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 Abstract  

The aim of this study is to introduced an integrated fuzzy logistic regression approach to describe the 

relationship between crisp inputs and fuzzy binary output. For this reason, we integrated the fuzzy logistic 

regression methods proposed by Pourahmad et al. [17]  and Sohn et al. [24] to define a possibility measure for 

each case and then used the logarithmic transformation of possibilistic odds as fuzzy output observations. To 

estimate the parameters of the fuzzy logistic regression model, Diamond [5]’s Fuzzy Least Squares (FLS) 

approach is used. A numerical example is presented and obtained results are compared with classic logistic 

regression model.  

Keywords: Fuzzy Logistic Regression, Possibilistic odds, Fuzzy Least Squares. 

Öz 

Bulanık Lojistik Regresyon için Entegre Bir Yaklaşım 

Bu çalışmanın amacı, kesin girdiler ile bulanık ikili çıktı arasındaki ilişkiyi tanımlamak için birleştirilmiş 

bulanık lojistik regresyon yaklaşımını tanıtmaktır. Bu nedenle, her bir durum için bir olasılık ölçüsü 

tanımlamak ve daha sonra olabilirlik oranlarının logaritmik dönüşümünü bulanık çıktı gözlemleri olarak 

kullanmak amacıyla Pourahmad ve ark. [17]  ve Sohn ve ark. [24] tarafından önerilen bulanık lojistik 

regresyon yöntemleri entegre edilmiştir. Bulanık lojistik regresyon modelinin parametrelerini tahmin etmek 

için, Diamond [5]’ın Bulanık En Küçük Kareler (FLS) yaklaşımı kullanılmıştır. Sayısal bir örnek sunulmuş ve 

elde edilen sonuçlar klasik lojistik regresyon modeli ile karşılaştırılmıştır. 

Anahtar sözcükler: Bulanık Lojistik Regresyon, Olabilirlik Oranları, Bulanık En Küçük Kareler.  

 

 

1. Introduction 

Regression analysis is one of the most widely used and powerful methodology to model the functional 

relationship between a response variable (dependent variable, output) and one or more explanatory 

variables (independent variables, inputs). In many real world problems, some observations couldn’t be 

determined exactly and they need to be defined by linguistic terms or fuzzy numbers. Fuzzy regression 

(FR) analysis first introduced by Tanaka et al. [26], is an extension of classical regression analysis in 

which some elements of the model are represented by any type of fuzzy numbers. On the contrary to 
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classical regression that is based on probability theory, fuzzy regression could be based on possibility 

theory and fuzzy set theory. There are two main approaches for Fuzzy Regression: (i) Possibilistic 

Regression approach proposed by Tanaka et al. [26] which is based on possibility concepts and minimizes 

total vagueness of the estimated values for the outputs (see, Chang and Lee [3], Hojati et al. [6], Modarres 

et al.[10], Nasrabadi et al. [13], Özelkan and Duckstein [14], Peters [15], Sakawa and Yano [21], Tanaka 

and Watada [27], Tanaka [25],  etc). (ii) Fuzzy Least Squares Method proposed by Diamond [5] and 

Celmins [2] simultaneously which is based on minimizing the errors between observed and estimated 

outputs (see, (D’urso [4], Diamond [5], Kao and Chyu [7], Khan and Valeo [8], Ming et al. [9], Yang and 

Lin [28], etc.).  

Some studies on Fuzzy Regression models considered crisp (i.e. nonfuzzy) inputs, fuzzy parameters and 

fuzzy outputs (see, Hojati et al. [6], Nasrabadi et al. [13], Peters [15], Savic and Pedrycz [22], Shakouri 

and Nadimi [23], Tanaka [25], Tanaka and Watada [27], Tanaka et al. [26]). Some of them handled fuzzy 

inputs, crisp parameters and fuzzy outputs (see, Diamond [5], Kao and Chyu [7], Ming et al. [9]), while 

the other studies took into account fuzzy inputs, fuzzy outputs and also fuzzy parameters (see, Hojati et al. 

[6], Khan and Valeo [8], Sakawa and Yano [20], Sakawa and Yano [21], Yang and Lin [28]).   

Logistic regression analysis have been used to model functional relationship between a binary response 

variable and one or more explanatory variables. Fuzzy Logistic Regression defined the relationship 

between crisp/fuzzy inputs and fuzzy binary outputs considering fuzzy regression approaches. Contrary to 

fuzzy regression models, there have been a limited number of studies on fuzzy logistic regression in the 

literature. To estimate parameters of the fuzzy logistic regression model, Tanaka et al. [26]’s possibilistic 

approach and Diamond [5]’s Fuzzy Least Squares method have been used by several authors: Pourahmad 

et al. [16] proposed fuzzy logistic regression model for crisp inputs and binary output which its value 

takes a number between 0 and 1. They used Tanaka et al. [26]’s possibilistic approach by introducing the 

concept of possibilistic odds to estimate the model parameters and also proposed some goodness-of-fit 

criteria. Pourahmad [17] presented Fuzzy Logistic Regression to model fuzzy binary outputs. Due to the 

vague nature of binary outputs, a fuzzy model based on possibility of success defined by linguistic terms 

was constructed. The logarithm transformation of possibilistic odds was modelled based on crisp inputs by 

using Extension Principle and Diamond [5]’s FLS method was used to estimate model parameters. The 

capability index was calculated for evaluating the model. Namdari et al.[11] aimed to assess the effect of 

folic acid on the appetite of preschool children 3 to 6 years old. Since appetite was measured by linguistic 

terms, a fuzzy logistic regression was applied by using Diamond [5]’s FLS method and the obtained 

results were compared with a ordinal logistic regression model. Namdari et al. [12] investigated fuzzy 

logistic regression model for crisp input and fuzzy binary output which was measured by linguistic terms. 

They developed least absolute deviations (LAD) method for modeling and compared the results with the 

least squares estimation (LSE) method by providing two estimation methods, min–max method and fitting 

method. Also, new goodness-of-fit indices, measure of performance based on fuzzy distance (Mp) and 

index of sensitivity (IS), were presented. Sohn et al. [24] presented a new technology credit scoring model 

based on the fuzzy logistic regression method with fuzzy input and fuzzy binary output data for predicting 

the possibility of loan default of firms. The estimation method of coefficients was conducted based on 

Yoon and Choi [29]’s FLS.  

The aim of this study is to introduce an integrated approach for fuzzy logistic regression model with crisp 

inputs and fuzzy output based on Pourahmad et al. [17] and Sohn et al. [24]. To estimate the parameters of 

the fuzzy logistic regression model, FLS approach of Diamond [5] is used. A numerical example is 

presented and obtained results are compared with classical logistic regression model.   

The remainder of this study is as follows: some basic definitions of fuzzy sets are given in Section 2. A 

brief review on logistic regression and detailed definition of fuzzy logistic regression methods are given in 

Section 3. In Section 4, an application of Pima India Diabetes data set is employed to investigate the 

proposed fuzzy logistic regression model and to compare with classical logistic regression. Finally, 

conclusions are drawn in Section 5. 
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2. Basic Definitons of Fuzzy Sets 

This section gives basic definitions and concepts of fuzzy sets and arithmetic operations on fuzzy sets 

are given as [19] 

Definition 2.1. A fuzzy set A  defined in space X  is a set of pairs: 

   , ( ) , 
A

A x x x X   (2.1)        

where: fuzzy set A  is characterized by its membership function ( ) : [0,1] A x X .  

Definition 2.2.  -level set of a fuzzy set A  in space X is defined as 

 ( ) , [0,1]   
A

x   (2.2) 

Definition 2.3. (Extension Principle) Let X  be the Cartesian product of universes 1 2( , ,..., )nX X X  and 

1 2

( , ,..., )
n

A A A  be fuzzy sets in 1 2( , ,..., )nX X X , respectively. Suppose that f  is a mapping from X  to a 

universe Y , 
1 2

( , ,..., ) 
n

y f x x x Y . A fuzzy set B  in Y  is defined by Extension principle as follows: 

 
 

1 21
1 2

1

1 1 1

( , , ..., ) ( )

sup min ( ), ( ),..., ( ) , ( )

0,

   






 
 


n
n

A A A
x x x f y

x x x f y
B

otherwise
  (2.3) 

Definition 2.4. A triangular fuzzy number  1 2 3, ,A a a a  is characterized by following membership 

function, 

 

1 3

1
1 2

2 1

3
2 3

3 2

0, ,

( ) ,

,

A

x a x a

x a
x a x a

a a

a x
a x a

a a






 
 

  


 
 



 (2.4) 

Definition 2.5.  1 2 3, ,A a a a  and 1 2 3( , , )B b b b  are two triangular fuzzy numbers. Arithmetic operations 

on fuzzy numbers are considered as follows:  

Addition: 1 1 2 2 3 3( ) ( , , )A B a b a b a b       (2.5) 

Substraction: 1 3 2 2 3 1( ) ( , , )A B a b a b a b      (2.6) 

Multiplication: 1 1 2 2 3 3( ) ( , , )A B a b a b a b   (2.7) 

Division: 31 2

1 2 3

( ) ( , , )
aa a

A B
b b b

   (2.8) 
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Multiplication by constant k: 
1 2 3

3 2 1

( , , ), 0
( )

( , , ), 0

ka ka ka k
k A

ka ka ka k


  


 (2.9) 

Inverse:  
1

3 2 1

1 1 1
, ,A

a a a

  
  
 

 (2.10) 

3. Fuzzy Logistic Regression  

This section presents a brief review on logistic regression and detailed definition of fuzzy logistic 

regression methods. 

3.1. Logistic Regression  

Logistic regression analysis have been used to model functional relationship between a binary dependent 

variable and one or more independent variables and frequently applied in clinical research, credit scoring, 

genetics, etc. Independent variables may be continuous, discrete, and binary or a mix of any of these. No 

assumptions are made about the distribution of these variables. Binary dependent variable with two 

categories 0,1Y   (i.e. No/Yes or Failure/Success) has Bernoulli probability distribution. It can take the 

value of 1 with a probability of success ( ), or the value of 0 with probability of failure (1  ). Due to 

the relationship between the independent and dependent variables is not linear, the logit transformation of 

  is used as follows: 

 
0 1 1 ...

1

1


  


 n nb b x b x
e

 (3.1)                                                                  

So, the form of the model in Eq. (3.1) is considered as: 

   0 1 11
ln ... n nb b x b x


              (3.2)                                                 

where: 0 1 1 ...

1
n nb b x b x

e




  



 is called as “probability odds” and , 0,1,...,

j

b j n  indicates the model 

parameters [17]. 

3.2. Fuzzy Logistic Regression 

Fuzzy Logistic Regression has defined the relationship between crisp/fuzzy independent variables and 

fuzzy binary dependent variables considering fuzzy regression approaches. To estimate parameters of the 

fuzzy logistic regression model, Tanaka et al. [26]’s possibilistic approach and Diamond [5]’s Fuzzy Least 

Squares method have been used. In the literature, contrary to fuzzy linear regression models, there have 

been only a few studies on fuzzy logistic regression, such as Pourahmad et al.[16, 17], Namdari et al.[11, 

12], Sohn et al.[24].  

Generally, when establishing a model for logistic regression, uncertain or fuzzy observations are 

eliminated. However, if there are too many uncertain or fuzzy observations, a model cannot be constructed 

since the probabilistic odds cannot be computed. Therefore, the concept of “possibilistic odds” can be 

considered for such observations. Suppose that , 1,2,...,iY i m  is a fuzzy binary dependent variable and 
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, 1,2,..., ; 1,2,..., ijx i m j n  is a set of crisp independent variables, the definition of “possibilistic odds” 

given in Pourahmad et al.[17] is as follows: 

, 1,2,..., i i m  is the possibility of success, i.e. ( 1)  i iPoss Y  and it could be defined by i) a real crisp 

value, , 0 1   
i i

 or  ii) a linguistic term, such as  i {Very low, Low, Medium, High, Very 

High}. The ratio , 1,2,...,
1








i

i

i m  is handled as “possibility odds” for the observation i, which 

determines the possibility of success relative to the possibility of non-success.  

In this study, we considered linguistic terms  
i

{Approximately 0, Approximately 1} which are 

characterized by triangular fuzzy numbers as Approximately 0=(0.01, 0.03, 0.05) and Approximately 

1=(0.95, 0.97, 0.99) for the possibility of success as shown in Figure 1. Due to the computational 

simplicity in arithmetic operations, the triangular fuzzy numbers are the most widely used fuzzy number 

type in the literature and have a common range of uses. 

 
Figure 1. Membership functions of linguistic terms of Approximately 0 and Approximately 1  

In the integrated method, the triangular fuzzy numbers Y  corresponding to    are computed as 

ln
1





 
  

 
Y

%%
%

 according to the Sohn et al. [24]. Then, a fuzzy logistic regression model with a fuzzy 

binary dependent variable proposed by Pourahmad et al. [17] is applied as follows:  

   0 1 11
ln ... ; 1,2,...,




     i

i
i i n inW A A x A x i m

%

%
% % %%  (3.3)         

where;  ( , ) , 0,1,..., j j j TA a s j n%  indicates fuzzy parameters which are symmetrical triangular fuzzy 

numbers with center ja  and spread js . iW  is the estimator of the logarithmic transformation of 

possibilistic odds and it is called as estimated fuzzy dependent variable.  iW  is a triangular fuzzy number 

denoted by  ( ), ( ) , 1,2,...,i i i T
W f a f s i m   in which 0 1 1( ) ...   i i n inf a a a x a x  and 

0 1 1( ) ...   i i n inf s s s x s x .  

 -level set of  iW  is computed as:  

    ( ) (1 ) ( ), ( ) (1 ) ( )


     i i i i iW f a f s f a f s   (3.4) 
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In the method, an expert assigns a linguistic term i  as the possibility of success. Then, the logarithmic 

transformation of possibility odds are considered as observed dependent variables, iw , as follows: 

  1
ln , 1,2,...,




 i

i
iw i m  (3.5)                                                          

The membership function of the iw  is calculated from the defined membership function of   , ,
  

 
i i ii T

l m r  

by using Extension Principle.  -level set of  iw  is calculated based on  



i

 as:  

      ( ) ( )

1 ( ) 1 ( )
ln , ln

 

 

 

   

 

  

i i

i i

l r

i l r
w  (3.6)     

where:  

  ( ), ( ) 
   

 i ii l r  

( ) (1 )( )       
i i i i

l m m l   

( ) (1 )( )       
i i i i

r m r m  

To obtain an optimal model for Eq (3.3),  Sum of Squares Error (SSE) between 
i

w  and , 1,2,...,
i

W i m   is 

minimized by Diamond [5]’s FLS method by:   

 
1

1/2
2 2

1 1 0

( , ) ( ) ( ( ) , ( )   
 

  
  

m m

i i i i

i i

SSE d w W f d w W d   (3.7)                   

By using Eq (3.4) and Eq(3.6), SSE is computed by, 

    
2 2

1 ( ) ( )

1 ( ) 1 ( )0
1

( ) ln ( ) ( 1) ( ) ln ( ) (1 ) ( )
 

 

 

 
   

 


    
                


i i

i i

m
l r

i i i il r
i

SSE f f a f s f a f s d  (3.8)                                                                         

By minimizing the SSE with respect to ja  and js , 0,1,...,j n  following equations are obtained: 

     
1

( ) ( )

1 ( ) 1 ( )

0
1

2 2 ( ) ln ln 0 

 

 

   




     
 

i i

i i

m

l r

l r

ij i

i

j

SSE
x f a d

a
 (3.9) 

    1 ( ) ( )

1 ( ) 1 ( )0
1

2 (1 ) 2(1 ) ( ) ln ln 0
 

 

 

 
   

 


   
          
 

i i

i i

m
l r

ij i l r
j i

SSE
x f s d

s
 (3.10)     

The quantities in Eq (3.7) and Eq (3.8) depend on definition of possibility of success ( i ) assigned to each 

observation by the expert. Substituting these values and calculating related integrals, the following 

equations are derived: 
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 0 0 1 1

1 1 1 1

... , ,1,...,
   

       
m m m m

i ij i ij n in ij i ij

i i i i

a x x a x x a x x z x j n  (3.11) 

 0 0 1 1

1 1 1 1

... , ,1,...,
   

       
m m m m

i ij i ij n in ij i ij

i i i i

s x x s x x s x x k x j n  (3.12) 

Where: 0 1, 1,2,..., ix i m   and ,i iz k  are the results of integral computation for each observation. Eq (3.9) 

and Eq (3.10) can be rewritten in a matrix form aA Z and sA K  in which 

 

11 1

21 2

1 ( 1)

1

1
,

1
 

 
 
  
 
 
 

n

nT

m mn m n

x x

x x
A X X X

x x

  (3.13) 

 
0 1

( , ,..., ) T

n

a a a a , 0 1

1 1 1

, ,...,
  

 
  
 
  

T
m m m

i i i i i in

i i i

Z z x z x z x   (3.14)                                                                                            

 0 1( , ,..., ) T
ns s s s , 0 1

1 1 1

, ,...,
  

 
  
 
  

T
m m m

i i i i i in

i i i

K k x k x k x  (3.15)                                                                                            

Therefore, a  and s  are computed from following equations as in [18]; 

 1a A Z  (3.16) 

1s A K  (3.17)                                                                                            

Finally, estimated fuzzy logistic regression model is obtained as in [17], 

 0 0 1 1 1( , ) ( , ) ... ( , ) ; 1,2,...,    i i n n inW a s a s x a s x i m  (3.18)  

4. Application  

In this study, we discussed fuzzy logistic regression model based on possibilistic odds and applied on a 

real dataset “Pima India Diabetes”, where eight inputs variables and one output variable, taken from UCI 

Machine Learning Repository [18]. A part of the data set is shown in Table A.1. The output variable in 

this data set consists of two categories: “0” and “1”. “0” indicates that a patient has not diabetes and “1” 

indicates that a patient has diabetes. However, sometimes physicians may not make a definite decision 

whether a patient has diabetes, and this patient can not be categorized. In short, there may be a fuzziness 

about the status of the patient and classical logistic regression model cannot be applied. In order to 

overcome this situation, fuzzy logistic regression model could be applied. 
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Inputs: 

X1: Number of times pregnant  

X2: Plasma glucose concentration a 2 hours in an oral glucose tolerance test  

X3: Diastolic blood pressure (mm Hg)  

X4:  Triceps skin fold thickness (mm)  

X5: 2-Hour serum insulin (mu U/ml)  

X7: Diabetes pedigree function  

X8: Age (years)  

Binary Output: 

Y: Class variable which takes values 0 or 1, where “0” denotes that the patient has not diabetes and “1” 

denotes that the patient has diabetes. 

In this study, we considered the value 
i

 of the fuzzy binary dependent variable for observation i which 

can take linguistic term  
i

{Approximately 0, Approximately 1} as the possibility of success. Since the 

binary dependent variable is fuzzy, the possibilistic odds is calculated. Definitions of linguistic terms i  

can be given in the form of triangular fuzzy number based on its membership function. The triangular 

fuzzy numbers Y  corresponding to  
i

 are computed as shown in Table according to Sohn et al. [24]. 

Table 1. Transformations of triangular fuzzy number ( 
i

) and corresponding  Y  

Crisp output 
Linguistic terms of fuzzy 

binary dependent variable 


i

  1
ln




Y  

0 Approximately 0 (0.01, 0.03, 0.05) (-4.5951, -3.4761, -2.9444) 

1 Approximately 1 (0.95, 0.97, 0.99) (2.9444, 3.4761, 4.5951) 

In this study, we construct the fuzzy logistic regression model to describe the relationship between eight 

crisp inputs and a fuzzy binary output. For this reason, we integrated the fuzzy logistic regression methods 

proposed by Pourahmad et al. [17] and Sohn et al. [24] to define a possibility measure for each case and 

then use the logarithmic transformation of possibilistic odds as fuzzy output observations. By this method, 

Diamond [5]’s fuzzy least squares method in fuzzy linear regression can be used to estimate model 

parameters.  

For i=1 ( 1 {Approximately 0}), estimated 1W  is      

    1

1
1 0 1 11 8 18 1 11

ln ... ( ), ( )



     

T
W A A x A x f a f s  

 -level set of  1W  is calculated by:  

    1 1 1 1 1( ) (1 ) ( ), ( ) (1 ) ( )


     W f a f s f a f s            

where; 
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 1 0 1 11 8 18 0 1 8( ) ... 6 ... 50       f a a a x a x a a a  

 1 0 1 11 8 18 0 1 8( ) ... 6 ... 50       f s s s x s x s s s  

 -level set of 1w  is computed as follows:  

      1 1

1 1

( ) ( )

1 1 ( ) 1 ( )
ln , ln

 

 

 

   

 

  

l r

l r
w  

where; 

    
1 11 ( ), ( ) 0.97 0.02(1 ),0.97 0.02(1 ) 

           l r   

The squares error between 1w  and 1W   for i=1 is considered as follows:   

    
2 21 0.97 0.02(1 ) 0.97 0.02(1 )

1 1 1 1 11 0.97 0.02(1 ) 1 0.97 0.02(1 )0
( ) ln ( ) ( 1) ( ) ln ( ) (1 ) ( )

 

 
   

   

     

                   
SE f f a f s f a f s d  

For i=2 ( 2 {Approximately 1}), estimated 2W  is 

    2

2
2 0 1 21 8 28 2 21

ln ... ( ), ( )



     

T
W A A x A x f a f s  

 -level set of  2W  is calculated by:  

   
2 2 2 2 2

( ) (1 ) ( ), ( ) (1 ) ( )


     W f a f s f a f s           

where; 

 2 0 1 21 8 28 0 1 8( ) ... 1 ... 31       f a a a x a x a a a  

 2 0 1 21 8 28 0 1 8( ) ... 1 ... 31       f s s s x s x s s s  

 -level set of 2w  is computed as follows:  

      2 2

2 2

( ) ( )

2 1 ( ) 1 ( )
ln , ln

 

 

 

   

 

  

l r

l r
w  

where; 

      2 1 2, 0.03 0.02(1 ),0.03 0.02(1 )


       b b   
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The squares error between 2w  and 2W   for i=2 is considered as follows:  

    
2 21 0.03 0.02(1 ) 0.03 0.02(1 )

2 2 2 2 21 0.03 0.02(1 ) 1 0.03 0.02(1 )0
( ) ln ( ) ( 1) ( ) ln ( ) (1 ) ( )

 

 
   

   

     

                   
SE f f a f s f a f s d  

After computing the SSE over all observations, SSE is minimized with respect to ja  and 
j

s  by using Eqs 

(3.9)-(3.10). Then, a  and s  are computed as follows: 

  1 9.5236,0.1448,0.0416, 0.0164,0.0011, 0.0013,0.0932,1.0357,0.0184    a A Z     

  1 0.7338,0,0,0,0,0,0,0 s A K  

where;  

  TA X X ,    

768 9

1 6 50

1 1 31

1 1 23


 
 
 
 
 
 

X  

 

 

768 768 768

0 1 8

1 1 1

815.9672 1213

, ,...,

, .4 60258.5 53146.9 13688.6 26399.4 20166.7 236.817 19910.3, , , , , , ,

  

       

 
  
 

 

  
T

i i i i i i

i i i

Z z x z x z x
 

 

 

768 768 768

0 1 8

1 1 1

563.5584 2166.911 68131.13 38944.97 1157

, ,...,

3.49 44971.67 18029.69 265.9299 18733.18, , , , , , , ,

  

 
  
 



  
T

i i i i i i

i i i

K k x k x k x
 

Finally, fuzzy logistic regression model is constructed as follows 

 

 1

1 2 3 4 5

6 7 8

ln , 1,2,...,768

( 9.5235,0.7338) (0.1448,0) (0.0416,0) ( 0.0164,0) (0.0011,0) ( 0.0013,0)

(0.0932,0) (1.0357,0) (0.0184,0)




 

        

  

i

i i i i i

i i i

W i

x x x x x

x x x

 

Table 2. Characteristics of Pima India diabetes dataset and estimated parameters of classical/fuzzy logistic 

regression Y  

    Classical Logistic Regression Fuzzy Logistic Regression 

 Min Max Mean±SD b Std.error a s 

Intercept - - - -8.405 0.717 -9.5236 0.7338 

X1 0.00 17.00 3.84±3.36 0.123 0.032 0.1448 0 

X2 0.00 199.00 120.89±31.97 0.035 0.004 0.0416 0 

X3 0.00 122.00 69.10±19.35 -0.013 0.005 -0.0164 0 

X4 0.00 99.00 20.53±15.95 0.001 0.007 0.0011 0 

X5 0.00 846.00 79.99±115.24 -0.001 0.001 -0.0013 0 
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X6 0.00 67.10 31.99±7.88 0.090 0.015 0.0932 0 

X7 0.08 2.42 0.47±0.33 0.015 0.009 1.0357 0 

X8 21.00 81.00 33.24±11.76 0.945 0.299 0.0184 0 

We evaluated the proposed model in terms of the sensitivity, specificity and accuracy which are frequently 

used to define the prediction ability of the logistic regression model with a binary output (Table A.2). In 

order to compute the sensitivity, specificity and accuracy by using Eqs (A.1)-(A.3), the estimated fuzzy 

binary output is defuzzified by using Center of Gravity (CoA) method and converted into crisp ones for 

fuzzy logistic regression model. Classification table for classical and fuzzy logistic regression is shown in 

Table 3.  

Table 3. Classification table for classical/fuzzy logistic regression 

 Classical Logistic Regression  Fuzzy Logistic Regression 

 Observed  Observed 

Estimated 1 0 Total Estimated 1 0 Total 

1 156 55 211 1 154 53 207 

0 112 445 557 0 114 447 561 

Total 
268 500 768 

Total 
268 500 768 

Sensitivity, specificity, and accuracy are the terms that are generally associated with a binary classification 

test to statistically measure the performance of the test. In a binary classification, a data set is divided into 

two categories based on whether they have common properties or not by identifying their significance. 

“Sensitivity” indicates, how well the test predicts one category and “specificity” measures how well the 

test predicts the other category, wheares “accuracy” is expected to measure how well the test predicts both 

categories [1]. 

According to the Table 3, sensitivity, specificity and accuracy are computed as 0.8940, 0.5746 and 0.7825 

for fuzzy logistic regression, while 0.8900, 0.5820 and 0.7825 for classical logistic regression. Sensitivity 

of the fuzzy logistic regression model is higher than that of the classical logistic regression model, 

whereas specifity is lower. On the other hand, accuracy is same for both method. It can be concluded that 

the prediction performance of fuzzy logistic regression is similar to the classical logistic regression. 

However, even a small increasing in sensitivity may be very important to us because the sensitivity shows 

how the test detects a disease. For this reason, we can conclude that the detection performance of the 

fuzzy logistic regression is relatively better than the classical logistic regression. 

5. Conclusion 

In this study, we introduced fuzzy logistic regression model with crisp dependent and fuzzy independent 

variables based on possibilistic odds presented by Pourahmad et al.[16, 17] and Sohn et al.[24]. We used 

FLS approach of Diamond [5] to estimate the parameters of the fuzzy logistic regression model. A 

numerical example conducted on Pima India Diabetes data set which have eight crisp input variables and 

one fuzzy binary output variable, is presented. Estimated parameters are obtained from both classical and 

fuzzy logistic regression models and classification table is set. Utilizing the classification table, we 

compared both methods in terms of the sensitivity, specificity and accuracy which are frequently used to 

define the prediction ability of the logistic regression model with a binary output. It is concluded that the 

detection performance of fuzzy logistic regression model is higher than classical logistic regression model 

according to sensitivity. 

For future research, fuzzy logistic regression model based on Diamond [5]’s fuzzy least squares approach 

could be used to handle both fuzzy input and fuzzy output. Further, fuzzy logistic regression model based 

on Tanaka et al. [26]’s possibilistic approach could be used for data sets which have crisp or fuzzy input 
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and fuzzy output. Moreover, both possibilistic and least squares approaches for fuzzy logistic regression 

model should be applied and tested on complete real life problems. 
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APPENDIX 

Table A.1. A part of Pima India diabetes dataset 

Observation number (i) X1 X2 X3 X4 X5 X6 X7 X8 

Linguistic terms of 

Fuzzy binary dependent 

variable (Y) 

1 6 148 72 35 0 33.6 0.6270 50 Approximately 1 

2 1 85 66 29 0 26.6 0.3510 31 Approximately 0 

3 8 183 64 0 0 23.3 0.6720 32 Approximately 1 

4 1 89 66 23 94 28.1 0.1670 21 Approximately 0 

5 0 137 40 35 168 43.1 2.2880 33 Approximately 1 
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. 

. 

. 

. 

. 

. 

. 

. 

766 5 121 72 23 112 26.2 0.2450 30 Approximately 0 

767 1 126 60 0 0 30.1 0.3490 47 Approximately 1 

768 1 93 70 31 0 30.4 0.3150 23 Approximately 0 

 

Table A.2. The formulas of Sensitivity, Specificity and Accuracy [24] 

 Classical / Fuzzy Logistic Regression 

                                                  Observed 

Estimated Pozitive Negative Total 

Pozitive True Pozitive (TP) False Pozitive  (FP) TP+FP 

Negative False Negative    (FN) True Negative  (TN) FN+TN 

Total TP+FN FP+TN TP+FN+FP+TN 

   

 Sensitivity=1-{FP/(FP+TN)}                              (A.1)     

 Specificity=1-{FN/(FN+TP)}                             (A.2)   

 Accuracy={(TP+TN)/(TP+FN+FP+TN)}       (A.3)  

 


