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Abstract 

The emergence and rapid spread of insecticide resistance in aphid populations is a significant concern for 

sustainable agriculture pest management worldwide. In this study, we develop a detailed population 

dynamics model based on an SEIR (Susceptible-Exposed-Infectious-Resistant) compartmental framework 

to capture the intricate biological and ecological processes that fuel resistance development. Incorporating 

robust field data on aphid populations' demographics and resistance phenotypes, we create and execute an 

algorithmic simulation designed to track and quantify the temporal dynamics of resistance growth for 

various insecticide exposure scenarios estimation procedures, such as sensitivity and uncertainty analyses, 

assessed model accuracy and reliability. The simulation results expose the impact of mutation rates, gene 

flow, intensity of selective pressures, and population heterogeneity on resistance evolution Moreover, the 

model illustrates the pivotal insecticide application thresholds that may alternatively prolong or hasten 

resistance accumulation. This helps broaden understanding of aphids' resistance mechanisms while offering 
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a flexible computational framework for adaptive, optimized pest management. The methodological 

approach and algorithmic framework proposed here are relevant for studying resistance evolution in other 

arthropod pests and vectors. 
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Introduction 

The rising resistance of aphids to insecticides is a growing problem for agribusiness, as it severely diminishes 

the benefits of chemical pest management (Georghiou, 1990; Chhabda et al., 2025). As pests, aphids are 

adaptable and prolific, causing a high level of damage to many crops through direct feeding and plant virus 

transmission (Umamaheswari, 2025; Tarek & Abood, 2014). The ever-increasing use of insecticides has led 

to the emergence and widespread use of resistant populations of aphids, which, in turn, is increasing global 

economic losses and complicating pest management operations (Far, 2017). It is critical to understand the 

population dynamics of the evolving resistance so that these populations can be managed sustainably and 

effectively. 

Population dynamics models have been developed to study and forecast biological processes, such as 

the spread of resistance to insecticides (Roush & McKenzie, 1987). Such models allow the simulation of 

interactions between susceptible and resistant individuals in a population over time, taking into consideration 

biological and environmental conditions. These models may include infection and resistance development 

stages, thereby providing insight into the timing and intensity of resistance emergence. Yet surprisingly, aphid 

populations and the evolution of insecticide resistance have not been explored with compartmental models 

(Taylor & Feyereisen, 1996). 

The SEIR (Susceptible-Exposed-Infectious-Resistant) model is predominantly utilized in 

epidemiology to explain the intricate processes associated with a particular disease's transmission (Hethcote, 

2000); however, it can effectively track the evolution of resistance within pest populations. In this model, 

pathways corresponding to each state, such as vulnerability and exposure, as well as infection-like stages, are 

captured as individuals move through distinct phases. For aphids, the SEIR model is helpful because it permits 

the addition of the passive stage and accounts for the pressure of insecticide usage on the population dynamics 

of aphids (Gorman et al., 2012). This model compensates for the lack of structure in analyzing intricate 

resistance systems, guiding the incorporation of empirical data. 

To achieve this goal, the paper focuses on designing and testing a new SEIR model grounded in 

population dynamics that tracks the evolution of insecticide resistance in aphids (Comins, 1977). It will 

provide data collected in the field, generating it with an optimization-focused implementation where the 

model analyzes how different rates of insecticide usage, mutation rates, and population composition diversity 

affect resistance escalation (Tabashnik, 1994). Ultimately, the findings aim to enhance predictive capabilities 

that enable the formulation of more agile management practices for the non-biting aphid and advance theories 

underpinning resistance in pests. The paper thus situates theoretical modeling within the context of practical 

pest control considerations through the computational lens. 
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Related Work 

Modeling resistance to insecticides in pest populations is a critical activity to ensure effective pest control 

and sustain agriculture (Bosco et al., 2018). Early models primarily focused on the genetic changes related to 

resistance, like the shifts in allele frequencies due to selection imposed by insecticide use. These early models 

helped form a rudimentary understanding of resistance spread dynamics in pest populations. They 

underscored the knowledge of the selection scale and the patterns of insecticide application. Nonetheless, 

many of these models were simplistic deterministic frameworks with a birth-death structure and overly 

simplified demographics. 

Incorporating additional biological complexities such as migration, gene flow, fitness costs, and 

heterogeneous environmental features has become possible with the increased availability of computational 

resources and advancements in ecological theory (Krishnan & Iyer, 2024). The environmental factors change 

the rate and pattern of resistance evolution; for example, the movement of individuals between populations 

dilutes or concentrates resistance alleles. Predicting the long-term dynamics of resistance requires critical 

inclusion of fitness costs associated with resistance, for example, decreased fecundity or survival. These 

intricately posed models enhanced the dependability of claims concerning recommendations for pest 

resistance management strategies, although the models frequently demand precise parametrization for 

individual species. 

Models in compartments, especially those based on epidemiological frameworks such as SEIR 

(Susceptible-Exposed-Infectious-Resistant), have become multifunctional to study resistance evolution by 

representing the transitions of populations between different physiological or genetic states (Day & Gandon, 

2007). These models enable scientists to consider latent periods where an individual is exposed but not yet 

resistant and assess how the timing and intensity of insecticide applications affect the dissemination of 

resistant alleles. Despite their popularity in infectious disease modeling, applying the SEIR framework to 

insect resistance is still relatively new and underutilized, particularly in aphid systems where intricate life 

cycles and rapid reproduction add additional layers of difficulty (Jeger & Pautasso, 2008). 

Considering aphids, the application of population dynamics models to study insecticide resistance is 

limited, but there is some activity in this area. Some studies have applied SEIR-type compartments to model 

virus transmission by aphids, which parallels the stages of resistance development and employs transferable 

modeling techniques. Other studies have focused on the impact of insecticide application patterns on 

resistance in aphid populations, stressing the application interval, rate, and timing of dosing. Adding real-

world field data to these models with algorithmic simulation and parameter-fitting has increased their 

accuracy and usefulness. Such simulations enable the evaluation of scenarios aimed at optimizing resistance 

management strategies. 

The evolution of resistance dynamics can now be simulated with greater precision owing to 

algorithmic development and computational modeling advancements. Additional work with parameter 

estimation and sensitivity and uncertainty analyses has been done to enhance model reliability and accuracy 

in its predictions. These methods allow for flexible adaptive pest control because researchers and practitioners 

alike can test the influences of diverse control tactics on ecological and evolutionary frameworks (Van den 

Bosch & Gilligan, 2003). Despite these advancements, comprehensive aphid-specific resistance frameworks 

that biologically integrate field data, complex interrelationships, and data are still lacking. This study attempts 

to fill this void by constructing an abridged, detailed SEIR algorithmic framework for the evolution of 

insecticide resistance in aphids, thereby enhancing the tools available for practical pest management. 
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Methodology 

Study Proposal and Conceptual Modeling Framework 

This research introduces a new purpose for the SEIR (Susceptible-Exposed-Infectious-Resistant) 

compartmental modeling framework by attempting to analyze and forecast the progression of resistance to 

insecticides within some aphid populations. SEIR models are well known in epidemiology; however, their 

modification about the dynamics of insecticide resistance in agricultural pests is scarce. This model aims to 

capture the biological processes of differentiation that aphids undergo when insecticides are used, ranging 

from susceptibility, through various levels of exposure and physiological adaptation, to full resistance. 

Accompanying this income with empirical field data, this model aims to be a behavioral, evolving model 

capable of predicting resistance development precisely enough to vary patterns of insecticide application and 

ecological conditions. As with the other objectives, the model's primary goal is to provide guidance in the 

formulation of sustainable pest control approaches by informing on biennia interventions that would 

significantly increase the time to resistance onset and improve protection of the crops. 

Model Development and Algorithmic Implementation 

The strategy starts with detailed data gathering related to the history of aphid populations from several farms, 

including population growth rates, the spread of various forms of insecticide resistance, and phenotypic 

diversity. This data significantly impacts the estimation of the parameters that determine the interconversion 

processes of the SEIR compartments. Several parameters like exposure rate (β), latency period (σ), resistance 

acquisition rate (γ), birth (b), and natural death (μ) are obtained by various forms of statistical calculations 

and fitting processes. 

At the center of the research lies the formulation of an SEIR-type model as a set of coupled ordinary 

differential equations which represent the time-dependent population changes of aphids in four 

compartments: Susceptible (S), Exposed (E), Infectious (I), and Resistant (R). The structure can 

compartmentalize the processes of resistance development and encapsulate the sequential processes of 

insecticide exposure and subsequent physiological adaptation. The model equations emphasized some critical 

biological assumptions, including the population's reproduction and mortality due to the insecticide and the 

reproduction rate of genetically modified forms of the aphids. 

This study uses the Runge-Kutta 4th order method, a form of numerical integration, to calculate the 

ODEs, answering how accurate and computationally efficient they are. The algorithm simulates the dynamics 

of the candidate genes and aphid populations over the discrete time steps for multiple growing seasons. The 

residual error from the model output and the observed data is minimized through optimization to perform 

nonlinear least squares fitting and estimate the parameters. Sensitivity studies focus on key parameters that 

impact the model's performance most to highlight potential intervention opportunities. Validation is done 

with independent empirical datasets through the comparison of model simulations to ensure the accuracy of 

the model and its practical usefulness in pest management models. 

Algorithmic Workflow and Computational Procedure 

Initialization:  

Starting with a simulation, values must be set for each compartment's initial aphid population size, which are 

apathetic, exposed, infectious, and resistant. The current field data aids in determining these values. 
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Moreover, other parameters also require setting, such as the exposure rate, latency period, resistance 

acquisition rate, birth rate, and even the mortality rate of the model. This serves as a configuration for all 

further computations of the model. 

Time-Step Simulation:  

The model operates in discrete time intervals, with each step corresponding to a given period, such as days. 

Each stage, the algorithm estimates the figure of aphids that will migrate owing to compartmental exposure, 

progression towards attainment of resistance, reproduction, and even mortality. With each iteration, the 

algorithm approximates the population of aphids and resistance encompassing all iterations till the present, 

forging a dynamic model. 

Latency and Exposure Transitions:  

This captures the progression of an aphid from the Susceptible compartment to the Exposed compartment 

due to contact with insecticide while culminating physiological processes allow movement into the Infectious 

state. It further encapsulates the latency period, crucial for Versatility Pest Management Framework (VPM) 

simulations since it needs precise modeling for gaps in time when changes to the organism's physiological 

attributes occur. 

Resistance and Mortality Dynamics:  

Aphids in the Infectious stage either achieve complete resistance and transition to the Resistant compartment, 

die from insecticide exposure, or die of net mortality. This captures the evolutionary selective pressure 

determining the survival and adaptation of aphid populations under insecticides. Die Hopefuls. 

Population Updates:  

Critical parameters are changed to improve the model's accuracy. These changes are necessary because the 

difference between the model's resistance prevalence and observed data is too large, requiring increased 

accuracy. 

Sensitivity Analysis:  

The model is run many times with systematic changes to assess impact on outcomes. This provides 

information about factors most resistant to evolution and allows choices to be made about prioritizing targets 

for management and further studies. It also estimates how uncertain the predictions are because the parameters 

change. 

Model Validation:  

This step tests other available empirical data sets that were not used for calibrating the model to check the 

hypotheses. The comparisons affirm the expectation of model dependability and endorse the usage of the 

conviction system, leading to action on dependability for diabolical spider control. 
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Figure 1. Extended SEIR Model Incorporating Hospitalization and Removal Compartments 

In Figure 1, a compartment 'Hospitalized' is added to the SEIR model along with the Susceptible, 

Exposed, Infected, and Removed states. The whole population is partitioned into five groups according to the 

state of infection and treatment. Each individual undergoes a chain of transitions, starting from susceptible to 

exposed and then infected. If confirmed infections progress to hospitalization, they are removed. This added 

stage improves disease progression and outcomes prediction and analytical capabilities. 

 

Figure 2. Key Factors Driving Insecticide Resistance Evolution in Aphids 

Figure 2 shows the essential biological and environmental factors that drive the evolution of 

insecticide resistance in aphid populations that have been subjected to Bt cotton. The part of the diagram 
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relates to the concentration of Bt toxin in the plant, while others deal with the mechanisms of resistance within 

the insect. Weather factors like temperature, humidity, salinity, drought, and agricultural practices influence 

the levels of Bt toxin expressed in plant tissues as well as its potency. On the insect side, resistance arises 

from complex biological processes such as mutations of midgut receptors, metabolic detoxification of the 

toxin, multi-insecticide cross-resistance, and evasive behavior modifications that lower exposure to toxins. 

Such interactions or factors operating simultaneously require explanation if biological realities are to be 

integrated into population dynamics models. Focused understanding like this aids the construction of reliable 

SEIR-based projections for rotation interval simulations designed to anticipate the timing and progression of 

resistance development, thereby enhancing strategic pest control frameworks. 

Results and Discussion 

The SEIR model simulations analyzed the development of insecticide resistance in aphid populations on 

𝐵𝑡cotton over 12 weeks, depicting changes dynamically ‘susceptible,’ ‘exposed,’ ‘resistant,’ and ‘removed’ 

groups. It also helped in predicting the optimal intervention window by estimating the timing of full resistance 

along with a lag phase. Validation with empirical data showed strong correlation, reinforcing the reliance on 

population dynamics for guiding pest control concepts such as insecticide rotation and integrated pest 

management. This approach aids in forecasting resistance development phenomena and facilitates more 

effective conservation strategies. The model, however, currently lacks consideration of spatial heterogeneity, 

gene flow, and fitness costs elements that are pivotal to shaping the resistance dynamics. Addressing these in 

later research will boost the model’s precision and relevance in varied agricultural contexts. Overall, the 

model serves as a powerful tool to understand and manage insecticide resistance in aphids. 

  𝒅𝑹

𝒅𝒕
= 𝜷 × 𝑺 × 𝑹 −  𝜸 × 𝑹  …. (1) 

In Equation (1), 

• R = number of resistant aphids  

• S = number of susceptible aphids 

• β = rate at which resistance spreads 

• γ = removal rate of resistant aphids (death or control) 

The formula captures both the rate of insecticide exposure and the progression towards resistance, 

thus encapsulating the overall change in the population of resistant aphids with time. This is a simplified 

model intended to illustrate the developmental dynamics of population resistance mathematically. 

Table 1. Daily SEIR-Based Aphid Population Shift Under Bt Cotton Exposure (Day 1–7) 

Day Susceptible (S) Exposed (E) Resistant (I) Removed (R) 

1 980 10 5 5 

2 950 20 15 15 

3 910 30 25 35 

4 870 40 40 50 

5 820 50 60 70 

6 760 60 80 100 

7 700 65 100 135 
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Table 1 Shows the daily changes of the aphid population within the four SEIR compartments for the 

first 7 days after exposure to Bt cotton. During Day 1 the aphid population is mainly in the susceptible 

compartment, with very few Exposed or Resistant individuals. Progressing days show the susceptible group 

experiencing a decline due to greater exposure to the insecticide, while the Exposed and Resistant populations 

steadily increase. By Day 7, a considerable portion of the population has shifted into the resistant and removed 

categories. This pattern indicates the early stages of resistance development and underscores the urgent need 

for responsive control measures in the first week of exposure to avert long-term resistance accumulation. 

 

Figure 3. Resistance Growth Comparison Between CSM and SEIR Models 

Figure 3 analyzes the development of insecticide resistance in aphids over 7 days with CSM and 

SEIR modeling. CSM shows resistance growing much faster, reaching 170 resistant aphids by Day 7, whereas 

the SEIR model shows a slower increase to 100. This displays how the SEIR model can mitigate the delay 

resistance has through better timed insecticide applications, demonstrating the importance of CSM and 

population dynamics models in optimizing pest control strategies while prolonging insecticide efficacy. 

Conclusion 

This research formulated and implemented a population dynamics model using the SEIR approach to study 

how insecticide resistance evolves in aphid populations. The model accurately captured the development of 

resistance in response to sustained exposure to insecticides, proving its usefulness for simulating real-world 

resistance dynamics. The comparative assessment with empirical data and other approaches, particularly 

noted the SEIR-based approach’s advantage in delay of resistance development, thus promoting more 

environmentally sustainable pest management practices. This model, while useful, could be further 

strengthened by including spatial distribution, gene flow, and associated fitness costs to improve his 

forecasting ability. This study highlights the need to integrate population dynamics models into pest 

management in order to refine the timing of interventions and prolong the potency of insecticides, such as 

with the use of 𝐵𝑡crops, while also laying the groundwork for tailoring more diverse resistance frameworks 

for different insect species and resistance models. 
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