
GÜSBD 2025; 14(3): 1075 - 1085  Gümüşhane Üniversitesi Sağlık Bilimleri Dergisi  Araştırma Makalesi   

GUJHS 2025;  14(3): 1075 - 1085 Gümüşhane University Journal of Health Sciences  Original  Article 

1075 
 

Analysis of the Effects of Obesity Classes on Manual Lifting Using Fuzzy Differential 

Modeling 

Bulanık Diferansiyel Modelleme ile Obezite Sınıflarının Manuel Kaldırma Üzerindeki Etkisinin Analizi 

Bilal USANMAZ1, Ömer GÜNDOĞDU2, Vecihi YİĞİT3 

 

ABSTRACT 

Obesity has emerged as a major global public health 

challenge, while musculoskeletal disorders (MSDs) 

remain the leading cause of injury, disability, and work-

related absenteeism worldwide. Increased body mass 

amplifies the mechanical load exerted on the 

musculoskeletal system during lifting tasks. In this 

study, a fuzzy differential equation-based model was 
developed to evaluate the biomechanical impact of 

manual material handling across varying body weights. 

The model quantifies the joint forces and moments at 

the lower back, explicitly accounting for uncertainties 

inherent in the model parameters. 

In biomechanical modeling, obesity introduces 

inherent uncertainties, primarily due to inter-individual 

variations in body composition, particularly the relative 

amounts and distribution of adipose and muscle tissue, 

which differentially affect mechanical responses to 

load and movement. To address these uncertainties, 
fuzzy differential equations (FDEs) offer a structured 

approach by incorporating imprecise parameters, initial 

conditions, and biological variability using fuzzy logic. 

Unlike classical methods, FDEs represent variables as 

fuzzy numbers, enabling simulations to better capture 

the imprecision of the real world. 

The results showed that with increasing obesity 

levels, both the forces and moments acting on the lower 

back during lifting tasks was increased noticeably. This 

pattern was observed consistently across different load 

weights and body heights, indicating that higher BMI 

leads to more greater biomechanical stress on the 
musculoskeletal system. The FDE model was 

successful in capturing the uncertainties caused by 

variations in body composition and changes in balance 

due to obesity. This approach provides a more realistic 

understanding of mechanical loads compared to 

traditional models. 

Keywords: Obesity, Manual Material Handling, 

Biomechanical Modelling, Fuzzy Differential 

Equations, Musculoskeletal Disorders.  

ÖZ 

Obezite, küresel ölçekte önemli bir halk sağlığı 

sorunu haline gelirken, kas-iskelet sistemi bozuklukları 

(KİSB) dünya genelinde yaralanma, engellilik ve işe 

devamsızlığın başlıca nedenleri arasında yer 

almaktadır. Artan vücut ağırlığı, kaldırma sırasında 

kas-iskelet sistemine binen mekanik yükü artırır. Bu 

çalışmada, farklı vücut ağırlıklarında elle malzeme 
taşımanın biyomekanik etkisini değerlendirmek için 

bulanık diferansiyel denklemlere (BDD) dayalı bir 

model geliştirilmiştir. Model, alt sırttaki eklem 

kuvvetlerini ve momentleri nicel olarak 

değerlendirirken, parametrelerdeki belirsizlikleri de 

dikkate alır. 

Biyomekanik modellemede, obezite doğası gereği 

bazı belirsizlikler barındırır; bunun başlıca nedeni, 

bireyler arasındaki vücut kompozisyonundaki 

farklılıklar, özellikle de yağ ve kas dokusunun miktarı 

ve dağılımıdır. Bu farklılıklar, yük ve harekete verilen 
mekanik tepkileri farklı şekillerde etkiler. Bu 

belirsizlikler, bulanık mantık temelli BDD 

yaklaşımıyla ele alınmıştır. Klasik yöntemlerden farklı 

olarak, BDD’ler değişkenleri bulanık sayılarla temsil 

ederek gerçek dünyadaki belirsizliği daha iyi yansıtır. 

Sonuçlar, obezite düzeyi arttıkça kaldırma sırasında 

alt sırt bölgesine binen kuvvet ve momentlerin belirgin 

şekilde yükseldiğini gösterdi. Bu durum, farklı yük 

ağırlıkları ve vücut boylarında da tutarlı olup daha 

yüksek Vücut Kitle İndeksi seviyelerinin kas-iskelet 

sistemi üzerinde daha fazla biyomekanik stres 

oluşturduğunu ortaya koymuştur. Model, vücut 
bileşimi değişimlerinin neden olduğu belirsizlikleri 

başarıyla yakalayarak geleneksel modellere kıyasla 

daha gerçekçi sonuçlar sunmuştur. 
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INTRODUCTION

Obesity is a complex, chronic, and 

multifactorial medical condition characterized 

by abnormal or excessive accumulation of 

body fat (adiposity), which adversely affects 

health. It is commonly defined using the body 

mass index (BMI), with individuals having a 

BMI of 30 or higher classified as obese. As a 

metabolic disease, obesity increases the risk 

of long-term health complications and reduces 

the overall quality of life.1–3 The World Health 

Organization (WHO) classifies obesity into 

three main classes based on the Body Mass 

Index (BMI), which is calculated by dividing 

body weight in kilograms by the square of 

height in meters (kg/m²). Class I obesity 

(moderate) corresponds to a BMI of 30.0–34.9 

kg/m², Class II obesity (severe) to 35.0–39.9 

kg/m², and Class III obesity (morbid or 

extreme) to 40.0 kg/m² or greater.4–6 

Obesity increases the risk and severity of 

musculoskeletal disorders (MSDs) during 

manual lifting tasks by imposing additional 

mechanical loads on the musculoskeletal 

system. Individuals with a higher body mass 

index (BMI) experience elevated stress on 

muscles, joints, and ligaments, which not only 

intensifies biomechanical strain during 

physical activities but also increases the 

prevalence of conditions such as postural 

alterations in the knees and feet, arthritis, and 

pain in the spine and lower limbs.7–9 

The impact of obesity on musculoskeletal 

disorders during manual load handling in 

industrial settings has been investigated. 

Using surface electromyography (EMG), 

researchers examined muscle activation in 

individuals with varying obesity levels under 

different loads and task styles. The results 

demonstrated that obesity increases 

musculoskeletal risk and that muscle 

responses vary according to load magnitude. 

Notably, muscle activation significantly 

increased from 5 kg to 10 kg loads, followed 

by a slight decrease at 15 kg, though activation 

remained higher than at the lowest load. These 

findings highlight that the combined effect of 

obesity and manual load handling on the 

musculoskeletal system differs depending on 

the load applied.10 

L5/S1 disc compression forces during 

moderate lifting in severely obese individuals 

(BMI ≥ 35 kg/m²) were quantitatively 

evaluated compared to normal-weight 

controls.¹ Significantly higher compression 

forces ranging from 3000N to 8500N were 

found in the obese group, with 99.5% 

exceeding the 3400N action limit 

recommended by the National Institute for 

Occupational Safety and Health (NIOSH), 

while none of the normal-weight participants 

surpassed this threshold.11 Using subject-

specific musculoskeletal modeling based on 

motion capture data, L5-S1 compression loads 

in obese and normal-weight individuals 

during static load-reaching tasks were 

assessed. Results showed that obese 

participants experienced significantly higher 

compression forces (2305 ± 468N) compared 

to normal-weight individuals (1674 ± 337N), 

representing an average increase of 

approximately 38% .12 

A study using a subject-specific finite 

element musculoskeletal model was 

conducted. They examined the effects of 

obesity and obesity shape on spinal loads, 

trunk stability, and vertebral fatigue risk. The 

study analyzed anthropometric data from 

5,852 obese individuals. Three obesity shapes 

were considered: mean, apple-shaped (high 

waist circumference), and pear-shaped (low 

waist circumference). These shapes were 

evaluated at three body weights (86, 98, and 

109 kg) with a constant height. The results 

showed that adding 12 kg of body weight 

increased spinal loads by about 11.8%. A 

larger waist circumference at the same weight 

increased spinal loads equivalent to an extra 

20 kg.13 

Classification of individuals as obese based 

on Body Mass Index (BMI) may lead to 

misleading conclusions due to variations in 

body composition; for instance, an elevated 

BMI may result from increased lean muscle 

mass rather than excess adipose tissue, 

particularly in individuals with an athletic 

build. BMI may not be an accurate indicator 

of adiposity in athletes, as it often 

misclassifies individuals with high muscle 
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mass as overweight or obese.¹ The importance 

of assessing body composition by 

distinguishing between fat mass and lean body 

mass to avoid misclassification was also 

highlighted.14 

BMI is a commonly used measure to 

classify obesity but has significant limitations. 

Since BMI is based only on height and weight, 

it cannot distinguish between fat and muscle 

mass. Therefore, muscular individuals may be 

misclassified as obese despite not having 

excess fat. Additionally, BMI does not 

accurately reflect changes in body 

composition with age, where fat increases and 

muscle decreases. Gender differences also 

affect the relationship between BMI and 

actual body fat percentage. Self-reported 

height and weight data can introduce further 

errors in BMI calculation. Due to these 

factors, BMI has low sensitivity and 

specificity for measuring true obesity, leading 

to misclassification and potential bias in 

assessing obesity-related health risks.15 These 

limitations introduce significant uncertainties 

in modeling obesity-related outcomes, as 

inaccurate classification affects the reliability 

of risk assessments and biomechanical 

analyses. 

Fuzzy logic-based methods are effective in 

modeling systems that involve uncertainty.16 

Obesity in Malaysian adults has been 

highlighted as a multifactorial issue, and a 

fuzzy logic-based DEMATEL approach was 

employed to prioritize key risk factors such as 

physical inactivity, poor diet, and stress for 

targeted interventions.17 Fuzzy set theory, 

particularly Zadeh's Extension Principle, has 

been concluded to be a valuable tool for 

evaluating abdominal obesity and 

cardiometabolic risks.18 They highlighted the 

importance of population-specific correlation 

functions in constructing accurate fuzzy 

models and proposed this approach as a 

foundation for more complex fuzzy inference 

systems to assess global cardiovascular and 

cardiometabolic risk amid the growing 

prevalence of obesity-related health issues 

worldwide. The risk of childhood obesity was 

predicted by analyzing various contributing 

factors using type-2 fuzzy logic.19 

Fuzzy differantial equations (FDEs) are 

particularly useful in biomechanics for 

modeling systems where there is uncertainty 

in initial conditions or parameters. This is 

crucial in biomechanics, where precise 

measurements are often difficult to obtain due 

to biological variability.20,21 A diabetes model 

using FDE is studied to address uncertainty in 

medical data. By applying the generalized 

Hukuhara derivative, the fuzzy model is 

transformed into a system of ordinary 

differential equations, enabling classical 

stability analysis despite imprecise 

parameters.22 Fuzzy difference equations help 

improve early diagnosis of heart problems by 

handling uncertainty and detecting small 

changes in heart rhythms.23 

In this study, the kinetic parameters acting 

on the lower back during manual load-lifting 

tasks were examined in individuals belonging 

to different obesity classes. As the obesity 

class increased, a significant rise was 

observed in the joint force and moment values 

exerted on the lower back due to the increase 

in body mass. However, various sources of 

uncertainty may affect the accuracy of the 

model outcomes. For instance, although 

classifying individuals based solely on Body 

Mass Index (BMI) is a common approach, 

high muscle mass may be misinterpreted as fat 

mass, leading to ambiguity in obesity 

classification. 

Additionally, the free-form nature of the 

lifting task, especially in obese individuals 

with postural deviations, may result in 

deviations from standard lifting mechanics. 

Factors such as fatigue level, muscular 

response time, and balance composition also 

introduce dynamic uncertainties during the 

motion. 

Classical differential equation-based 

models operate with fixed and well-defined 

parameters, which tend to generalize 

individual physical capacities and thus limit 

the realism of the model. In contrast, for a 

more accurate representation of such 

biomechanical systems, it is essential to 

systematically incorporate uncertainty into the 

modeling process. Therefore, instead of 

classical differential equations, fuzzy 
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differential equations were utilized in this 

study to enable the model to function under 

uncertain conditions. 

Furthermore, a Genetic Algorithm (GA)-

based optimization strategy was employed 

during the modeling process. The model was 

executed separately for each combination of 

obesity class, loading condition, and BMI 

level. Accordingly, the genetic algorithm 

performed the optimization procedure 

independently for each case. Notably, during 

the determination of the lower and upper 

bounds of the fuzzy intervals, some 

contradictory results were obtained. Initially 

considered as a limitation of the model, these 

outliers were later interpreted as an advantage, 

especially when considering the dynamic 

nature of real-world problems, as they 

highlighted the model’s flexibility and 

adaptability. 

 

MATERIALS AND METHODS  

Fuzzy Numbers 

A fuzzy set 𝑆̃ ∈ 𝑅 is called a fuzzy number 

𝑠̃ if it satisfies the following conditions:24 

1. 𝑆̃ is normal, there exists at least one 

element 𝑥0 ∈ ℛ, the membership 

function μ𝑠̃(𝑥0) = 1. 

2. 𝑆̃ is convex, for any 𝑥1, 𝑥2 ∈ ℛ and, λ ∈
[0,1] the membership function satisfies 

μ𝑠̃(λ𝑥1 + (1 − λ)𝑥2) ≥ 

𝑚𝑖𝑛(μ𝑠̃(𝑥1), μ𝑠̃(𝑥2)). 

3. The membership function μ𝑠̃ is upper 

semi-continuous. 

4. The support of the fuzzy number 𝑠̃ is 

bounded and closed. 

Gaussian Fuzzy Number 

A Gaussian fuzzy number is defined as a 

fuzzy number 𝑠̃, where the membership 

function is characterized by a normalized and, 

in general, asymmetrically parameterized 

Gaussian function.25 

𝑠̃ = 𝑔𝑓𝑛(𝑧̅, 𝜎𝑙 , 𝜎𝑟)  (1) 

Membership function of 𝑠̃ is, 

𝜇𝑠̃(𝑧) =

{
𝑒𝑥𝑝[−(𝑧 − 𝑧̅)2/(2𝜎𝑙

2)] 𝑓𝑜𝑟 𝑧 < 𝑧̅

𝑒𝑥𝑝[−(𝑧 − 𝑧̅)2/(2𝜎𝑟
2)] 𝑓𝑜𝑟 𝑧 ≥ 𝑧̅

  
(2) 

Fuzzy number 𝑠̃ is represented with its α −
𝑐𝑢𝑡 levels 𝑠α̃ = [𝑎α, 𝑏α] , 

It is assumed that σ𝑙 = σ𝑟 =, so the 

membership function gets, 

𝜇𝑠̃(𝑧) = 𝑒𝑥𝑝[−(𝑧 − 𝑧)2/(2𝜎2)]  (3) 

Then we get 𝑎α, 𝑏α , 

𝑎𝛼 = 𝑧 − √−𝑙𝑜𝑔𝑒(𝜇𝑠̃(𝑧))(2𝜎2)  (4) 

𝑏𝛼 = 𝑧 + √−𝑙𝑜𝑔𝑒(𝜇𝑠̃(𝑧))(2𝜎2)  (5) 

 

Fuzzy Differential Equations 

A fuzzy differential equation can be 

generally describes as26 

[
𝑑𝑦̃(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑦̃(𝑡)), ] [𝑦̃(𝑡0) = 𝑦0̃] (6) 

 

We will concentrate on the second order, 

linear, constant coefficient ordinary 

differential equation, 

𝑦′′ + 𝑎1𝑦′ + 𝑎2𝑦 = 𝑓(𝑥),  

𝑥 ∈ [0, +∞)  (7) 

𝑦(0) = 𝑏0, 𝑦′(0) = 𝑏1, 𝑏0, 𝑏1 ∈ 𝑅 

We turn the problem into a fuzzy problem 

by fuzzifying the initial conditions by 

replacing 𝑏0, 𝑏1 with the Gaussian fuzzy 

number 𝑏0̃, 𝑏1̃; thus, we have a differential 

equation with crisp coefficients but fuzzy 

initial conditions. Then, the solution of the 

initial value problem is a Gaussian fuzzy 

number 𝑦̃ = [𝑦1(𝑥, α), 𝑦2(𝑥, α)],  α ∈ [0,1], 
with  𝑦1(𝑥, α), 𝑦2(𝑥, α) differentiable 

functions at least up to second order. The 

substitution of 𝑦̃ into the equation (7) 

yields27,28 

[𝑦1
′′(𝑥, 𝛼), 𝑦2

′′(𝑥, 𝛼)] +
𝑎1[𝑦1

′ (𝑥, 𝛼), 𝑦2
′ (𝑥, 𝛼)] +

𝑎2[𝑦1(𝑥, 𝛼), 𝑦2(𝑥, 𝛼)] = [𝑓(𝑥), 𝑓(𝑥)]  
(8) 
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Initial conditions are, 

𝑦1(0, α) = 𝑏01̃(α),  𝑦1
′ (0, α) = 𝑏11̃(α)  

𝑦2(0, α) = 𝑏02̃(α),  𝑦2
′ (0, α) = 𝑏12̃(α) 

Indeed, we can write, 

𝑏0̃ = [𝑏01(𝛼), 𝑏02(𝛼)],   
(9) 

𝑏1̃ = [𝑏11(𝛼), 𝑏12(𝛼)]  

 

Nonlinear Fuzzy Differential Equations 

In addition to linear models, we consider 

second-order nonlinear fuzzy differential 

equations of the following general form: 

𝑦′′̃(𝑥) + 𝑝̃(𝑥, 𝑦̃, 𝑦 ′̃) + 𝑞̃(𝑥, 𝑦̃) = 𝑓(𝑥),  (10) 

where 𝑦̃(𝑥) is a fuzzy-valued function, and 

𝑝̃, 𝑞̃, 𝑓 are fuzzy functions that may depend 

nonlinearly on 𝑥, 𝑦̃, and their derivatives. The 

initial conditions are expressed as fuzzy 

numbers as follows: 

𝑦̃(0) = 𝑏0̃, 𝑦 ′̃(0) = 𝑏1̃,  (11) 

where 𝑏0̃ and 𝑏1̃ are typically represented as 

Gaussian fuzzy numbers. 

To solve such equations, we employ the α-

cut representation of the fuzzy numbers. For 

each α ∈ [0,1], the fuzzy solution 𝑦̃(𝑥) is 

represented as an interval 

𝑦̃(𝑥) = [𝑦1(𝑥, 𝛼), 𝑦2(𝑥, 𝛼)],  (12) 

where 𝑦1(𝑥, α) and 𝑦2(𝑥, α) denote the lower 

and upper bounds of the α-cut of 𝑦̃(𝑥), 

respectively. Substituting this representation 

into the nonlinear fuzzy differential equation 

yields a system of coupled nonlinear 

differential equations: 

𝑦1
′′(𝑥, 𝛼) + 𝑝1(𝑥, 𝑦1, 𝑦1

′ ) + 𝑞1(𝑥, 𝑦1) =
𝑓1(𝑥),  

(13) 

𝑦2
′′(𝑥, 𝛼) + 𝑝2(𝑥, 𝑦2, 𝑦2

′ ) + 𝑞2(𝑥, 𝑦2) =
𝑓2(𝑥),  

(14) 

subject to the initial conditions: 

𝑦1(0, α) = 𝑏01(α), 𝑦1
′ (0, α) = 𝑏11(α), 

𝑦2(0, α) = 𝑏02(α), 𝑦2
′ (0, α) = 𝑏12(α), 

where [𝑏01(α), 𝑏02(α)] and [𝑏11(α), 𝑏12(α)] 
are the α-cut intervals of the fuzzy initial 

conditions 𝑏0̃ and 𝑏1̃, respectively. 

The resulting system is solved numerically 

for a discrete set of α levels using standard 

ODE solvers. The fuzzy solution is then 

reconstructed from the family of interval 

solutions {[𝑦1(𝑥, α), 𝑦2(𝑥, α)]}α∈[0,1]. This 

approach ensures that the uncertainty 

propagation through the nonlinear dynamics 

is captured accurately within the fuzzy 

framework. 

Genetic Algorithm 

Genetic Algorithm (GA) is one of the most 

known algorithm in the class of metaheuristic 

algorithms and it has been inspired by the 

process of biological evolution. Metaheuristic 

algorithms are used to solve complex and hard 

problems which comes from areas like 

economy, engineering, politics and 

management. These algorithms are usually 

developed by inspiring from biological 

evolution processes, swarm behaviours or 

physical laws.29 

Genetic algorithms belongs to the 

population-based metaheuristic algorithms. 

Such algorithms use multiple candidate 

solutions during the search process, helping to 

keep diversity and prevent getting stuck in 

local optimum. In GA, a population is 

randomly created at the beginning and genetic 

operations are applied to it. These operations 

includes selection, crossover and mutation, 

and they works similar to the formation of 

chromosomes in biology. 

The success of each individual is measured 

with the fitness of the solution it represents. 

Individuals with higher fitness have more 

chance to be selected for next generations. 

This leads to improvement in solution quality 

over generations. The process ends when the 

most optimal solution is found for the problem 

that should be optimized by the GA. John 

Holland is accepted as the founder of the 

original genetic algorithm and it dates back to 

1970s.30 In this study, genetic algorithm was 

used to optimize two unknown parameters 

inside a 7th degree polynomial by considering 

the minimum objective function. 

Biomechanical Model 

A two-dimensional, sagittally symmetric 

human body model (Figure 1) was designed as 
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a five-rigid-link mechanism for the 

biomechanical simulation of manual lifting 

tasks. These links were modeled to reflect the 

estimated length, mass, and inertia properties 

of their human counterparts. Thus, any 

movement or configuration within the system 

can be described using five generalized 

coordinates, which define the relative 

orientation of each link with respect to its 

parent link.31 

In the model, the ankle, knee, hip, shoulder, 

and elbow joints were considered as one-

degree-of-freedom revolute joints. The spinal 

column was represented as a single rigid link 

that includes the mass of the head and neck. 

The hands were modeled as part of the 

forearms, and their relative motion with 

respect to the forearms was neglected. 

The equations of motion of the model 

consist of five second-order nonlinear fuzzy 

differential equations, and the system is 

treated as an inverse dynamics problem. Since 

inverse dynamics problems allow for 

infinitely many joint configurations that can 

produce the same motion trajectory, trajectory 

optimization becomes necessary. 

The model based on experiments which 

were conducted at the Ohio State University 

Biodynamics Laboratory, where markers 

were placed on the subjects’ feet, knees, waist, 

shoulders, and elbows (Figure 1), and angular 

displacements were analyzed during the 

lifting motion. Angular velocity and angular 

acceleration were obtained by numerically 

differentiating the angular displacement data. 

These data were then integrated into the 

equations of motion, along with polynomials 

having unknown coefficients and their 

analytical derivatives. 

Based on the anthropometric data of the 

subjects, the “minimum total moment” 

objective function was minimized using 

genetic algorithms. The resulting polynomial 

coefficients represent the optimal values that 

yield the minimum total moment. These 

coefficients were then reapplied to the 

equations of motion, and joint reaction forces 

and moments were computed.32 

The differential equations of the model 

were expressed in fuzzy form. Consequently, 

the model inputs were also defined as fuzzy 

numbers of Gaussian type. Lifting simulations 

were performed for three different load 

values: 6.8 kg, 13.6 kg, and 20.5 kg 

(corresponding to 15, 30, and 45 pounds, 

respectively). The model inputs were defined 

as the individual’s body mass (BM), height 

(H), and lifted load (LL), while the outputs 

were the joint moments (M) and forces (F).33 

 

Figure 1. Sagittally symmetric 2D model of lifting 

motion in an obese subject. 

 

 

RESULTS AND DISCUSSION 

The model was supplied with synthetic 

data representing BMI ranges covering three 

obesity classes. Height values ranged from 58 

to 76 inches (147.32 cm to 193.04 cm). To 

reduce computational cost and analyze 

general trends, four representative heights at 

5-inch intervals (58, 64, 70, 76 inches) were 

selected. Body mass values were calculated 

for these heights within the BMI subranges of 

all obesity classes and used as model inputs. 
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Inputs included individual height, body 

mass, lifting duration (2 seconds), lifting style 

(free lifting), and lifted loads (6.8 kg, 13.6 kg, 

and 20.5 kg). Each obesity class contained 6 

BMI values, combined with four heights, 

resulting in 24 distinct body mass values, 

representing 24 individuals. Inputs were 

converted into Gaussian fuzzy numbers for 

use in fuzzy differential equations. To save 

computational effort, solutions were 

calculated for selected alpha-cut levels (0.01, 

0.4, 0.7, and 1.0) instead of all. Alpha-cut 

values indicate uncertainty intervals, 

narrowing as alpha increases. The model was 

first run for 6.8 kg loads at all alpha-cut levels, 

then repeated for 13.6 kg and 20.5 kg. Lifted 

loads were also modeled as Gaussian fuzzy 

numbers. 

Model outputs, optimized via genetic 

algorithm minimizing moment objective 

function, included forces and moments acting 

on the lumbar region during lifting. Figures 2 

through 7 share a common presentation style: 

graphs divided into three color-coded blocks 

for obesity classes, with vertical lines marked 

by four points representing average alpha-cut 

levels. The spread of these lines shows 

uncertainty in BMI values within each obesity 

class. 

 

Figure 2. Moment [𝑵𝒎] values for three obesity 

classes at four 𝛂 − 𝒄𝒖𝒕 levels during a 𝟔. 𝟖̃ kg lifting 

motion. 

 

 

Figure 3. Force [𝑵] values for three obesity classes 

at four 𝜶 − 𝒄𝒖𝒕 levels during a 𝟔. 𝟖̃ kg lifting motion. 

 

Based on the results, moments on the lower 

back during lifting of fuzzy 6.8 kg loads 

ranged from 295 Nm to 590 Nm across all 

obesity classes (Figure 2). A general trend 

showed moments tending to grow with 

obesity class, following a non-linear pattern. 

Within the Obese-1 class, individuals with 

BMI 30 and 34 showed a wider moment 

range, reflecting variation within and between 

classes. Additional lumbar loading due to 

obesity is suggested by variations in moments 

between BMI 30 and 34.9. Comparing BMI 

30, 35, and 40, lower and upper moment 

bounds also trended upward, especially near 

class upper limits. This reflects body mass 

distribution changes and forward shifts in the 

center of mass, which lengthen the lever arm 

and increase moments. 

 

Figure 4. Moment [𝑵𝒎] values for three obesity 

classes at four 𝜶 − 𝒄𝒖𝒕 levels during a 𝟏𝟑. 𝟔̃ kg 

lifting motion. 
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For forces on the lumbar region under 

fuzzy 6.8 kg loads (Figure 3), values ranged 

between 988 N and 1704 N across obesity 

classes. Transitions between classes 

corresponded with force increases.  

 

Figure 5. Force [𝑵] values for three obesity 

classes at four 𝜶 − 𝒄𝒖𝒕 levels during a 𝟏𝟑. 𝟔̃ kg 

lifting motion. 

As BMI rose, total body weight and its 

distribution shifted, often concentrating in the 

abdomen, increasing lumbar load. Within 

Obese-1, force bounds for BMI 30 to 34.9 

showed clear growth. Across classes, force 

bounds rose progressively with BMI 

increases. Forces acting on the lumbar region 

include both the lifted load and the 

individual’s body weight; hence, even with a 

constant external load, total lumbar force 

grows with BMI due to higher body mass and 

altered weight center. 

 

Figure 6. Moment [𝑵𝒎] values for three obesity 

classes at four 𝜶 − 𝒄𝒖𝒕 levels during a 𝟐𝟎. 𝟓̃ kg 

lifting motion. 

To assess load effects, moments and forces 

during lifting of fuzzy loads 6.8 kg, 13.6 kg, 

and 20.5 kg were compared in Figures 2, 4, 6 

and 3, 5, 7 respectively. Statistical analyses 

via Friedman tests for lower and upper bounds 

revealed significant differences in moments 

for Obese-1 at lower bounds (p=0.0421), 

indicating moment sensitivity to load. Upper 

bounds showed no significance (p=0.0695). 

For Obese-2, significance appeared at upper 

bounds (p=0.0094) but not at lower bounds, 

while Obese-3 showed significance only at 

lower bounds. Forces exhibited significant 

differences across all obesity classes and 

bounds, with p-values well below 0.05. 

 

Figure 7. Force [𝑵] values for three obesity 

classes at four 𝜶 − 𝒄𝒖𝒕 levels during a 𝟐𝟎. 𝟓̃ kg 

lifting motion. 

Due to inherent uncertainties, fuzzy 

differential equations were used to better 

represent real-world conditions. Force values 

generally rose with load, while moment 

increases appeared selectively at either lower 

or upper bounds. Spearman correlation tests 

confirmed positive relations between BMI 

and moments across all loads and bounds, 

with strong correlations especially at higher 

alpha levels. Force correlations were even 

stronger, indicating that higher obesity classes 

are associated with greater lumbar forces and 

moments during manual lifting. Statistical 

results also showed significant load-

dependent increases within obesity classes. 
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CONCLUSION AND RECOMMENDATIONS 

The fuzzy differential equation-based 

model developed in this study effectively 

evaluated the impact of obesity on forces and 

moments acting on the lower back during 

manual lifting tasks. The model results 

revealed significant increases on mechanical 

loads on the lumbar region depend on obesity 

classes and lifted load amounts. Especially 

with increasing BMI values, the forces and 

moments affecting the back was found to 

increase, indicating the strong loading effect 

of obesity on musculoskeletal system. 

Obesity causes considerable changes in 

body composition such as increased fat tissue 

and alterations in muscle mass. This leads to 

biomechanical shifts like forward 

displacement of the body’s center of gravity 

and new balance strategies. These changes 

create high levels of biological and structural 

uncertainties, which are hard to fully represent 

in classical deterministic models. The fuzzy 

differential equations used in this study 

allowed comprehensively to model these 

uncertainties both parametrically and 

structurally; especially factors like fat 

accumulation, muscle distribution, and center 

of gravity shifts are expressed through smooth 

transitions and different alpha-cut levels. 

Thus, the model better reflects inter-

individual variability and biological diversity 

which is seen in real-world individuals. 

Statistical analyses showed that both the 

amount of lifted load and obesity level caused 

significant increases on forces and moments 

acting on the back. These results support that 

obesity not only increases body weight but 

also affect mechanical load distribution and 

balance control, causing additional stress on 

the musculoskeletal system. The non-linear 

increasing trends observed in the model 

outputs demonstrate that the biomechanical 

complexities brought by obesity are well 

captured. 

In this context, the developed model 

successfully represented the new balance 

conditions and related uncertainties caused by 

obesity mathematically and conceptually. 

This capability of the model can provide 

important contributions for risk assessment 

and preventive planning for obese individuals 

in occupational health and ergonomics. Future 

studies extending the model with different 

lifting techniques, dynamic movement 

scenarios, and validation with real subject 

data will increase the applicability of results 

in practical settings. 
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