Let G be a connected graph. Two vertices of G which are connected by an edge are
said to be adjacent. The number of vertices adjacent to a given vertex v is the degree of v
and is denoted by dv (or d(v)). A chemical graph is a graph whose vertices denote atoms
and edges denote bonds between those atoms of the underlying chemical structure. A
topological index for a (chemical) graph G is a numerical quantity invariant under au-
tomorphisms of G and it does not depend on the labeling or pictorial representation
of the graph. Topological indices and graph invariants based on the distances between
vertices of a graph or vertex degrees are widely used for characterizing molecular graphs,
establishing relationships between structure and properties of molecules, predicting bio-
logical activity of chemical compounds, and making their chemical applications. When
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analyzing structure-dependency of total π-electron energy [10], an approximate formula
was obtained in which terms of the form

Z2(G) =
∑

v∈V (G)

d2v,

where V (G) is the vertex set of a graph G. It was immediately recognized that this
term increase with the increasing extent of branching of the carbon-atom skeleton, i.e.,
that this provide quantitative measure of molecular branching. Ten years later, Z2 was
included among topological indices and was named as Zagreb group index [1]. The name
Zagreb group index was soon abbreviated to Zagreb index, and nowadays Z2 is referred to
as the �rst Zagreb index. Horoldagva and Das in [11] compared two Zagreb indices and
studied special kinds of graphs for which some conjectured relations on Zagreb indices
hold for them. Yang et al. studied Zagreb coindices of some composite graphs [14].
The research background of the Zagreb index together with its generalization appears in
chemistry or mathematical chemistry (see for examples: [1], [3] and [9] and references
therein).

Followed by the �rst Zagreb index, Furtula and Gutman [7] introduced forgotten
topological index (also called F-index) which was de�ned as

Z3(G) =
∑

v∈V (G)

d3v.

Furtula and Gutman [7] raised that the predictive ability of forgotten topological index
is almost similar to that of �rst Zagreb index and for the acentric factor and entropy, and
both of them obtain correlation coe�cients larger than 0.95. This fact implies the reason
why forgotten topological index is useful for testing the chemical and pharmacological
properties of drug molecular structures. Sun et al. [13] deduced some basic nature
of forgotten topological index and reported that this index can reinforce the physico-
chemical �exibility of Zagreb indices. Recently, Gao et al. [8] manifested the forgotten
topological index of some signi�cant drug molecular structures.

Che and Chen [2] provided new lower and upper bounds of the forgotten topological
index in terms of graph irregularity, Zagreb indices, graph size, and maximum/minimum
vertex degrees. They characterized all graphs that attain the new bounds of F-index and
showed that the new bounds are better than the bounds given in [7] for all benzenoid
systems with more than one hexagon. As corollaries, various upper bounds of F-index
easily follow. Moreover, upper bounds for connected Kr+1-free graphs are also presented.

Let Fv be a function dependent of a vertex of vertices of the molecular graph G.
Dos̆li¢ et al. [4] established a general identity for topological indices of the type T (G) =∑
v∈V (G) Fv, which we state as follows:

1.1. Theorem. Let G be any connected graph, and any of its invariants satisfying

T (G) =
∑
v∈V (G) Fv. Then

T (G) =
∑

uv∈E(G)

(Fu
du

+
Fv
dv

)
,

where E(G) is the edge set of G.

Note that using Theorem 1.1 we have

Z2(G) =
∑

uv∈E(G)

(du + dv)

and
Z3(G) =

∑
uv∈E(G)

(d2u + d2v).



605

Figure 1. A tree T with its node degrees indicated. In tree T , Z2(T ) =
54 and Z3(T ) = 160.

The paper is organized as follows. In Section 2 we give the evolution processes of the
ordinary and d-ary trees. In Section 3, we compute the exact values E(Z2,n) and E(Z3,n)
(the mean of the �rst Zagreb index and forgotten index, respectively) for ordinary trees
and d-ary trees of order n.

2. Evolution process

The structures of many molecules such as dendrimers, alkanes and acyclic molecules
are tree like. Rooted trees have wide applications in chemical graph theory such as enu-
meration and coding problems of chemical structures. Structures of chemical compounds
can be synthesized and categorized through mathematical means. Chemists have a long
tradition of using atomic valences (vertex degrees) to �nd molecular structures graph-
ically. Almost all of rooted chemical trees are special kinds of d-ary trees for d = 4.
Connections of chemistry to random trees have been investigated by many researchers.
We present the following evolution processes for random trees of order n, which turns
out to be appropriate when studying the Zagreb indices of trees.
Ordinary trees: Every tree of order n can be obtained uniquely by attaching nth
node to one of the n − 1 nodes in a tree of order n − 1. It is of particular interest in
applications to assume the random tree model and to speak about a random tree with
n nodes, which means that all trees of order n are considered to appear equally likely.
Equivalently one may describe random trees via the following tree evolution process,
which generates random trees of arbitrary order n. At step 1 the process starts with the
root. At step i the ith node is attached to any previous node v of the already grown
tree T of order i − 1 with probability pi(v) = 1

i−1
. For applicability of our own results

and specially connection with the chemical relevance, see [12]. An illustrative example is
provided in Figure 1.
d-ary trees: For any �xed integer d ≥ 2, the d-ary tree is a rooted tree in which each
node has no more than d children. The possible insertion possitions to join a new node
to a d-ary tree are called external nodes. In a d-ary tree, the number of nodes can be
attached to node v of out-degree d̄v is d− d̄v. Therefore the number of all external nodes
in a d-ary tree T of order n is∑

v∈V (T )

(d− d̄v) = (d− 1)n+ 1.
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At step 1 the process starts with the root. At step i the ith node is attached to a previous
node v of the already grown d-ary tree T of order i− 1 with probability

pi(v) =
d− d̄v

(d− 1)(i− 1) + 1
.

It is obvious that d̄root = droot and for other vertices d̄v = dv − 1. Thus

pi(root) =
d− droot

(d− 1)(i− 1) + 1

and for other vertices

pi(v) =
d− dv + 1

(d− 1)(i− 1) + 1
.

Let Z2,n be the �rst Zagreb index of a random tree of order n and Fn be the sigma-�eld
generated by the �rst n stages of these trees [12]. Let Un be a randomly chosen node
belonging to a tree of order n. Also, let Z3,n be the forgotten topological index of a
random tree of order n.

3. The main results

3.1. Ordinary trees.

3.1. Theorem. For a rooted tree of order n,

E(Z2,n) = 6(n− 1)− 4Hn−1,

where Hn is the n-th harmonic number.

Proof. By de�nition,

Z2,n = Z2,n−1 + (dUn−1 + 1)2 − d2Un−1
+ 1 = Z2,n−1 + 2dUn−1 + 2.

Hence,

E(Z2,n|Fn−1) = E(Z2,n−1 + 2dUn−1 + 2 |Fn−1)

= Z2,n−1 + 2E(dUn−1 |Fn−1) + 2

= Z2,n−1 + 2
1

n− 1

n−1∑
i=1

dvi + 2

= Z2,n−1 + 2
2(n− 2)

n− 1
+ 2

= Z2,n−1 + 6− 4

n− 1
,

since Z2,n−1 is Fn−1-measurable. We have

E(Z2,n) = E(Z2,n−1) + 6− 4

n− 1

=

(
E(Z2,n−2) + 6− 4

n− 2

)
+ 6− 4

n− 1

...

= E(Z2,1) + (n− 1)6− 4
( 1

n− 1
+

1

n− 2
+ · · ·+ 1

)
= (n− 1)6− 4Hn−1,

since Z2,1 = 0. �

We note that Theorem 3.1 also holds for the random recursive trees, see [5].
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3.2. Theorem. For each rooted tree of order n, we have

E(Z3,n) = 26(n− 1)− 24Hn−1 − 6H2
n−1 + 6H

(2)
n−1,

where H
(2)
n is the n-th harmonic number of order 2.

Proof. Using the de�nition of forgotten topological index and by the stochastic growth
rule of the tree, we see that

Z3,n = Z3,n−1 + (dUn−1 + 1)3 − d3Un−1
+ 1 = Z3,n−1 + 3d2Un−1

+ 3dUn−1 + 2.

This implies that

E(Z3,n|Fn−1) = Z3,n−1 + 3E(d2Un−1
|Fn−1) + 3E(dUn−1 |Fn−1) + 2

= Z3,n−1 +
3

n− 1

n−1∑
k=1

d2vk +
3

n− 1

n−1∑
k=1

dvk + 2

= Z3,n−1 +
3

n− 1
Z2,n−1 +

3

n− 1
(2(n− 2)) + 2

= Z3,n−1 +
3

n− 1
Z2,n−1 + 8− 6

n− 1
.

Thus,

E(Z3,n) = E(Z3,n−1) +
3

n− 1
E(Z2,n−1) + 8− 6

n− 1
.

Therefore, Theorem 3.1 implies that

E(Z3,n) = E(Z3,n−1) +
3

n− 1
(6(n− 2)− 4Hn−2) + 8− 6

n− 1

= E(Z3,n−1) + 26− 24

n− 1
− 12

n− 1
Hn−2

...

= E(Z3,1) + (n− 1)26− 24Hn−1 − 12

n−1∑
k=1

Hk
k

+ 12

n−1∑
k=1

1

k2
.

This completes the proof because Z3,1 = 0 and
∑n
k=1

Hk
k

= 1
2
(H2

n +H
(2)
n ). �

3.2. d-ary trees.

Let

Z̄2,n =
∑

v∈V (T )

d̄2v, Z̄3,n =
∑

v∈V (T )

d̄3v.

Now using the stochastic growth rule of the tree, we see that

Z̄2,n = Z̄2,n−1 + (d̄Un−1 + 1)2 − d̄2Un−1
= Z̄2,n−1 + 2d̄Un−1 + 1

3.3. Lemma. For each d-ary tree of order n, we have

Z2,n = Z̄2,n − 2d̄root + 3(n− 1)

and

Z3,n = Z̄3,n + 3(Z̄2,n − d̄2root − d̄root) + 4(n− 1).
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Proof. Using de�nition we obtain

Z2,n =
∑

v∈V (T )

d2v

= d̄2root +
∑

v 6=root

(d̄v + 1)2

= d̄2root +
∑

v 6=root

(d̄2v + 2d̄v + 1)

= Z̄2,n + 2(n− 1− d̄root) + (n− 1)

= Z̄2,n − 2d̄root + 3(n− 1).

The second statement can be similarly obtained. �

For each n, d ≥ 2 let qn = n(d− 1) + 1 and using the gamma function de�ne

βn,i =
Γ
(
nd−n+1
d−1

)
Γ
(
nd−n−i+1

d−1

) , i ≥ 1.

3.4. Lemma. For each k ≥ 1, we have 1− k
qn−1

=
βn−1,k

βn,k
.

Proof. Since Γ(x) = (x− 1)Γ(x− 1), the proof is obvious and straightforward [6]. �

3.5. Theorem. Let d̄Un be the out-degree of node Un in a d-ary tree of order n. Then

E(d̄Un) =
1

βn,1

n−1∑
i=1

βi+1,1λi,d

and

E(d̄2Un
) =

1

βn,2

n−1∑
i=1

βi+1,2ηi,d

where λn,d = d
qn

and

ηn,d =
2d− 1

qn
E(d̄Un) + λn,d.

Proof. It is obvious that

E(d̄Un = d̄Un−1 + 1|Fn−1) =
d− d̄Un−1

qn−1

and

E(d̄Un = d̄Un−1 |Fn−1) = 1−
d− d̄Un−1

qn−1
.

Thus

E(d̄Un |Fn−1) = (d̄Un−1 + 1)×
d− d̄Un−1

qn−1
+ d̄Un−1 ×

(
1−

d− d̄Un−1

qn−1

)
=

(
1− 1

qn−1

)
d̄Un−1 + λn−1,d

=
βn−1,1

βn,1
d̄Un−1 + λn−1,d.
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Hence

E(d̄Un) =
βn−1,1

βn,1
E(d̄Un−1) + λn−1,d

...

=
1

βn,1

n−1∑
i=1

βi+1,1λi,d,

since E(d̄U1) = 0. Also,

E(d̄2Un
|Fn−1) = (d̄Un−1 + 1)2 ×

d− d̄Un−1

qn−1
+ d̄2Un−1

×
(

1−
d− d̄Un−1

qn−1

)
=

(
1− 2

qn−1

)
d̄2Un−1

+ (2d− 1)
d̄Un−1

qn−1
+ λn−1,d.

Hence

E(d̄2Un
) =

(
1− 2

qn−1

)
E(d̄2Un−1

) + (2d− 1)
E(d̄Un−1)

qn−1
+ λn−1,d

...

=
1

βn,2

n−1∑
i=1

βi+1,2ηi,d.

�

For each n, d ≥ 2 de�ne

αn,d =
2d(n− 1)

qn
+ 1, σn,d =

3(d− 1)

qn
E(Z̄2,n) +

3

2
αn,d + 1.

3.6. Theorem. For each d-ary tree of order n, we have

E(Z2,n) =
1

βn,2

n−1∑
i=1

βi+1,2αi,d −
2

βn,1

n−1∑
i=1

βi+1,1λi,d + 3(n− 1).

Proof. The equality Z̄2,n = Z̄2,n−1 + 2d̄Un−1 + 1 implies that

E(Z̄2,n|Fn−1) = Z̄2,n−1 +
2

qn−1

n−1∑
k=1

d̄vk (d− d̄vk ) + 1

=
(

1− 2

qn−1

)
Z̄2,n−1 + αn−1,d

=
βn−1,2

βn,2
Z̄2,n−1 + αn−1,d.

Thus

E(Z̄2,n) =
βn−1,2

βn,2
E(Z̄2,n−1) + αn−1,d.

Proof is completed by Lemma 3.3. Note that Z2,1 = 0. �

3.7. Theorem. For each d-ary tree of order n,

E(Z3,n) =

n−1∑
i=1

(
βi+1,3σi,d
βn,3

+
3βi+1,2(αi,d − ηi,d)

βn,2
− 3βi+1,1λi,d

βn,1

)
+ 4(n− 1).
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Proof. Using the equality Z̄3,n = Z̄3,n−1 + 3d̄2Un−1
+ 3d̄Un−1 + 1 we have

E(Z̄3,n|Fn−1) = Z̄3,n−1 + 3E(d̄2Un−1
|Fn−1) + 3E(d̄Un−1 |Fn−1) + 1

= Z̄3,n−1 + 3

n−1∑
i=1

d− d̄vi
qn−1

d̄2vi + 3

n−1∑
i=1

d− d̄vi
qn−1

d̄vi + 1

= Z̄3,n−1 −
3

qn−1
Z̄3,n−1 +

3d

qn−1
Z̄2,n−1 −

3

qn−1
Z̄2,n−1

+
3d(n− 2)

qn−1
+ 1

=

(
1− 3

qn−1

)
Z̄3,n−1 +

3(d− 1)

qn−1
Z̄2,n−1 +

3d(n− 2)

qn−1
+ 1.

Then

E(Z̄3,n) =
βn−1,3

βn,3
E(Z̄3,n−1) + σn−1,d.

By Lemma 3.3 proof is completed. �

3.8. Theorem. Suppose

Zk,n =
∑

v∈V (T )

dkv , k ∈ N.

Then for a rooted tree T of order n,

(n− 1)((1 + δ)k−1 + 1) ≤ E(Zk,n) ≤ (n− 1)((1 + ∆)k + 1),

where δ and ∆ are the minimum degree and the maximum degree of T , respectively.

Proof. By de�nition,

Zk,n = Zk,n−1 +

k−1∑
j=0

(
k

j

)
djUn−1

+ 1.

Hence,

E(Zk,n|Fn−1) = Zk,n−1 +
1

n− 1

k−1∑
j=0

n−1∑
i=1

(
k

j

)
djvi + 1,

since Zk,n−1 is Fn−1-measurable. Proof is completed since δ ≤ dvi ≤ ∆ and Zk,1 = 0. �
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