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A general procedure for estimating population
variance in successive sampling using fuzzy tools

A.Chatterjee∗† , G.N.Singh‡,A. Bandyopadhyay and P.Mukhopadhyay�

Abstract

This paper de�nes a general class of estimators for estimating popula-
tion variance on current occasion in two occasion successive sampling.
Detail behaviors of the proposed class of estimators have been studied
and its optimum replacement strategy has also been discussed. The pro-
posed class of estimators has been compared with the sample variance
estimator and the results obtained are demonstrated through empirical
studies. Categorization of the dominance ranges of the proposed esti-
mation strategies are deployed through defuzzi�cation tools which are
followed by suitable recommendations.
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1. Introduction

It is well known that in sampling designs the use of auxiliary information improves
the precision of estimates substantially. The theory and practice of surveying the same
population at di�erent points of time technically called repetitive sampling or sampling
over successive occasions have been given considerable attention by survey statisticians.
When a population is subject to change, a survey carried out on a single occasion will
provide information about the characteristics of the surveyed population for the given oc-
casion only, and cannot, of itself, give any information about (a) the rate of change of the
characteristics over di�erent occasions, and (b) the average value of the characteristics
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over all occasions or for the most recent occasion. To meet these requirements sampling
is done on successive occasions. For examples; monthly data on the prices of goods are
collected to determine the consumer price index and political opinion surveys are con-
ducted at regular intervals to know the voters preference, etc. Estimates of change are
wanted mainly in attempts to study the e�ects of forces that are known to have acted on
the population. Most governments collect information regularly on the same population
to �nd out, say the number of persons unemployed, the change in employment from time
to time etc.[24]. Theory of successive sampling appears to have started with the work
of [6]. It was further extended by [9], [10],[4], [2] among others. In successive sampling,
it is common practice to use the information collected on previous occasion as auxiliary
information to improve the precision of the estimates on current occasion. In many situ-
ations, information on an auxiliary variable may be readily available on the �rst as well
as on the second occasion, for examples; tonnage (or seat capacity) of each vehicle or
ship is known in survey sampling of transportation, number of polluting industries and
vehicles are known in environmental survey. Likewise, there may be several information
available, which if e�ciently utilized can improve the precision of the estimates.
Variation is an inherent phenomenon of nature; it is present everywhere in our day to
day life. For instance, a physician needs a full understanding of variations in the degree
of human blood pressure, body temperature and pulse rate for adequate prescription. A
manufacturer needs constant knowledge of the level of variations in people's reaction to
his product to be able to know whether to reduce or increase the price or improve the
quality of his product. Many more situations can be encountered in practice where the
estimation of population variance of the study character assume importance. It is worth
to be mentioned that limited number of attempts have been made to the estimation of
the population variance in successive sampling. The works of [13] and [14] may be re-
ferred in this context.
Motivated by above, the present study is an attempt to introduce a general estimation
procedure of population variance on the current (second) occasion in two-occasion suc-
cessive sampling. Its properties have been studied and the e�cacy of the proposed work
has been examined through empirical studies. To categorize the dominance ranges of the
proposed estimation strategies, defuzzi�cation tools are employed. Recommendations of
the proposed estimation strategy have been put forward to the survey statisticians.

2. Formulation of proposed estimation strategies

2.1. Sample structures and notations. Let U = (U1, U2, U3, ...., UN ) be the �nite
population of N units, which has been sampled over two occasions. The character under
study is denoted by x(y) on the �rst (second) occasions, respectively. It is assumed that
information on an auxiliary variable z whose population variance is known, closely related
(positively correlated) to x and y on the �rst and second occasions, respectively, available
on the �rst as well as on the second occasion. For convenience, it is assumed that the
population under consideration is considerably large enough. A simple random sample
(without replacement) of n units is drawn on the �rst occasion. A random sub-sample
of m = nλ units is retained (matched) for its use on the second occasion, while a fresh
simple random sample (without replacement) of u = (n −m) = nµ units are drawn on
the second occasion from the entire population so that the sample size on the second
occasion is also n. Hereλ and µ (λ + µ = 1) are the fractions of the matched and fresh
samples, on the current(second) occasion respectively.
Hence onwards, we consider the following notations for their further use:
S2
x, S

2
y , S

2
z :The population variances of the variables x, y and z, respectively.

s2ym: Sample variance of the variable y based on the sample of size m.
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s2xm: Sample variance of the variable x based on the sample of size m.
s2xn: Sample variance of the variable x based on the sample of size n.
s2zn: Sample variance of the variable z based on the sample of size n.
s2yu: Sample variance of the variable y based on the sample of size u.

s2zu: Sample variance of the variable z based on the sample of size u.

2.2. Proposed class of estimators. To estimate the population variance S2
y on the

current (second) occasion, two independent class of estimators are suggested. The class
of estimators tC is based on sample of size u = nµ drawn afresh on the second occasion
and the class of estimators tA is based on the matched sample of size m = nλ common
to both occasions.

2.2.1. Estimators based on the sample drawn afresh on the second occasion. Motivated
with the conventional estimation procedures of population mean, one may propose the
following ratio and product type estimators of population variance S2

y based on the sam-
ple of size u drawn afresh on the current (second) occasion as

C1u=s
2
yu

S2
z

s2zu
,

C2u=s
2
yu

s2zu
S2
z
,

C3u=s
2
yu(

s2zu
S2
z

)α,

C4u=s
2
yu[2− (

s2zu
S2
z

)α],

where α is a constant, chosen suitably, so that the mean square errors of the above
de�ned class of estimators may be minimized.
Inspired with the above discussions and following the estimation strategies of population
mean adopted [21] [22] and [16], we consider the following general class of estimators of
population variance S2

y as

(2.1) tC = C(s2yu, s
2
zu)

where C(s2yu, s
2
zu) is a function of (s2yu, s

2
zu) such that

(2.2) C(S2
y , S

2
z ) = S2

y → C1(Q) = d1 =
∂C(.)

∂s2yu
= 1

with Q = (S2
y , S

2
z ) and C(s2yu, s

2
zu) satis�es the following conditions :

1. Whatever be the sample chosen, (s2yu, s
2
zu) assume values in a bounded closed convex

subset R, of the two- dimensional real space containing the points (S2
y , S

2
z ) .

2. The function C(s2yu, s
2
zu) is continuous and bounded in R.

3. The �rst, second, and third partial derivatives of C(s2yu, s
2
zu) exist and are continuous

and bounded in R.

2.2.2. Estimators based on the matched sample which is common to both occasions. In
successive sampling, it is common practice to use the information collected on the previ-
ous occasion as auxiliary information, to improve the precision of the estimates on current
occasion. In follow up of standard practice and using the concept of double sampling one
may suggest ratio type estimator of S2

y which is based on the matched sample of size m
at current (second) occasion as

t1m=s
2
ym

s2xn
s2xm

It is well known that, if the correlation between x and z is highly positive,
s2xn
s2zn

S2
z will

estimate S2
x more precisely than s2xn . Following [1] technique, one may propose ratio
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type estimators for population variance S2
y as

t2m=(
s2ym

s2xm
)(
s2xn
s2zn

)S2
z

t3m=(
s2ym

s2xm
)(
s2xns

2
zn

S2
z

)

t4m=(
s2yms

2
xm

s2xns
2
zn

)S2
z

Motivated by the above estimation techniques, we de�ne a class of estimators of popu-
lation variance S2

y on current (second) occasion based on the matched sample of size m as

(2.3) tA = A(s2ym, a, b, c)

where a=
s2xm
s2xn

, b=
s2zm
s2zn

, c=
s2zn
S2
z
and A(s2ym, a, b, c) is a function of (s2ym, a, b, c) such that

(2.4) A(T ) = S2
y → A1(T ) =

∂A(.)

∂s2ym
= 1

where T=(S2
y ,1,1,1) and A(s2ym, a, b, c) satisfy conditions similar to those given for tC in

equation (2.1).

2.2.3. Composite class of estimators. Combining the class of estimators tC and tA , we
have the following composite class of estimators of population variance S2

y as,

(2.5) t = φtC + (1− φ)tA

where the class of estimators tC and tA are respectively de�ned in equations (2.1) and
(2.3) respectively and φ is a scalar quantity to be chosen suitably.

2.3. Remark. (i) The proposed class of estimators tC of S2
y is very wide in sense that

for any parametric function C(s2yu, s
2
zu) satisfying regularity conditions and C(s2yu, s

2
zu)

=S2
y , for all S

2
y can generate estimators of the class tC . For examples; the following

estimators are the member of the class of estimators tC .

C1u=s
2
yu

S2
z

s2zu
, C2u=s

2
yu

s2zu
S2
z
, C3u=s

2
yu(

s2zu
S2
z

)α, C4u=s
2
yu[2− (

s2zu
S2
z

)α],

C5u=s
2
yuexp(

S2
z−s

2
zu

S2
z+s

2
zu
), C6u=s

2
yuexp(

s2zu−S
2
z

s2zu+S2
z
) C7u=s

2
yu+α(S

2
z -s

2
zu)

C8u=αs
2
yu+(1-α)s

2
yu

S2
z

s2zu
C9u=αs

2
yu+(1-α)s

2
yu

s2zu
S2
z

and

C10u=
s2yuS

2
z

[S2
Z
+α(S2

z+szu
2)]
,

where α is real constant and its optimum value can be determined so that it satisfy the
respective normal equations and the resulting estimators would have the same minimum
mean square errors as obtained for the class of tC .

(ii) It may be noted that the estimators

r1=s
2
xn

S2
z

s2zn
, r2=s

2
xn

s2zn
S2
z
, r3=s

2
xnexp(

S2
z−s

2
zn

S2
z+s

2
zn
) r4=s

2
xnexp(

s2zn−S
2
z

s2zn+S2
z
)

r5=s
2
xn+k1(s

2
zn-S

2
z );

where k1 is a real constant, among others, may estiamte S2
x more precisely than s2xn.

Further, the proposed class of estimators tA of S2
y is also very wide, hence for any para-

metric function A(s2ym, a, b, c) satisfying the regularity conditions with A(S2
y , 1, 1, 1)=S2

y

for all S2
y , may generate asymptotically acceptable estimators of the class tA , for exam-

ples the following estimators are the members of the class of estimators tA .

t1=s
2
ym

s2xm
r1

, t2=s
2
ym

s2xm
r2

, tim=s
2
ym+k2(ri-s

2
xm)[i=1,2,3,4,5] and k2 is real constant.

t6m=s
2
ym

r3
s2xm

, t7m=s
2
ym

r4
s2xm

among others.
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It may be easily veri�ed that the optimum values of ki(i = 1, 2) in above estimators are
determined in such a way so that they satisfy the respective normal equations and the
resulting estimators should have the same minimum mean square errors of �rst order of
approximations as derived for the class of estimators tA .

(iii)For estimating the population variance S2
y of the study variable y on each occasion,

the class of estimator tC is suitable, which implies that more belief on tC could be
shown by choosing φ in equation (2.5), as 1 (or close to 1), while for estimating changes
over occasions, the family of estimators tA could be more useful and hence, φ might be
chosen as 0 (or close to 0). For asserting both the problems simultaneously, the suitable
(optimum) choice of φ is required.

3. Properties of the proposed class of estimators t

3.1. Bias and MSE of t. It may be noted from section 2 that several ratio, product
and regression type estimators are members of the proposed classes of estimators tC and
tA . Therefore, the class of estimators tC and tA are biased forS2

y . This indicates that

the composite class of estimators t is also biased for S2
y .The bias B(.) and mean square

error M(.) of the class of estimators t are derived up to �rst order of approximations
under large sample assumptions in the following section.

3.1.1. Bias and MSE of tC . The bias B(.) and mean square error M(.) of class of esti-
mators tC are derived up to �rst order approximations under large sample assumptions
and using the following transformations.
s2yu=S

2
y(1+e1u), s

2
zu=S

2
z (1+e2u) such that E(e1u)=E(e2u)=0 : and E(e1ue2u)=fuρ02C0C2

Following [17], in the expressions of bias and mean square error of the class of estima-
tors tC , we use the following notations.
µpqr=

1
N

∑∞
n=1(yi-Ȳ )

p(xi-X̄)q(zi-Z̄)
r ; where p, q, r being non negetive integer.

λpqr=
µpqr√

µ
p
200µ

q
020µ

r
002

,

C0=
√
λ400 − 1, C1=

√
λ040 − 1, C2=

√
λ004 − 1,

ρ01=
λ220−1
C0C1

, ρ02=
λ202−1
C0C2

, ρ12=
λ022−1
C1C2

,

k01=ρ01
C0
C1

, k02=ρ02
C0
C2

, k12=ρ12
C1
C2

, k21=ρ21
C2
C1

f1=
1
m
, f2=

1
n
, f3=

1
m
- 1
n
, fu=

1
u
[Finite population correlation has been ignored as N

→ ∞

To express tC in terms of e's we will have to consider the conditions mentioned in
equation (2.2) on the function C(s2yu, s

2
zu) and thus expanding C(s2yu, s

2
zu) about the

point C(S2
y , S

2
z ) in the third order Tailor series, we have

(3.1) C(s2yu, s
2
zu) =


C(S2

y , S
2
z ) + (s2yu − S2

y)d1 + (s2zu − S2
z )d2

+ 1
2
[((s2yu − S2

y)d11)2 + ((s2zu − S2
z )d22)2

+2(s2yu − S2
y)(s2zu − S2

z )d12]

+ 1
6

[
(s2yu − S2

y) ∂
∂s2yu

+ (s2zu − S2
z ) ∂
∂s2zu

]3
C(s2

′
yu, s

2′
zu)

 .
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where, d1=
∂

∂s2yu
C(s2yu, s

2
zu), d2=

∂
∂s2zu

C(s2yu, s
2
zu),

s2
′
yu=S

2
y+θ(s

2
yu-S

2
y), s

2′
zu=S

2
z+θ(s

2
zu-S

2
z ), d22=

∂
∂s2zu

( ∂C(.)

∂s2zu
), and d12=

∂2C(.)

∂s2yu∂s
2
zu
.

In light of conditions (2),

(3.2) C(S2
y , S

2
z ) = S2

y → C1(Q) = d1 =
∂C(.)

∂s2yu
= 1 and d11 =

∂2C(.)

∂(s2yu)2
= 0

Now expressing the equation (3.1) in terms of e's and neglecting terms of e's having
power greater than two we have

(3.3) C(s2yu, s
2
zu) =

 C(S2
y , S

2
z ) + (s2yu − S2

y) + (s2zu − S2
z )d2

+ 1
2
[((s2yu − S2

y)d11)2 + ((s2zu − S2
z )d22)2

+2(s2yu − S2
y)(s2zu − S2

z )d12]

 .
Now taking expectation on the both sides of the equation (3.3) and retaining the terms

of order o(u−1) we obtained bias and mean square error of the class of estimators tC as

(3.4) B(tC) =
1

2u
[S4
zC

2
2d22 + 2S2

zS
2
yρ02C0C2d12]

and

(3.5) M(tC) = E(tC − S2
y)2 =

S4
y

u
[C2

0 + (
C2

R2
)2d2(d2 + 2R2k02)]

where k02=ρ02
C0
C2

, R2=
S2
y

S2
z

Now M(tC) is minimized for d2=−R2k02 Here, it may be noticed that ρ01 is the cor-
relation coe�cient between (y − Ȳ ) and (x − X̄) and Similarly ρ12 is the correlation
coe�cient between (x − X̄) and(z − Z̄) and ρ02 is the correlation coe�cient between
(y − Ȳ ) and (z − Z̄) See for instance [27].
Thus, the resulting minimum mean square error is given by

(3.6) MinM(tC) =
C2

0S
4
y

u
[1− ρ202]

3.1.2. Bias and MSE of tA. The bias B(.) and mean square error M(.) of tA are derived
up to �rst order approximations under large sample assumptions and using the following
transformations.
s2ym=S

2
y(1 + e1m), s2xm=S

2
x(1 + e2m), s2xn=S

2
x(1 + e3n), s2zn=S

2
z (1 + e4n), such that

E(eim) = 0, for i=1, 2. And E(ein) = 0, for i=3, 4.
Following Singh et.al (2009), we use the following expectations in the expressions of bias
and mean square error of the class of estimators tA.
E(e21m)=f1C

2
0 , E(e22m)=f1C

2
1 , E(e23n)=f2C

2
1 ,E(e24n)=f2C

2
2 ,

E(e1me3n)=f2ρ01C0C1, E(e1me4n)=f2ρ02C0C2, E(e3ne4n)=f2ρ12C1C2,
E(e1me2m)=f1ρ01C0C1, E(e2me4n)=f2ρ12C1C2, E(e2me3n)=f2C

2
1 .

Proceeding as above using the conditions stated in the equations (2.3) and (2.4), we
expand A(s2ym, a, b, c) about A(S2

y , 1, 1, 1) in a third order Tailor's series expansion and
taking expectations we have
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(3.7) B(tA) =
1

2

 f3
[
C2

1A22(T ) + C2
2A33(T ) + 2S2

yρ02C0C2A13(T )
]

+f3
[
2S2

yρ01C0C1A12(T ) + 2S2
yρ12C1C2A23(T )

]
+f2

{
C2

2A44(T ) + 2S2
yρ02C0C2A14(T )

}


where, A1(T ) = ∂A(.)

∂s2ym
, A2(T )= ∂A(.)

∂a
, A3(T )= ∂A(.)

∂b
, A4(T )= ∂A(.)

∂c
. Further

(3.8) M(tA) =


S4
yf1C

2
0 + f3A

2
2(T )C2

1 + f3A
2
3(T )C2

2

+f2A
2
4(T )C2

2 + 2f3A2S
2
yρ01C0C1

+2f3A3S
2
yρ02C0C2 + 2f3A4S

2
yρ02C0C2

+2A2A3f3ρ12C1C2


Now di�rentiating the expressionM(tA) partially with respect to A2(T ), A3(T ), A4(T )

and equating then to zero, we have the optimum values of Ai(T ),i=2,3,4 as

(3.9) A2(T ) =
S2
yC0(ρ02ρ12 − ρ01)

C1(1− ρ212)

(3.10) A3(T ) =
S2
yC0(ρ01ρ12 − ρ02)

C2(1− ρ212)

and

(3.11) A4(T ) = −
S2
yC0ρ02

C2

Substitution from equation (3.9), (3.10) and (3.11) in (3.8), which yields the minimum
mean square error of class of estimators tA as,

(3.12) MinM(tA) = S4
yC

2
0 [f1 − f3{

ρ201 + ρ202 − 2ρ01ρ02ρ12
(1− ρ212)

} − f2ρ202]

3.1.3. Theorem.

(i) Bias of the class of estimators t to the �rst order of approximations are obtained as

(3.13) B(t) = φB(tC) + (1− φ)B(tA)

Proof: The bias of the class of estimators t is given by
B(t) = E(t− S2

y)

= E[φ(tc − S2
y) + (1− φ)(tA − S2

y)]

= φE[(tc − S2
y)] + (1− φ)E[(tA − S2

y)]
= φB(tC) + (1− φ)B(tA)

Substituting the values of B(tC) and B(tA) from equations (3.4) and (3.7) in the equation
(3.13), we have the expression for the bias of the class of estimators t .

(ii) Mean square error of the class of estimators t to the �rst order of approximations
are obtained as

(3.14) M(t) = φ2M(tC) + (1− φ)2M(tA)

Proof: The Mean square error of the class of estimators t is given by
M(t) = E(t− S2

y)2

= E[φ(tc − S2
y) + (1− φ)(tA − S2

y)]2

= φ2E[(tc − S2
y)]2 + (1− φ)2E[(tA − S2

y)]2

= φ2M(tC) + (1− φ)2M(tA)
Substituting the values ofM(tC) andM(tA) from equations (3.6) and (3.12) in the equa-
tion (3.14), we have the expression for the mean square error of the class of estimators
t. It should be noted that the estimators tC and tA may be correlated. However, the
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covariance term C(tC , tA) is of order N−1 and neglected for large population.

Remark :
(a) It may be seen that the bias and mean square errors of di�erent estimators which
belong to the classes of estimators tC and tA may be derived by substituting the suitable
values of the derivatives as suggested by [15] and [16].
(b) It is to be noted from equations (3.2) and (3.3) that the optimum values of the
derivatives involved in estimators depend on unknown population parameters. Thus to
use such estimators one has to use the guessed or estimated values of these derivatives.
Guessed values of population parameters can be obtained either from past data or expe-
rience gathered over time; see [8], [11] and [25]. If the guessed values are not known then
it is advisable to use sample data to estimate these parameters as suggested by [26], [16],
and [5].

3.2. Minimum mean square error of the proposed estimator t. It may be noted
from Remark 2.2.3 and equation (3.14) that mean square error of class of estimators t in
equation (3.14) is a function of constant φ , therefore, it is minimized with respect to φ
and subsequently the optimum value of φ is obtained as

(3.15) φopt =
Min.M(tA)

Min.M(tC) +Min.M(tA)

Substituting the value of φopt from equation (3.15) in equation (3.14), we get the opti-
mum mean square error of the class of estimators t as

(3.16) [M(t)]opt =
Min.M(tC)×Min.M(tA)

Min.M(tC) +Min.M(tA)

Further, substituting the values ofMin.M(tC) andMin.M(tA) from equations (3.6) and
(3.12) in equation (3.16), the simpli�ed values of [M(t)]opt is derived as

[M(t)]opt=
C2

0s
4
y(1−ρ

2
02)(f1−f3A

′−f2ρ202)
u[( 1

u
+f1)−ρ202((

1
u
+f2)−f3A′]

where,

A′ =
ρ201+ρ

2
02−2ρ01ρ02ρ12
1−ρ212

put u = nµ,m = n(1− µ), gives,

(3.17) [M(t)]opt =
C2

0s
4
y(1− ρ202)[(1− ρ202) + µ(ρ202 −A′)]
n[(1− ρ202) + µ2(rho202 −A′)]

where µ = u
n
is the fraction of fresh sample drawn on the current (second) occasion.

3.3. Optimum replacement strategy. The key design parameter a�ecting the esti-
mates of change is the overlap between successive samples. Maintaining high overlap
repeats of a survey is operationally convenient, since many sampled units have been lo-
cated and have some experience of the survey. Hence, to determine the optimum value
of µ so that population variance S2

y may be estimated with maximum precision, we min-
imize Min M(t) in equation (3.17) with respect to µ we have the optimum value of µ
as,

(3.18) µ̂ =
1±

√
1− (ρ01−ρ02ρ12)2

(1−ρ212)(1−ρ
2
02)

(ρ01−ρ02ρ12)2
(1−ρ212)(1−ρ

2
02)

The real values of µ̂ exist, if and only if the quantity under square root is positive.
For any situation, which satis�es this condition, two real values of µ̂ are possible, hence,
to choose a value of µ̂ , it should be remembered that 0 ≤ µ̂ ≤ 1 , all other values of µ̂
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are inadmissible. If both the real values of µ̂ are admissible, lowest one will be the best
choice as it reduces the cost of the survey at the same precision of estimate. Substituting
the admissible value of µ̂ say µ̂0 in equation (3.17), we have the optimum value of the
mean square error of the class of estimators t which is shown as,

(3.19) Min.M(t)opt =
C2

0s
4
y(1− ρ202)[1 +

√
1− (ρ01−ρ02ρ12)2

(1−ρ212)(1−ρ
2
02)

]

2n

4. E�ciency comparison

It is important to investigate situations under which our proposed estimation strategy
succeeds better than the usual. Thus, to elucidate the performance of the proposed class
of estimators t, we have computed the percent relative e�ciency (PRE) of the proposed
class of estimator t , with respect to (i)s2yn when there is no matching and (ii)s2yφ∗ when
no auxiliary information is used on any occasion . When no auxiliary information is used
on any occasion following estimator of population variance S2

y in two-occasion successive
sampling may be proposed as

(4.1) s2yφ∗ = φ∗s2yu + (1− φ∗)s2ylm
where φ∗ is unknown and

(4.2) s2ylm = s2ym + b(s2xn − sxm)

and b is suitably chosen constant to minimize the variance of the estimator s2ylm.

The mean square error of s2yφ∗ up to the �rst degree of approximation for large popula-
tion size (N →∞) is given as

(4.3) M(s2yφ∗) = (φ∗)2M(s2yu) + (1− (φ∗)2)2M(s2ylm)

where M(s2yu)=
C2

0S
4
y

u
and

(4.4) M(s2ylm) = [
C2

0S
4
y(1− ρ201)

m
+
C2

0S
4
y(ρ201)

n
]

The M(s2yφ∗) in (4.3) is minimized for

(4.5) φ∗ =
M(s2ylm)

M(s2yu) +M(s2ylm)

Thus the resulting MSE of s2yφ∗ is given by

(4.6) M(s2yφ∗) =
C2

0S
4
y(1− µρ201)

n(1− µ2ρ201)

Note that if µ = 0(complete matching) or µ = 1(no matching) mean square error has

the value
S4
y

n
.Therefore optimum value of µ is found by minimizing M(s2yφ∗) in equation

(4.6) w.r.t variation in µ which yields

(4.7) µ∗ =
1

1 +
√

1− ρ201

m

n
=

√
1− ρ201

1 +
√

1− ρ201
when the optimum value of µ is substituted in equation (4.6) the minimum mean square
error works out as

(4.8) M(s2yφ∗)opt =
C2

0S
4
y

2n
(1 +

√
1− ρ201)
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Thus, the percent relative e�ciencies (PRE) of the proposed class of estimators t , with
respect to the estimators s2yn and s2yφ∗ are presented below

The PRE of t, w.r.t s2yn is

(4.9) E1 =
V (s2yn)

MinM(t)(opt)
× 100 =

2

(1− ρ202)(1 +
√

1 + (ρ01−ρ02ρ12)2
(1−ρ212)(1−ρ

2
02)

)
× 100

where V (s2yn)=
C2

0S
4
y

n

and the PRE of t with respect to s2yφ∗ is given as

(4.10) E2 =
V (s2yφ∗)

MinM(t)(opt)
× 100 =

1 +
√

1− ρ201
(1− ρ202)(1 +

√
1 + (ρ01−ρ02ρ12)2

(1−ρ212)(1−ρ
2
02)

)
× 100

In Table 1.1 and Table 1.2, we have examined the e�cacy of the proposed work through
the data set of natural populations. The behavior of the proposed estimation strategy
for the variations in di�erent correlations such as ρ01,ρ02 has been demonstrated using
empirical study presented in Table 2.

4.1. Investigation through natural populations. Two natural population (based
on positive correlation) data sets have been chosen to illustrate the e�ciency of our pro-
posed estimation procedure. The source of the populations, the nature of the variables
y, x, z and the values of the various parameters are as follows:
Population I-Source:Murthy (1967), (Page Number- 399)
y: Area under wheat in 1964.
x: Area under wheat in 1963.
z: Cultivated area in 1961.
N = 80, C0 = 1.1255, C1 = 1.6065, C2 = 1.3662,
ρ01 = 0.7319, ρ02 = 0.794, ρ12 = 0.9716, S2

z = 715055.82136

Population II-Source: Sukhatme and Sukhatme (1970), (Page Number -185)
y: Area (acres) under wheat in 1937.
x: Area (acres) under wheat in 1936.
z: Total cultivated area (acres) in 1931.
N = 34, C0 = 1.5959, C1 = 1.5105, C2 = 1.32,
ρ01 = 0.6251, ρ02 = 0.8007, ρ12 = 0.5342, S2

z = 222931.3868
Utilizing the above data set, we have examined the performances of the proposed class
of estimators t in Table 1.1.

Table 1.1 PRE of t with respect to s2yn, s
2
yφ∗

population E1 E2

I 275.9056 231.9555

II 290.1144 258.2809

4.2. Investigation on arti�cial population. We have generated three sets of inde-

pendent random numbers of size N (N = 100) namely x
′
k, y

′
k, z

′
k where k=1,2,3,......,N

from a standard normal distribution with the help of R - software. Further, motivated
by the arti�cial population generation techniques adopted by Singh and Deo (2003) and
Singh et al . (2001), we have generated the following transformed variables of the popu-
lation U with the values of ρxy=0.8, ρxz=-0.7, σ

2
y=100, µy=40, σ

2
x=225, µx=50, σ

2
z=25,

µz=30 as
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yk=µy+σy[ρxyx
′
k+
√

(1− ρ2xy)y
′
k], xk=µx+σyx

′
k,zk=µz+σz[ρxzx

′
k+
√

(1− ρ2xz)z
′
k]

where
σx, σy, σz : Standard deviations of the variables y, x and z respectively based on the
population of size N.
µx, µy, µz: Mean of the variables y, x and z respectively based on the population of size
N.
Utilizing the above data set, we have examined the performances of the proposed class
of estimators t are presented in Table 1.2.

Table 1.2 PRE of t with respect to arti�cial generate population

population E1 E2

Arti�cial generate population 134.7082 116.6528

4.3. Empirical Study. To have a tangible idea about the performance of the class of
estimators t we have computed the PRE of t with respect to s2yn and s2yφ∗ for various
choices of ρ01 and ρ02 are presented in Table 2. Here for the sake of conveniences we
have considered the assumption ρ12=ρ02

Table 2. Optimum values of PRE of t for di�erent choices of ρ01 and ρ02
ρ01 ρ02 E1 E2 ρ01 ρ02 E1 E2 ρ01 ρ02 E1 E2

0.1

-0.7 238.4832 237.8855

0.4

-0.7 203.3995 198.7152

0.7

-0.7 205.1791 175.8532

-0.6 163.2909 162.8817 -0.6 156.5948 152.9884 -0.6 169.1736 144.9938

-0.5 134.6940 134.3564 -0.5 133.4818 130.4027 -0.5 148.1481 126.9735

-0.4 119.1999 118.9011 -0.4 119.8860 117.1250 -0.4 134.8228 115.5528

-0.3 109.8934 109.6180 -0.3 111.3934 108.8280 -0.3 126.1609 108.1289

-0.2 104.2686 104.0073 -0.2 106.1503 103.7056 -0.2 120.6901 103.4000

-0.1 101.2197 100.9660 -0.1 103.2752 100.8968 -0.1 117.6519 100.8361

0.1 101.2197 100.9660 0.1 103.2752 100.8968 0.1 117.6519 100.8361

0.2 104.2686 104.0073 0.2 106.1503 103.7056 0.2 120.6901 103.4400

0.3 109.8934 109.6180 0.3 111.3934 108.8280 0.3 126.1669 108.1289

0.4 119.1999 118.9011 0.4 119.8860 117.1250 0.4 134.8228 115.5528

0.5 134.6940 134.3564 0.5 133.4818 130.4077 0.5 148.1481 126.9735

0.6 163.2909 162.8817 0.6 156.5948 152.9884 0.6 169.1736 144.9938

0.7 238.4832 237.8855 0.7 203.3995 198.7152 0.7 205.1791 175.8532

0.2

-0.7 215.1640 212.9904

0.5

-0.7 196.0973 182.9613

0.8

-0.7 218.5866 174.8693

-0.6 158.7708 162.8817 -0.6 158.1653 147.5702 -0.6 181.0351 144.8281

-0.5 133.4818 132.1334 -0.5 137.2583 128.0637 -0.5 158.7425 126.9940

-0.4 119.1152 117.9119 -0.4 124.3692 116.0381 -0.4 144.5025 115.6020

-0.3 110.2945 109.1803 -0.3 116.1168 108.3384 -0.3 135.2073 108.1658

-0.2 104.9003 103.8406 -0.2 110.9499 103.5177 -0.2 129.3230 103.4584

-0.1 101.9578 100.9278 -0.1 108.0945 100.8536 -0.1 126.0512 100.8409

0.1 101.9578 100.9278 0.1 103.0945 100.8536 0.1 126.0512 100.8409

0.2 104.9003 103.8406 0.2 110.9499 103.5177 0.2 129.3230 103.4584

0.3 110.2945 109.1803 0.3 116.1168 108.3384 0.3 135.2073 108.1658

0.4 119.1152 117.9119 0.4 124.3692 116.0381 0.4 144.5025 115.6020

0.5 133.4818 132.1334 0.5 137.2583 128.0637 0.5 158.7425 126.9940

0.6 158.7708 157.1669 0.6 158.1653 147.5702 0.6 181.0351 144.8281

0.7 215.1640 212.9904 0.7 196.0973 182.9613 0.7 218.5866 174.8693

0.3

-0.7 203.3995 198.7152

0.6

-0.7 198.4135 178.5721

0.9

-0.7 245.9072 176.5478

-0.6 156.5948 152.9884 -0.6 162.1671 145.9504 -0.6 203.3530 145.9963

-0.5 133.4818 130.4027 -0.5 141.5103 127.3592 -0.5 177.9097 127.7294

-0.4 119.8860 117.1250 -0.4 128.5726 115.7153 -0.4 161.6172 116.0322

-0.3 111.3934 108.8280 -0.3 120.2170 108.1953 -0.3 150.9743 108.3912

-0.2 106.1503 103.7056 -0.2 114.9595 103.4635 -0.2 144.2362 103.5536

-0.1 103.2752 100.8968 -0.1 112.0458 100.8412 -0.1 140.4899 100.8640

0.1 103.2752 100.8968 0.1 112.0458 100.8412 0.1 140.4899 100.8640

0.2 106.1503 103.7056 0.2 114.9595 103.4635 0.2 144.2362 103.5536

0.3 111.3934 108.8280 0.3 120.2170 108.1953 0.3 150.9743 103.3912

0.4 119.8860 117.1250 0.4 128.5726 115.7153 0.4 161.6172 116.0322

0.5 133.4818 130.4077 0.5 141.5103 127.3592 0.5 177.9097 127.7294

0.6 156.5948 152.9884 0.6 162.1671 145.9504 0.6 203.3530 145.9963

0.7 203.3995 198.7152 0.7 198.4135 178.5721 0.7 245.9072 176.5478
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From above empirical study, it is to be noted that the trend in PRE may be obtained
for di�erent choices of correlations ρ01 and ρ02 .However, the speci�c ranges ρ01 and ρ02
where proposed estimator performs extremely well or dominate mildly over the sample
variance estimator s2yn may not be clearly obtained from the above empirical analysis.
This situation helps us in choosing the suitable population where our proposed work may
be applied e�ectively which is very essential for the recommendations of our proposed
work. Motivated with this arguments we proceed to build up a decision making machin-
ery through fuzzy tools which will enable us to measure the degree of e�ciency of the
estimator for di�erent choices of correlations ρ01 and ρ02.

5. Analysis of empirical study through fuzzy tools

Construction of the Fuzzy Logic Controller (FLC) is based on the empirical study
furnished in Table 2 where the FLC checks the degree of e�ciency for a given range ofρ01
and ρ02. ρ01 and ρ02 are conceived as to be the two input fuzzy variables having 9 and 14
linguistics respectively (listed in Tables 4a and 4b). Entire range of ρ01[0.1 ≤ ρ01 ≤ 0.9]
is divided into 9 equal parts and that for ρ02[−0.7 ≤ ρ02 ≤ 0.7] is divided into 14
equal parts and for each part a linguistic is assigned suitably for both cases. Also the
E1, E2, and PRE are taken as the two output fuzzy variables having the same set
of 20 linguistics for both (listed in Table 3) in the descending degree of e�ciency.The
range[100 ≤ E1, E2 or PRE ≤ 230], as it obtained from the Table 2, is divided into
20 equal parts as shown in Table 3.

Table 3

Ling Range A C

E20 220-229 224.5 4.5

E19 210-219 215 4.5

E18 200-209 205 4.5

E17 190-199 195 4.5

E16 180-189 185 4.5

E15 174-179 176.5 2.5

E14 168-173 170.5 2.5

E13 162-167 164.5 2.5

E12 156-161 158.5 2.5

E11 150-155 152.5 2.5

E10 144-149 146.5 2.5

E9 138-143 140.5 2.5

E8 132-137 134.5 2.5

E7 126-131 128.5 2.5

E6 120-125 122.5 2.5

E5 116-119 117.5 1.5

E4 112-115 113.5 1.5

E3 108-111 109.5 1.5

E2 104-107 105.5 1.5

E1 100-103 101.5 1.5

The Mamdani Inference Model is followed here as it is the most commonly used fuzzy
methodology and was one among the �rst few control systems built using fuzzy set the-
ory. It was proposed by Ebrahim Mamdani (1975)[7] in order to control a steam engine
and boiler combination by synthesizing a set of linguistic control rules obtained from
experienced human operators. Mamdani's e�ort has its root in Lot�Zadeh's paper on
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fuzzy algorithms for complex systems and decision processes (1973)[28]. The following
standard operator set is used in this model:

Operators Type Default Function

AND BINARY MIN(a,b)

OR BINARY MAX(a,b)

IMPLICATION BINARY MIN(a,b)

ALSO BINARY MAX(a,b)

NOT UNARY 1-a

STRONGLY UNARY a2

MODERATELY UNARY a
1
2

SLIGHTLY UNARY 4.a.(1-a)

DEFUZZIFICATION DEFUZZIFICATION Centre Of Area

A three-parameter (a, b, c) bell shaped continuous membership grade function has
been chosen for each linguistic of both input and output variables (This is a direct gen-
eralization of Cauchy Distribution) so that membership functions can be �ne grained
according to the necessity. The parameters a, b, c being respectively the middle point
of bell shaped curve (where the grade is max), the degree of peakedness (resembling the
Kurtosis in Normal distribution) and half width of the membership function.c is kept con-
stant=0.044444 for ρ01 and =0.05 for ρ02 and it takes three di�erent values (4.5, 2.5, 1.5)
for E1 and E2 and b is kept constant=1 throughout.
The function is given by f(x; a, b, c)= 1

1+| x−a
c
|2b

The set of values for the parameters are computed from the set of data generated in
Table 2.

Table: 4a

Sl.No. Left
end of
ρ

Right
end of
ρ

Mid
Point(a)

Linguistics Interpretation Half-
Width

1 0.1 0.2 0.15 Mcp mildly correlated
positive

0.04

2 0.2 0.3 0.25 mpc3 mildly positively cor-
related 3

0.04

3 0.3 0.4 0.35 mpc2 mildly positively cor-
related 2

0.04

4 0.4 0.5 0.45 mpc1 mildly positively cor-
related 1

0.04

5 0.5 0.6 0.55 pc3 positively correlated
3

0.04

6 0.6 0.7 0.65 pc2 positively correlated
2

0.04

7 0.7 0.8 0.75 pc1 positively correlated
1

0.04

8 0.8 0.9 0.85 Spc2 strongly positively
correlated 2

0.04

9 0.9 1 0.95 Spc1 strongly positively
correlated 1

0.04
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Table: 4b

Sl.No. Left
end of
ρ

Right
end of
ρ

Mid
Point(a)

Linguistics Interpretation Half-
Width

1 -0.7 -0.6 -0.65 Nc1 negatively correlated
1

0.05

2 -0.6 -0.5 -0.55 nc2 negatively correlated
2

0.05

3 -0.5 -0.4 -0.45 nc3 Negatively correlated
3

0.05

4 -0.4 -0.3 -0.35 Mnc1 Mildly Negatively
correlated 1

0.05

5 -0.3 -0.2 -0.25 Mnc2 Mildly negatively
correlated 2

0.05

6 -0.2 -0.1 -0.15 Mnc3 Mildly negatively
correlated 3

0.05

7 -0.1 0 -0.05 Mcn Mildly correlated
negative

0.05

8 0.0 0.1 0.05 Mcp Mildly correlated
positive

0.05

9 0.1 0.2 0.15 Mpc3 Mildly positively cor-
related 3

0.05

10 0.2 0.3 0.25 mpc2 Mildly positively cor-
related 2

0.05

11 0.3 0.4 0.35 mpc1 mildly positively cor-
related 1

0.05

12 0.4 0.5 0.45 Pc3 Positively correlated 0.05

13 0.5 0.6 0.55 pc2 Positively correlated 0.05

14 0.6 0.7 0.65 Pc1 Positively correlated 0.05

A 9x14x20 Fuzzy Association Matrix (FAM) is constructed which is the basis of FLC
engine and the 'Centre of Area' method (which resembles the expected value computa-
tion in probability distribution) is adopted for defuzzi�cation which is most widely used
method and de�ned by
zCOA=

∫
zµ(z)dz/

∫
µ(z)dz

All computations are done with the help of standard fuzzy software named XFuzzyVs3.0from
IMSE-CNM which is available on internet (vide: xfuzzy − team@imse.cnm.es).

6. Categorization of E�cacy of Proposed Work

The above analysis of empirical study using fuzzy tools gives the advantage to �nd
out the speci�c ranges of ρ01 and ρ02 where our suggested estimator dominates
i. extremely
ii. mildly and
iii. equally.
the sample variance estimator s2yn .
To elucidate these particular regions of ρ01 and ρ02,the same graph of PRE of t in di�erent
views are presented below:
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Fig. 1 ( Top View 1)

Fig. 2 (Top View 2)

Fig. 3 (Front View)

Fig. 4 (Side View)

Surface Plot of Speci�cation of PRE against from di�erent angles

6.1. Remark. It may be noted that the graphical demonstrations of PRE of the pro-
posed class of estimator t may not be presented correctly through graphical simulations
techniques. Because, it subject to the existence of the optimal (admissible) values of µ
i.e. 0 ≤ µ ≤ 1 in the entire range of ρ01 and ρ02. Motivated with this argument, we
analyze the performance of the class of estimators t through fuzzy tools and obtained
the approximate graphical demonstrations of it's PRE.
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7. Conclusions

The following interpretations can be read out from the present study:
a) Table-1.1 and Table 1.2 exhibit that our suggested estimator t is superior to the sample
variance estimator s2yn . This result justi�es the use of auxiliary information at estima-
tion stage.
b) Table-2 interprets that
i. For �xed values of ρ01, the values of µ0 are increasing and PRE of t is decreasing with
the increasing negative values of ρ02 and the values of µ0 are decreasing whereas PRE of
t is increasing with the increasing positive values of ρ02. The same behavior of µ0 and
PRE of t is re�ected when the values of ρ01 are increasing by keeping ρ02 as �xed.
ii. The decreasing value of µ0 with the increasing values of ρ01 and ρ02 indicates more
the negative (and positive) values of the correlation coe�cients, less the fraction of fresh
sample is required at the current occasion which enhances the precision of the estimates.
This pattern is highly desirable as it pays in terms of enhanced precision of estimates as
well as reduces the cost of survey.
iii. Minimum value of µ0 is obtained 0.24, which indicates that only about 24 percent
of the total sample size is to be replaced at the second (current) occasion for the corre-
sponding choices of correlations.
c) The above graphical representation of PRE against ρ01 and ρ02 gives a clear idea
about the e�ciency of our proposed estimator t over the sample variance estimator s2yn.
It itself describes the speci�c ranges of ρ01 and ρ02 at where our estimator t dominates
(extremely, mildly or equally)s2yn. From the di�erent views of the graph (taken from top
and di�erent sides), it is clear that the portion of the graph which is almost horizontal
denotes that the proposed class of estimators t is equally e�cient with s2yn. Whereas the
uprising portions denote the mildly e�cient range and the peaks of the graph along with
its neighborhoods denote the extremely e�cient range of the class of estimators t.
The following conclusions may be drawn about the performance of t over s2yn :

i. Fig.1 and Fig.2 indicates that t is superior to in the regions and s2yn.
0.1 ≤ ρ01 ≤ 1.0, −0.7 ≤ ρ02 ≤ −0.42, and 0.1 ≤ ρ01 ≤ 1.0, 0.42 ≤ ρ02 ≤ 0.7.
ii. It is cleared from Fig.1, Fig.2 and Fig.3 that t extremely dominates s2yn within the
corner regions of plane of the graph, i.e., within the regions
0.1 ≤ ρ01 ≤ 0.28, −0.7 ≤ ρ02 ≤ −0.42; 0.1 ≤ ρ01 ≤ 0.28, 0.42 ≤ ρ02 ≤ 0.7;
0.82 ≤ ρ01 ≤ 1.0, −0.7 ≤ ρ02 ≤ −0.42; 0.82 ≤ ρ01 ≤ 1.0, 0.42 ≤ ρ02 ≤ 0.7.
iii. It can be observed from Fig.4 that t is mildly e�cient than s2yn in the regions
0.1 ≤ ρ01 ≤ 1.0, −0.42 ≤ ρ02 ≤ −0.14 and 0.1 ≤ ρ01 ≤ 1.0, 0.14 ≤ ρ02 ≤ 0.42 and t is
equally e�cient with s2yn in the region 0.1 ≤ ρ01 ≤ 1.0, −0.14 ≤ ρ02 ≤ 0.14.

Thus it is erected that the use of an auxiliary character is highly rewarding in terms
of the proposed class of estimators. It is seen that if a highly correlated auxiliary variable
is used, relatively, only a smaller fraction of the sample on the current (second) occasion
is required to be replaced by a fresh sample, which is reducing the cost of the survey.
Moreover, the proposition of the class of estimators in the present study is justi�ed as
it uni�es several desirable results including e�ciently �nding the dominance range of
the proposed strategy. Looking on the nice behavior of the proposed strategy, they are
recommended to the survey statisticians for their applications in real life problems.
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