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Statistical inference of P (X < Y ) for the Burr Type
XII distribution based on records
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Abstract

In this paper, the maximum likelihood and Bayesian approaches have
been used to obtain the estimates of the stress-strength reliability R =
P (X < Y ) based on upper record values for the two-parameter Burr
Type XII distribution. A necessary and su�cient condition is studied
for the existence and uniqueness of the maximum likelihood estimates of
the parameters. When the �rst shape parameter of X and Y is common
and unknown, the maximum likelihood (ML) estimate and asymptotic
con�dence interval of R are obtained. In this case, the Bayes estimate
of R has been developed by using Lindley's approximation and the
Markov Chain Monte Carlo (MCMC) method due to lack of explicit
forms under the squared error (SE) and linear-exponential (LINEX)
loss functions for informative prior. The MCMC method has been also
used to construct the highest posterior density (HPD) credible interval.
When the �rst shape parameter of X and Y is common and known,
the ML, uniformly minimum variance unbiased (UMVU) and Bayes
estimates, Bayesian and HPD credible as well as exact and approximate
intervals of R are obtained. The comparison of the derived estimates is
carried out by using Monte Carlo simulations. Two real life data sets
are analysed for the illustration purposes.
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1. Introduction

Let X1, X2, . . . be a sequence of continuous random variables. Xk is an upper record
value if its value is greater than all preceding values X1, X2, . . . , Xk−1. By de�nition,
X1 is an upper record value. An analogous de�nition can be provided for lower record
values. The theory of record values was �rst introduced by Chandler [17] and it has been
extensively studied in the literature since then. More details and references may be found
in Ahsanullah [2], Arnold et al. [5] and Nevzorov [38].

Record values and the associated statistics are of interest in many real life appli-
cations, such as weather, sports, economics, life-tests and so on. For example, in the
manufacturing industry, it might be interesting to a researcher to determine the mini-
mum failure stress of the products sequentially, while the amount of the rainfall that is
grater (smaller) than the previous once is of importance to climatologists and hydrolo-
gists. In some experiments, an observation is stored only if it is an upper (lower) record
value because the measurement saving can be important especially when the sample size
is very big, costly or all (some portion) of the data is destroyed. For speci�c examples,
see Gulati and Padgett [23].

In the reliability context, the stress-strength model can be described as an assessment
of reliability of a system in terms of random variables X representing stress experienced
by the system and Y representing the strength of the system available to overcome the
stress. If the stress exceeds the strength, then the system will fail. Thus R = P (X < Y )
is a reliability of a system. The main idea was introduced by Birnbaum [13] and developed
by Birnbaum and McCarty [14]. A comprehensive account of this topic is presented by
Kotz et al. [24]. It provides an excellent review of the development of the stress-strength
up to the year 2003.

In the literature, many papers are available for an estimate of the reliability based on
a random sample or record values. When the X and Y are independent and follow the
Burr Type III, X and XII, generalized exponential, Weibull, Gompertz, Kumaraswamy
and Levy distributions, the estimation of R based on a random sample were studied by
Mokhlis [31], Ahmad et al. [1], Awad and Gharraf [9], Kundu Gupta [25, 26], Saraço§lu
et al. [41], Nadar et al. [32] and Najarzadegan et al. [36], respectively. When the X and
Y are independent and follow one and two parameters generalized exponential, Weibull,
exponentiated gumbel, Kumaraswamy, one and two parameters exponential and Burr
Type X distributions, the classical and Bayesian estimates of R based on records were
considered by Baklizi [10], Asgharzadeh et al. [7], Baklizi [11], Tavirdizade [43], Nadar
and K�z�laslan [33], Baklizi [12] and Tavirdizade and Garehchobogh [44], respectively.

The Burr Type XII distribution was introduced by Burr [16]. If a random variable
X follows a Burr Type XII distribution, denoted by X ∼ Burr(α, β), then the cumula-
tive distribution function (cdf) and the probability density function (pdf) are given by,
respectively,

(1.1) F (x;α, β) = 1− (1 + xα)−β , x > 0, α > 0, β > 0,

(1.2) f(x;α, β) = αβxα−1(1 + xα)−(β+1), x > 0.

Here α > 0 and β > 0 are the two shape parameters. This distribution has been studied
by the several authors; see, for example, Al-Hussaini and Jaheen [3, 4], Ghitany and
Al-Awadhi [21], Nadar and Papadopoulos [35], Nadar and K�z�laslan [34] and Rao et al.
[40].
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The main purpose of this paper is to improve the inference procedures for the stress-
strength reliability based on upper record values while the measurements follow the
two-parameter Burr Type XII distribution when the �rst shape parameters are common.
When the �rst shape parameter α is unknown, the ML and Bayes estimates, as well
as asymptotic con�dence and HPD credible intervals are derived. When α is known,
di�erent estimates, namely ML, UMVU, Bayes and empirical Bayes estimates, are ob-
tained. The Bayes estimates of R under the SE and LINEX loss functions are derived in
closed forms for informative and non informative prior cases. It is also obtained by using
Lindley's approximation and MCMC method. The exact and other Bayes estimates are
compared in terms of estimated risk (ER) by the Monte Carlo simulations. Also, the
exact and asymptotic con�dence intervals, as well as Bayesian, empirical Bayesian and
HPD credible intervals are constructed for R.

The rest of the paper is organized as follows. In Section 2, a necessary and su�cient
condition for the existence and uniqueness of the ML estimates of the parameters is es-
tablished when α is unknown. The ML and Bayesian estimates as well as the asymptotic
con�dence and HPD credible intervals of R are obtained. In Section 3, the ML and
UMVU estimates, as well as exact and asymptotic con�dence intervals are obtained for
R when α is known. The Bayes estimates are derived analytically and also obtained by
using Lindley's approximation and MCMC method for informative and non informative
prior cases. Moreover, Bayesian, empirical Bayesian and HPD credible intervals of R are
constructed. In Section 4, the di�erent proposed methods have been compared by using
Monte Carlo simulations and the �ndings are illustrated by tables and plots. Further-
more, two real data sets analysis are presented. Finally, we conclude the paper in Section
5.

2. Estimation of R when the �rst shape parameter α is common

In this section, we investigate the properties of R = P (X < Y ), when the �rst
shape parameter α is common for the distributions of X and Y . The ML estimates, its
existence and uniqueness, asymptotic con�dence intervals, as well as Bayes estimates and
HPD credible interval for R are obtained.

2.1. MLE of R. Let X ∼ Burr(α, β1) and Y ∼ Burr(α, β2) are independent random
variables. Then, the reliability R = P (X < Y ) is

R = P (X < Y ) =

∫ ∞
0

fY (y)P (X < Y | Y = y)dy

=
β1

β1 + β2
.(2.1)

The estimate of R are considered based on upper record data on both variables. Let
R1, . . . , Rn be a set of upper records from Burr(α, β1) and S1, . . . , Sm be a set of upper
records from Burr(α, β2) independently from the �rst sample. The likelihood functions
based on records are given by, see Arnold et al. [5],

L1(β1, α |r ) = f(rn;α, β1)

n−1∏
i=1

f(ri;α, β1)

1− F (ri;α, β1)
, 0 < r1 < . . . < rn <∞,

L2(β2, α |s ) = g(sm;α, β2)

m−1∏
j=1

g(sj ;α, β2)

1−G(sj ;α, β2)
, 0 < s1 < . . . < sm <∞,

where r = (r1, . . . , rn), s = (s1, . . . , sm), f and F are the pdf and cdf of X follows
Burr(α, β1), respectively and g and G are the pdf and cdf of Y follows Burr(α, β2),
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respectively. Then, the joint likelihood function of (β1, β2, α) given (r, s) is given by

(2.2) L(β1, β2, α |r, s ) = h1(r;α)h2(s;α)αn+mβn1 β
m
2 e
−β1T1(rn;α)e−β2T2(sm;α),

where

(2.3) h1(r;α) =

n∏
i=1

rα−1
i

1 + rαi
, h2(s;α) =

m∏
j=1

sα−1
j

1 + sαj
,

(2.4) T1(rn;α) = ln(1 + rαn), T2(sm;α) = ln(1 + sαm).

The joint log-likelihood function is

l(β1, β2, α |r, s ) = lnh1(r;α) + lnh2(s;α) + (n+m) lnα+ n lnβ1(2.5)

+m lnβ2 − β1T1(rn;α)− β2T2(sm;α).

The ML estimates of β1, β2 and α are given by

(2.6) β̂1 =
n

T1(rn; α̂)
,

(2.7) β̂2 =
m

T2(sm; α̂)
,

and α̂ is the solution of the following non-linear equation

n+m

α
+

n∑
i=1

ln ri
1 + rαi

+

m∑
j=1

ln sj
1 + sαj

−
(

n

ln(1 + rαn)

)
rαn ln rn
1 + ran

−
(

m

ln(1 + sαm)

)
sαm ln sm
1 + sαm

= 0.

Therefore, α̂ can be obtained as a solution of the non-linear equation of the form h(α) = α
where

h(a) = −(n+m)

[
n∑
i=1

ln ri
1 + rαi

+

m∑
j=1

ln sj
1 + sαj

−
(

n

ln(1 + rαn)

)
rαn ln rn
1 + ran

(2.8)

−
(

m

ln(1 + sαm)

)
sαm ln sm
1 + sαm

]−1

.

Since, α̂ is a �xed point solution of the non-linear Equation (2.8), its value can be obtained
using an iterative scheme as: h(α(j)) = α(j+1), where α(j) is the j

th iterate of α̂. The

iteration procedure should be stopped when
∣∣α(j+1) − α(j)

∣∣ is su�ciently small. After α̂

is obtained, β̂1 and β̂2 can be obtained from (2.6) and (2.7), respectively. Therefore, the

MLE of R, say R̂, is given as

(2.9) R̂ =
β̂1

β̂1 + β̂2
.

2.2. Existence and uniqueness of the ML estimates. We establish the existence
and uniqueness of the ML estimates of the parameters β1, β2 and α. We present the
following lemma that will be used in proof of 2.2 Theorem.

2.1. Lemma. Let

w(x) = [ln(1 + x)]2 + ξ2(x)

[
ln(1 + x)

x
− 1

]
,

where ξ(x) = x ln(x)/(1 + x). Then w(x) ≥ 0 for x ≥ 0.

Proof. For a proof, one may refer to Ghitany and Al-Awadhi [21]. �
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2.2. Theorem. The ML estimates of the parameters β1, β2 and α are unique, with

β̂1 = n/T1(rn; α̂), β̂2 = m/T2(sm; α̂) where α̂ is the solution of the non-linear equation

G(α) ≡ n+m

α
+

n∑
i=1

ln ri
1 + rαi

+

m∑
j=1

ln sj
1 + sαj

−
(

n

ln(1 + rαn)

)
rαn ln rn
1 + ran

−
(

m

ln(1 + sαm)

)
sαm ln sm
1 + sαm

= 0,

if at least one of the ri, i = 1, ..., n (or sj , j = 1, ...,m) is less than unity.

Proof. We have

G(0) ≡ lim
α→0

G(α) = lim
α→0

(n+m

α

)
+

1

2

n∑
i=1

ln ri +
1

2

m∑
j=1

ln sj −
n ln rn
2 ln 2

−m ln sm
2 ln 2

=∞.

Let

G1(α; r) =
n

α
+

n∑
i=1

ln ri
1 + rαi

−
(

n

ln(1 + rαn)

)
rαn ln rn
1 + ran

,

and

G2(α; s) =
m

α
+

m∑
j=1

ln sj
1 + sαj

−
(

m

ln(1 + sαm)

)
sαm ln sm
1 + sam

.

Then, G(α) = G1(α; r) +G2(α; s). Firstly, we consider the limit of G1(α; r) as α→∞.
(i) If rn is less than unity, that is ri < 1, i = 1, ..., n, then

G1(∞; r) ≡ lim
α→∞

G1(α; r) = lim
α→∞

(
n

α
+

n∑
i=1

ln ri
1 + rαi

− n ln rn/(1 + rαn)

ln(1 + rαn)/rαn

)

=

n∑
i=1

(ln ri − ln rn) < 0.

(ii) If only rn is greater than or equal to unity, that is rn ≥ 1 and ri < 1, i = 1, ..., n−1,
then

G1(∞; r) = lim
α→∞

(
n

α
+

n−1∑
i=1

ln ri
1 + rαi

+
ln rn

1 + rαn
− nr

α
n ln rn/(1 + rαn)

ln(1 + rαn)

)

=

n−1∑
i=1

ln ri < 0.

(iii) If rn and some ri record values are greater than unity and some ri record values
are less than unity, that is rn > 1 and ri > 1, i = p, ..., t, 1 < p ≤ t < n, then

G1(∞; r) = lim
α→∞

n

α
+

n∑
i=1(ri<1)

ln ri
1 + rαi

+

n∑
i=1(ri>1)

ln ri
1 + rαi

− nr
α
n ln rn/(1 + rαn)

ln(1 + rαn)


=

n∑
i=1(ri<1)

ln ri < 0.

When the conditions given in (i)-(iii) holds for sj , j = 1, ...,m, G2(α; s) < 0 as α → ∞.
So that, the limit of G(α) = G1(α; r) +G2(α; s) < 0 as α→∞ when ri, i = 1, ..., n and
sj , j = 1, ...,m satisfy any of the conditions given in (i)-(iii).
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Next, we need to show the limit of G(α) < 0 as α → ∞ for sj > 1, j = 1, ...,m and
when the conditions given (i)-(iii) holds for ri, i = 1, ..., n (or ri > 1, i = 1, ..., n and
when the conditions given (i)-(iii) holds for sj , j = 1, ...,m). In particular, when sj > 1,
j = 1, ...,m and the conditions given (i) holds for ri, i = 1, ..., n, we can take α large
enough, such that G2(α; s) → 0+ and G1(α; r) + G2(α; s) < 0 as α → ∞. Other cases
can be obtained similarly.

Finally, we need to show that there is no solution if all records are greater than unity,
that is ri > 1, i = 1, ..., n and sj > 1, j = 1, ...,m. If ri > 1, i = 1, ..., n, then

G1(α; r) <
n

α
+ n ln rn

[
1

1 + rα1
− rαn

(1 + rαn)2

]
→ 0+ as α→∞.

Similarly, G2(α; s)→ 0+ as α→∞. Therefore, G(α)→ 0+ as α→∞.
Except all records are greater than unity, we obtain that limα→0G(α) = ∞ and

limα→∞G(α) < 0. By the intermediate value theorem G(α) has at least one root in
(0,∞). If it can be shown that G(α) is decreasing, then the proof will be completed. It
is easily obtained that

dG1(α; r)

dα
= − 1

α2

[
n+

n∑
i=1

ξ2(rαi )

rαi
+

nξ2(rαn)

ln(1 + rαn)

(
1

rαn
− 1

ln(1 + rαn)

)]

= − 1

α2

[
n∑
i=1

ξ2(rαi )

rαi
+

n

(ln(1 + rαn))2
w(rαn)

]
.

Similarly,

dG2(α; s)

dα
= − 1

α2

[
m∑
j=1

ξ2(sαj )

sαj
+

n

(ln(1 + sαm))2
w(sαm)

]
.

It is clear that dG1(α; r)/dα < 0 and dG2(α; s)/dα < 0 by using 2.1 Lemma. Therefore,
dG(α)/dα < 0.

Finally, we will show that the ML estimates of (β1, β2, α) maximizes the log-likelihood
function l(β1, β2, α |r, s ). Let H(β1, β2, α) be the Hessian matrix of l(β1, β2, α |r, s ) at
(β1, β2, α). It is clear that if det(H) 6= 0 for the critical point (β1, β2, α) and det(H1) < 0,
det(H2) > 0 and det(H3) < 0 at (β1, β2, α) then it is a local maximum of l(β1, β2, α |r, s ),
where

H1 =
∂2l

∂β2
1

, H2 =

 ∂2l
∂β2

1

∂2l
∂β1∂β2

∂2l
∂β2∂β1

∂2l
∂β2

2

 , H3 = H and l = l(β1, β2, α |r, s ).

It can be easily seen that

det(H1(β̂1, β̂2, α̂)) = −
(
ln(1 + rα̂n)

)2
n

< 0,

det(H2(β̂1, β̂2, α̂)) =

(
ln(1 + rα̂n)

)2
n

(
ln(1 + sα̂m)

)2
m

> 0,

and

det(H2(β̂1, β̂2, α̂)) =
∂G(α̂)

∂α

(
ln(1 + rα̂n)

)2
n

(
ln(1 + sα̂m)

)2
m

< 0.

Hence, (β̂1, β̂2, α̂) is the local maximum of l(β1, β2, α |r, s ). Since there is no singular
point of l(β1, β2, α |r, s ) and it has a single critical point then, it is enough to show that
the absolute maximum of the function is indeed the local maximum. Assume that there
exist an α̂0 in the domain in which l∗(α̂0) > l∗(α̂), where l∗(α̂) = l(β̂1, β̂2, α̂ |r, s ). Since
α̂ is the local maximum there should be some point α1 in the neighborhood of α̂ such
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that l∗(α̂) > l∗(α1). Let k(α) = l∗(α) − l∗(α̂) then k(α̂0) > 0, k(α1) < 0 and k(α̂) = 0.
This implies that α1 is a local minimum of the l∗(α), but α̂ is the only critical point so it

is a contradiction. Therefore, (β̂1, β̂2, α̂) is the absolute maximum of l(β1, β2, α |r, s ). �

2.3. Remark. In case all records are greater than one, we can still get a unique solution
of the parameters when we divide the record values, say by rn ( or by sm or divide ri by
rn and divide sj by sm ) as long as the transformed observations follow from Burr Type
XII.

2.3. Asymptotic distribution and con�dence intervals for R. The Fisher infor-
mation matrix of I ≡ I(β1, β2, α) is given by

I = −


E
(
∂2l
∂β2

1

)
E
(

∂2l
∂β1∂β2

)
E
(

∂2l
∂β1∂α

)
E
(

∂2l
∂β2∂β1

)
E
(
∂2l
∂β2

2

)
E
(

∂2l
∂β2∂α

)
E
(

∂2l
∂α∂β1

)
E
(

∂2l
∂α∂β2

)
E
(
∂2l
∂α2

)
 =

I11 I12 I13
I21 I22 I23
I31 I32 I33

 ,

where I11 = n/β2
1 , I22 = m/β2

2 ,

I13 = E

(
Rn lnRn
1 +Rαn

)
=

βn1
αΓ(n)

ψ1(n, β1),

I23 =
βm2

αΓ(m)
ψ1(m,β2), ψ1(a, b) =

∫ ∞
0

x lnx(ln(1 + x))a−1

(1 + x)b+2
dx,

I33 =
n+m

α2
+

n∑
i=1

βi1ψ2(i, β1)

α2Γ(i)
+

m∑
j=1

βj2ψ2(j, β2)

α2Γ(j)
+
βn+1
1 ψ2(n, β1)

α2Γ(n)

+
βm+1
2 ψ2(m,β2)

α2Γ(m)
, ψ2(a, b) =

∫ ∞
0

x (lnx)2 (ln(1 + x))a−1

(1 + x)b+3
dx.

By the asymptotic properties of the MLE, R̂ is asymptotically normal with mean R and
asymptotic variance

σ2
R =

3∑
j=1

3∑
i=1

∂R

∂βi

∂R

∂βj
I−1
ij ,

where β3 ≡ α and I−1
ij is the (i, j)th element of the inverse of the I(β1, β2, α), see Rao

[39]. Then,

(2.10) σ2
R =

(
∂R

∂β1

)2

I−1
11 + 2

∂R

∂β1

∂R

∂β2
I−1
12 +

(
∂R

∂β2

)2

I−1
22 ,

where

∂R

∂β1
=

β2
(β1 + β2)2

,
∂R

∂β2
=

−β1
(β1 + β2)2

.

Therefore, an asymptotic 100(1− γ)% con�dence interval of R is

(2.11)
(
R̂− zγ/2σ̂R, R̂+ zγ/2σ̂R

)
,

where zγ is the upper γth quantile of the standard normal distribution and σ̂R is the
value of σR at the MLE of the parameters.

If the likelihood equations have a unique solution θ̂n, then θ̂n is consistent, asymptoti-
cally normal and e�cient (see Lehmann and Casella [28]). When the likelihood equations

have a unique solution, the observed information matrix Jm(β̂1, β̂2, α̂)/m is a consistent
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estimator for Im(β1, β2, α)/m (see Appendix C in Lawless [27]). The observed informa-
tion matrix J(β1, β2, α) is given by

J(β1, β2, α) = −


∂2l
∂β2

1

∂2l
∂β1∂β2

∂2l
∂β1∂α

∂2l
∂β2∂β1

∂2l
∂β2

2

∂2l
∂β2∂α

∂2l
∂α∂β1

∂2l
∂α∂β2

∂2l
∂α2

 =

J11 J12 J13
J21 J22 J23
J31 J32 J33

 ,

where

J11 =
n

β2
1

, J12 = J21 =
rαn ln rn
1 + ran

, J22 =
m

β2
2

, J23 = J32 =
sαm ln sm
1 + sαm

,

J33 =
n+m

α2
+

n∑
i=1

rαi

(
ln ri

1 + rαi

)2

+

m∑
j=1

sαj

(
ln sj

1 + sαj

)2

+ β1r
α
n

(
ln rn

1 + ran

)2

+β2s
α
m

(
ln sm

1 + sαm

)2

.

Therefore, an asymptotic 100(1−γ)% con�dence interval of R can be obtained following
from Equation (2.11) by replacing I with J in Equation (2.10).

2.4. Bayes estimation of R. Bayesian approach has a number of advantages over the
conventional frequentist approach. Bayes theorem is a consistent way to modify our
beliefs about the parameters given the data that actually occurred (see Bolstad [15]). In
this subsection, we consider the Bayes estimates of the stress-strength reliability for Burr
Type XII distribution under di�erent loss functions.

In the Bayesian inference, the most commonly used loss function is the squared error
(SE) loss, L(θ∗, θ) = (θ∗ − θ)2, where θ∗ is an estimate of θ. This loss function is
symmetrical and gives equal weight to overestimation as well as underestimation. It
is well known that the use of symmetric loss functions may be inappropriate in many
circumstances, particularly when positive and negative errors have di�erent consequences.
A useful asymmetric loss function is the linear-exponential (LINEX) loss, L(θ∗, θ) =

ev(θ
∗−θ) − v(θ∗ − θ)− 1, v 6= 0, introduced by Varian [46]. The sign and magnitude of v

represents the direction and degree of asymmetry, respectively. For v close to zero, the
LINEX loss is approximately equal to the SE loss and therefore almost symmetric.

We assume that all parameters β1, β2 and α are unknown and have independent
gamma prior distributions with parameters (ai, bi), i = 1, 2, 3, respectively. The density
function of a gamma random variable X with parameters (a, b) is

f(x) =
ba

Γ(a)
xa−1e−xb, x > 0, a, b > 0.

Then, the joint posterior density function of β1, β2 and α is

π (β1, β2, α |r, s ) = I(r, s)h1(r;α)h2(s;α)αn+m+a3−1βn+a1−1
1 βm+a2−1

2

exp {−αb3 − β1 (b1 + T1(rn;α))− β2 (b2 + T2(sm;α))} ,(2.12)

where

[I(r, s)]−1

Γ(n+ a1)Γ(m+ a2)
=

∫ ∞
0

h1(r;α)h2(s;α)αn+m+a3−1e−αb3

(b1 + T1(rn;α))n+a1 (b2 + T2(sm;α))m+a2
dα.

Then, the Bayes estimate of a given measurable function of β1, β2 and α, say u(β1, β2, α)
under the SE loss function is

(2.13) ûB =

∫ ∞
0

∫ ∞
0

∫ ∞
0

u(β1, β2, α)π(β1, β2, α |r, s )dβ1dβ2dα.
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It is not possible to compute Equation (2.13) analytically. Two approaches can be applied
to approximate Equation (2.13), namely, Lindley's approximation and MCMC method.

2.4.1. Lindley's approximation. Lindley proposed a method to approximate the ratio of
two integrals such as Equation (2.13) in [30]. This procedure are also employed to the
posterior expectation of the function U(λ), for given x, is

E(u(λ) |x ) =

∫
u(λ)eQ(λ)dλ∫
eQ(λ)dλ

,

where Q(λ) = l(λ) + ρ(λ), l(λ) is the logarithm of the likelihood function and ρ(λ) is
the logarithm of the prior density of λ. Using Lindley's approximation, E(u(λ) |x ) is
approximately estimated by

E(u(λ) |x ) =

[
u+

1

2

∑
i

∑
j

(uij + 2uiρj)σij +
1

2

∑
i

∑
j

∑
k

∑
l

Lijkσijσklul

]
λ̂

+terms of order n−2 or smaller,

where λ = (λ1, λ2, ..., λm), i, j, k, l = 1, ...,m, λ̂ is the MLE of λ, u = u(λ), ui = ∂u/∂λi,
uij = ∂2u/∂λi∂λj , Lijk = ∂3l/∂λi∂λj∂λk, ρj = ∂ρ/∂λj , and σij = (i, j)th element in
the inverse of the matrix {−Lij} all evaluated at the MLE of the parameters.

For the three parameter case λ = (λ1, λ2, λ3), Lindley's approximation leads to

ûB = E(u(λ) |x ) = u+ (u1c1 + u2c2 + u3c3 + c4 + c5) +
1

2
[A(u1σ11

+u2σ12 + u3σ13) +B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)] ,

evaluated at λ̂ = (λ̂1, λ̂2, λ̂3), where

ci = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,

c4 = u12σ12 + u13σ13 + u23σ23,

c5 =
1

2
(u11σ11 + u22σ22 + u33σ33),

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ23L231 + σ22L221 + σ33L331,

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ23L232 + σ22L222 + σ33L332,

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ23L233 + σ22L223 + σ33L333.

In our case, (λ1, λ2, λ3) ≡ (β1, β2, α) and

ρ1 =
(a1 − 1)

β1
− b1, ρ2 =

(a2 − 1)

β2
− b2, ρ3 =

(a3 − 1)

α
− b3,

L11 = − n

β2
1

, L22 = −m
β2
2

,

L13 = L31 = −r
α
n ln rn
1 + ran

, L23 = L32 = −s
α
m ln sm
1 + sαm

,

L33 = −n+m

α2
−

n∑
i=1

rαi

(
ln ri

1 + rαi

)2

−
m∑
j=1

sαj

(
ln sj

1 + sαj

)2

−β1rαn
(

ln rn
1 + ran

)2

− β2sαm
(

ln sm
1 + sαm

)2

,

σij , i, j = 1, 2, 3 are obtained by using Lij , i, j = 1, 2, 3 and

L111 =
2

β3
1

, L222 =
2m

β3
2

,
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L133 = L331 = −rαn
(

ln rn
1 + ran

)2

, L233 = L322 = −sαm
(

ln sm
1 + sαm

)2

,

L333 =
2(n+m)

α3
−

n∑
i=1

rαi (1− rαi )

(
ln ri

1 + rαi

)3

−
m∑
j=1

sαj (1− sαj )

(
ln sj

1 + sαj

)3

−β1rαn(1− rαn)

(
ln rn

1 + rαn

)2

− β2sαm(1− sαm)

(
ln sm

1 + sαm

)2

.

Moreover, A = σ11L111+σ33L331, B = σ22L222+σ33L332 and C = 2σ13L133+2σ23L233+
σ33L333. To obtain the Bayes estimate ofR under the SE loss function, we take u(β1, β2, α) =
R = β1/(β1 + β2). Then, u3 = u13 = u23 = u33 = 0,

u1 =
∂R

∂β1
=

β2
(β1 + β2)2

, u2 =
∂R

∂β2
=

−β1
(β1 + β2)2

, u12 = u21 =
β1 − β2

(β1 + β2)3
,

u11 =
∂2R

∂β2
1

=
−2β2

(β1 + β2)3
, u22 =

∂2R

∂β2
2

=
2β1

(β1 + β2)3
,

and

c4 = u12σ12, c5 =
1

2
(u11σ11 + u22σ22).

Hence, the Bayes estimate of R under the SE loss function is given as

R̂BS,Lindley = R+ [u1c1 + u2c2 + c4 + c5]

+
1

2
{A [u1σ11 + u2σ12] +B [u1σ21 + u2σ22] + C [u1σ31 + u2σ32]} .(2.14)

Notice that all parameters are evaluated at (β̂1, β̂2, α̂).
For the Bayes estimate of R under the LINEX loss function, we take u(β1, β2, α) =

e−vR. Then, u∗3 = u∗13 = u∗23 = u∗33 = 0,

u∗1 =
−vβ2e−vR

(β1 + β2)2
, u∗11 =

ve−vR(vβ2
2 + 2β1β2 + 2β2

2)

(β1 + β2)4
,

u∗2 =
vβ1e

−vR

(β1 + β2)2
, u∗22 =

ve−vR(vβ2
1 − 2β1β2 − 2β2

1)

(β1 + β2)4
,

u∗12 = −ve−vR
(

vβ1β2
(β1 + β2)4

+
β1 − β2

(β1 + β2)3

)
.

and c∗4 = u12σ12, c
∗
5 = 1

2
(u11σ11 + u22σ22). Then, the Bayes estimate of R under the

LINEX loss function is given as

(2.15) R̂BL,Lindley = −1

v
lnE(e−vR),

where

E(e−vR) = e−vR + [u∗1c1 + u∗2c2 + c∗4 + c∗5]

+
1

2
{A [u∗1σ11 + u∗2σ12] +B [u∗1σ21 + u∗2σ22] + C [u∗1σ31 + u∗2σ32]} .(2.16)

Notice that all parameters are evaluated at (β̂1, β̂2, α̂).
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2.4.2. MCMC method. In the previous subsection, the Bayes estimate of R are obtained
by using Lindley's approximation under the SE and the LINEX loss functions. Since the
exact probability distribution of R is not known, it is di�cult to evaluate Bayesian
credible interval of R. For this reason, we use the MCMC method to compute the Bayes
estimate R under the SE and the LINEX loss functions as well as the HPD credible
interval.

We consider the MCMC method to generate samples from the posterior distributions
and then compute the Bayes estimate of R under the SE and the LINEX loss functions.
The joint posterior density of β1, β2 and α is given by Equation (2.12). It is easy to see
that the posterior density functions of β1, β2 and α are

β1 |α, r, s ∼ Gamma(n+ a1, b1 + T1(rn;α)),

β2 |α, r, s ∼ Gamma(m+ a2, b2 + T2(sm;α)),

and

π(α |β1, β2, r, s ) ∝ αn+m+a3−1 exp

{
−αb3 − β1T1(rn;α)−

n∑
i=1

ln(1 + rαi )(2.17)

−β2T2(sm;α) + α

(
n∑
i=1

ln ri +

m∑
j=1

ln sj

)
−

m∑
j=1

ln(1 + sαj )

}
.

Therefore, samples of β1 and β2 can be generated by using the gamma distribution.
However, the posterior distribution of α cannot be reduced analytically to well known
distribution, therefore it is not possible to sample directly by standard methods. If the
posterior density of α is unimodal and roughly symmetric then it is often convenient
to approximate it by a normal distribution (see Gelman et al. [20]. Since the poste-
rior density of α is log-concave density (so unimodal) and it is roughly symmetric (by
experimentation), we use the Metropolis-Hasting algorithm with the normal proposal
distribution to generate a random sample from the posterior density of α. The hybrid
Metropolis-Hastings and Gibbs sampling algorithm, which will be used to solve our prob-
lem, is suggested by Tierney [45]. This algorithm combines the Metropolis-Hastings with
Gibbs sampling scheme under the normal proposal distribution.

Step 1. Start with initial guess α(0).
Step 2. Set i = 1.

Step 3. Generate β
(i)
1 from Gamma(n+ a1, T1(rn;α(i−1)) + b1).

Step 4. Generate β
(i)
2 from Gamma(m+ a2, T2(sm;α(i−1)) + b2).

Step 5. Generate α(i) from π(α |β1, β2, r, s ) using the Metropolis-Hastings algorithm

with the proposal distribution q(α) ≡ N(α(i−1), 1) :

(a) Let v = α(i−1).
(b) Generate w from the proposal distribution q.

(c) Let p(v, w) = min

1,
π(w

∣∣∣β(i)
1 , β

(i)
2 , r, s ) q(v)

π(v
∣∣∣β(i)

1 , β
(i)
2 , r, s ) q(w)

.

(d) Generate u from Uniform(0, 1). If u ≤ p(v, w) then accept the proposal and

set α(i) = w; otherwise, set α(i) = v.

Step 6. Compute the R(i) = β
(i)
1 /(β

(i)
1 + β

(i)
2 ).

Step 7. Set i = i+ 1.
Step 8. Repeat Steps 2-7, N times, and obtain the posterior sample R(i), i = 1, ..., N .
This sample are used to compute the Bayes estimate and to construct the HPD credible

interval for R. The Bayes estimate of R under the SE and the LINEX loss function are
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given as

R̂BS,MCMC =
1

N −M

N−M∑
i=M+1

R(i),

R̂BL,MCMC = −1

v
lnE(e−vR) = −1

v
ln

(
1

N −M

N−M∑
i=M+1

e−vR
(i)

)
.

where M is the burn-in period.
The HPD 100(1−γ)% credible interval of R is obtained by using the method given in

Chen and Shao [18]. From MCMC, the sequence R(1), . . . , R(N), are obtained and ordered
as R(1) < . . . < R(N). The credible intervals are constructed as

(
R(j), R(j+[N(1−γ)])

)
for

j = 1, ..., N − [N(1 − γ)] where [x] denotes the largest integer less than or equal to x.
Then, the HPD credible interval of R is that interval which has the shortest length.

3. Estimation of R when the �rst shape parameter α is known

In this section, we consider the estimation of R when α is known, say α = α0. Let
R1, . . . , Rn be a set of upper records from Burr(α0, β1) and S1, . . . , Sm be a set of upper
records from Burr(α0, β2) independently from the �rst sample.

3.1. MLE estimation and con�dence intervals of R. Based on the samples de-

scribed above, the MLE of R, say R̂MLE , is

(3.1) R̂MLE =
β̂1

β̂1 + β̂2
=

nT2(sm;α0)

nT2(sm;α0) +mT1(rn;α0)
,

where T1(rn;α0) = ln(1 + rα0
n ), T2(sm;α0) = ln(1 + sα0

m ).
It is easy to see that 2β1 ln(1+rα0

n ) ∼ χ2(2n) and 2β2 ln(1+sα0
m ) ∼ χ2(2m). Therefore,

F ∗ =

(
R

1−R

)(
1− R̂MLE

R̂MLE

)

is an F distributed random variable with (2n, 2m) degrees of freedom. The pdf of R̂MLE

is

fR̂MLE (r) =
1

r2B(m,n)

(
nβ1
mβ2

)n ( 1−r
r

)n−1(
1 + nβ1(1−r)

mβ2r

)n+m ,
where 0 < r < 1. The 100(1− γ)% exact con�dence interval for R can be obtained as

(3.2)

 1

1 + F2m,2n; γ
2

(
1−R̂MLE
R̂MLE

) , 1

1 + F2m,2n;1− γ
2

(
1−R̂MLE
R̂MLE

)
 ,

where F2m,2n; γ
2
and F2m,2n;1− γ

2
are the lower and upper γ

2
th percentile points of a F

distribution with (2m, 2n) degrees of freedom.
On the other hand, the approximate con�dence interval of R can be easily obtained

by using the Fisher information matrix. The Fisher information matrix of (β1, β2) is

I = −

 E
(
∂2l
∂β2

1

)
E
(

∂2l
∂β1∂β2

)
E
(

∂2l
∂β1∂β2

)
E
(
∂2l
∂β2

2

)  =

(
n/β2

1 0
0 m/β2

2

)
.
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By the asymptotic properties of the MLE, R̂MLE is asymptotically normal with mean R
and asymptotic variance

σ2
R =

2∑
j=1

2∑
i=1

∂R

∂βi

∂R

∂βj
I−1
ij

where I−1
ij is the (i, j) th element of the inverse of the I, see Rao [39]. Then

(3.3) σ2
R = R2(1−R)2

(
1

n
+

1

m

)
Therefore, an asymptotic 100(1− γ)% con�dence interval for R is

(3.4)
(
R̂MLE − zγ/2σ̂R, R̂MLE + zγ/2σ̂R

)
,

where zγ is the upper γth percentile points of a standard normal distribution and σ̂R is
the value of σR at the MLE of the parameters.

3.2. UMVUE of R. In this subsection, we obtain the UMVUE of R. When the �rst
shape parameter α is known, (T1(rn;α0), T2(sm;α0)) is a su�cient statistics for (β1, β2).
It can be shown that it is also a complete su�cient statistic by using Theorem 10-9 in
Arnold [6]. Let us de�ne

φ(R1, S1) =

{
1 if R1 < S1

0 if R1 ≥ S1
.

Then E (φ(R1, S1)) = R so it is an unbiased estimator of R. Let P1 = ln(1 + Rα0
1 ) and

P2 = ln(1+Sα0
1 ). The UMVUE of R, say R̂U , can be obtained by using the Rao-Blackwell

and the Lehmann-Sche�e's Theorems, see Arnold [6],

R̂U = E (φ(P1, P2) | (T1, T2))

=

∫
P2

∫
P1

φ(P1, P2) f(p1, p2 |T1, T2 )dp1dp2

=

∫
P2

∫
P1

φ(P1, P2)fP1|T1
(p1 |T1 )fP2|T2

(p2 |T2 )dp1dp2,

where (T1, T2) = (T1(rn;α0), T2(sm;α0)), f(p1, p2 |T1, T2 ) is the conditional pdf of (P1, P2)
given (T1, T2). Using the joint pdf of (R1, Rn) and (S1, Sm) and after making a simple
transformation, we obtain the fP1|T1

(p1 |T1 ) and fP2|T2
(p2 |T2 ), and are given by

fP1|T1
(p1 | T1) = (n− 1)

(t1 − p1)n−2

tn−1
1

, 0 < p1 < t1,

fP2|T2
(p2 | T2) = (m− 1)

(t2 − p2)m−2

tm−1
2

, 0 < p2 < t2.

Therefore,

R̂U =

∫ ∫
P1<P2

fP1|T1
(p1 | T1)fP2|T2

(p2 | T2)dp1dp2

=


∫ t1
0

∫ t2
p1

(n− 1)(m− 1) (t1−p1)n−2

tn−1
1

(t2−p2)m−2

tm−1
2

dp2dp1 if t2 ≥ t1∫ t2
0

∫ p2
0

(n− 1)(m− 1) (t1−p1)n−2

tn−1
1

(t2−p2)m−2

tm−1
2

dp1dp2 if t2 < t1

=

{
2F1(1, 1−m;n; t1/t2) if t2 ≥ t1

1−2 F1(1, 1− n;m; t2/t1) if t2 < t1
,(3.5)
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where 2F1(., .; .; .) is Gauss hypergeometric function, see formula 3.196(1) in Gradshteyn
and Ryzhik [22].

3.3. Bayes estimation of R. In this subsection, we assume that β1 and β2 are un-
known and have independent gamma prior distributions with parameters (ai, bi), i = 1, 2,
respectively. Then, the joint posterior density function of β1 and β2 is

(3.6) π (β1, β2 |α0, r, s ) =
λδ11 λ

δ2
2

Γ(δ1)Γ(δ2)
βδ1−1
1 βδ2−1

2 e−β1λ1e−β2λ2 ,

where λ1 = b1 + T1(rn;α0), λ2 = b2 + T2(sm;α0), δ1 = n + a1, δ2 = m + a2. We can
obtain the posterior pdf of R using the joint posterior density function and is given by

(3.7) fR(r) =
λδ11 λ

δ2
2

B(δ1, δ2)

rδ1−1(1− r)δ2−1

(rλ1 + (1− r)λ2)δ1+δ2
, 0 < r < 1.

The Bayes estimate of R, say R̂BS , under the SE loss function is

R̂BS =

∫ 1

0

r fR(r)dr.

After making suitable transformations and simpli�cations by using formula 3.197(3) in
Gradshteyn and Ryzhik [22], we get

(3.8) R̂BS =


δ1

δ1+δ2

(
λ1
λ2

)δ1
2F1(δ1 + δ2, δ1 + 1; δ1 + δ2 + 1; 1− λ1

λ2
) if λ1 < λ2

δ1
δ1+δ2

(
λ2
λ1

)δ2
2F1(δ1 + δ2, δ2; δ1 + δ2 + 1; 1− λ2

λ1
) if λ2 ≤ λ1

.

The Bayes estimator of R under the LINEX loss function, say R̂BL, is

R̂BL = −1

v
lnER(e−vR),

where ER(.) denotes posterior expectation with respect to the posterior density of R. It
can be easily obtained that

E(e−vR) =

∫ 1

0

e−vrfR(r)dr

=

{
(λ1
λ2

)δ1 Φ1(δ1, δ1 + δ2, δ1 + δ2, 1− λ1
λ2
,−v) if λ1 < λ2

(λ2
λ1

)δ2 e−v Φ1(δ2, δ1 + δ2, δ1 + δ2, 1− λ2
λ1
, v) if λ2 ≤ λ1

,

where Φ1(., ., ., ., .) is con�uent hypergeometric series of two variables, see formulas 3.385
and 9.261(1) in Gradshteyn and Ryzhik [22]. Therefore,

(3.9) R̂BL =

 −
1
v

(
c1 + ln

[
Φ1(δ1, δ1 + δ2, δ1 + δ2, 1− λ1

λ2
,−v)

])
if λ1 < λ2

− 1
v

(
c2 + ln

[
Φ1(δ2, δ1 + δ2, δ1 + δ2, 1− λ2

λ1
, v)
])

if λ2 ≤ λ1

,

where c1 = δ1 ln(λ1/λ2) and c2 = δ2 ln(λ2/λ1)− v.
If we use the Je�rey's non informative prior, is given by

√
det I, then the joint prior

density function is π(β1, β2) ∝ 1/β1β2. Therefore, the joint posterior density function of
β1 and β2 is

π(β1, β2 |α0, r, s ) =
Tn1 T2

m

Γ(n)Γ(m)
βn−1
1 βm−1

2 e−β1T1e−β2T2 ,

and the posterior pdf of R is given by

fR(r) =
Tn1 T2

m

B(n,m)

rn−1(1− r)m−1

(rT1 + (1− r)T2)n+m
, 0 < r < 1,
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where T1 = T1(rn;α0) and T2 = T2(sm;α0). The Bayes estimate of R under the SE and

the LINEX loss function, say R̂∗BS and R̂∗BL respectively, are

(3.10) R̂∗BS =

{
(T1
T2

)n( n
n+m

) 2F1(n+m,n+ 1;n+m+ 1; 1− T1
T2

) if T1 < T2

(T2
T1

)m( n
n+m

) 2F1(n+m,m;n+m+ 1; 1− T2
T1

) if T2 ≤ T1
,

and

(3.11) R̂∗BL =

 −
1
v

(
c3 + ln

[
Φ1(n, n+m,n+m, 1− T1

T2
,−v)

])
if T1 < T2

− 1
v

(
c4 + ln

[
Φ1(m,n+m,n+m, 1− T2

T1
, v)
])

if T2 ≤ T1

,

where c3 = n ln(T1/T2) and c4 = m ln(T2/T1)− v
The Bayes estimates are not always derived in the closed forms. However, for our case

the Bayes estimates are obtained in the closed form. These estimates can be obtained by
using alternative methods such as Lindley's approximation and the MCMC method. The
purpose of applying all these two methods is to see how good the approximate methods
compared with the exact one. If these result are close, then it will be encouraging to use
the approximate methods when the exact form can not be obtained as in the case of α
unknown. These estimators will be compared in the simulation study section. Next, we
give the Bayes estimates of R using Lindley's approximation and the MCMC method.

3.3.1. Lindley's approximation. The approximate Bayes estimate of R under the SE and

the LINEX loss functions for the informative prior case, say R̂BS,Lindley and R̂BL,Lindley
respectively, are

(3.12) R̂BS,Lindley = R̃

(
1 +

(1− R̃)2

n+ a1 − 1
− R̃(1− R̃)

m+ a2 − 1

)
,

and

(3.13) R̂BL,Lindley = R̃− 1

v
ln

[
1 +

vR̃(1− R̃)2(vR̃− 2)

2(n+ a1 − 1)
+
vR̃2(1− R̃)(v − vR̃+ 2)

2(m+ a2 − 1)

]
,

where R̃ = β̃1
β̃1+β̃2

, β̃1 = n+a1−1
b1+T1(rn;α0)

and β̃2 = m+a2−1
b2+T2(sm;α0)

.

If we use the Je�rey's non informative prior, the approximate Bayes estimate of R

under the SE and the LINEX loss functions, say R̂∗BS,Lindley and R̂
∗
BL,Lindley respectively,

are

(3.14) R̂∗BS,Lindley = R̃

(
1 +

(1− R̃)2

n− 1
− R̃(1− R̃)

m− 1

)
,

and

(3.15) R̂∗BL,Lindley = R̃− 1

v
ln

[
1 +

vR̃(1− R̃)2(vR̃− 2)

2(n− 1)
+
vR̃2(1− R̃)(v − vR̃+ 2)

2(m− 1)

]
,

where R̃ = b̃1
b̃1+b̃2

, b̃1 = n−1
T1(rn;α0)

and b̃2 = m−1
T2(sm;α0)

.

3.3.2. MCMC method. It is clear from Equation (3.6) that the marginal posterior den-
sities of β1 and β2 are gamma distribution with the parameters (δ1, λ1) and (δ2, λ2),
respectively. We generate a samples by using Gibss sampling from these distributions.
The following algorithm are used.

Step 1. Set i = 1.

Step 2. Generate β
(i)
1 from Gamma(δ1, λ1).

Step 3. Generate β
(i)
2 from Gamma(δ2, λ2).

Step 4. Compute the R(i) = β
(i)
1 /(β

(i)
1 + β

(i)
2 ).
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Step 5. Set i = i+ 1.
Step 6. Repeat Steps 2-5, N times, and obtain the posterior sample R(i), i = 1, ..., N .
This sample is used to compute the Bayes estimate and to construct the HPD credible

interval for R. The Bayes estimate of R under the SE and the LINEX loss functions are
given as

R̂BS,MCMC =
1

N

N∑
i=1

R(i),

R̂BL,MCMC = −1

v
lnE(e−vR) = −1

v
ln

(
1

N

N∑
i=1

e−vR
(i)

)
.

The HPD 100(1−γ)% credible interval of R can be obtained by the method of Chen and
Shao [18]. Its algorithm is given in Subsection 2.4.2.

3.4. Empirical Bayes estimation of R. We obtained the Bayes estimates of R using
three di�erent ways. It is clear that these estimates depend on the prior parameters.
However, the Bayes estimates can be also obtained independently of the prior parameters.

These prior parameters could be estimated by means of an empirical Bayes procedure,
see Lindley [29] and Awad and Gharraf [9]. Let R1, . . . , Rn and S1, . . . , Sm be two
independent random samples from Burr(α0, β1) and Burr(α0, β2), respectively. For
�xed r, the function L1(β1 |α0, r ) of β1 can be considered as a gamma density with
parameters (n+1, T1(rn;α0)). Therefore, it is proposed to estimate the prior parameters
α1 and β1 from the samples as n + 1 and T1(rn;α0), respectively. Similarly, α2 and β2
could be estimated from the samples as m + 1 and T2(sm;α0), respectively. Hence, the

empirical Bayes estimate of R with respect to SE and LINEX loss functions, say R̂EBS
and R̂EBL, respectively, could be given as

(3.16) R̂EBS =

{
c6c7 2F1(2n+ 2m+ 2, 2n+ 2; 2n+ 2m+ 3; c9) if T1 < T2

c6c8 2F1(2n+ 2m+ 2, 2m+ 1; 2n+ 2m+ 3; c10) if T2 ≤ T1
,

and

(3.17) R̂EBL =

 −
1
v

(
(2n+ 1) ln(T1

T2
) + ln c11

)
if T1 < T2

− 1
v

(
(2m+ 1) ln(T2

T1
)− v + ln c12

)
if T2 ≤ T1

.

where c6 = (2n+1)/(2n+2m+2), c7 = (T1/T2)2n+1, c8 = (T2/T1)2m+1, c9 = 1−(T1/T2),
c10 = 1− (T2/T1), c11 = Φ1(2n+ 1, 2n+ 2m+ 2, 2n+ 2m+ 2, c9,−v) and c12 = Φ1(2m+
1, 2n+ 2m+ 2, 2n+ 2m+ 2, c10, v).

3.5. Bayesian credible intervals for R. We know that β1 |α0, r ∼ Gamma(δ1, λ1)
and β2 |α0, s ∼ Gamma(δ2, λ2). Then, 2λ1β1 |α0, r ∼ χ2(2(n + a1)) and 2λ2β2 |α0, s ∼
χ2(2(m+ a2)). Therefore,

W =
2λ2β2 |α0, s /2(m+ a2)

2λ1β1 |α0, r /2(n+ a1)

is an F distributed random variable with (2(m+ a2), 2(n+ a1)) degrees of freedom and
the 100(1− γ)% Bayesian credible interval for R can be obtained as

(3.18)

(
1

1 + CF2(m+a2),2(n+a1);
γ
2

,
1

1 + CF2(m+a2),2(n+a1);1− γ2

)
where C = (m+a2)(b1+T1(rn;α0))

(n+a1)(b2+T2(sm;α0))
, F2(m+a2),2(n+a1);

γ
2
and F2(m+a2),2(n+a1);1− γ2

are the

lower and upper γ
2
th percentile points of a F distribution with (2(m + a2), 2(n + a1))

degrees of freedom.
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Moreover, this interval can be obtained independently of these parameters by using
the empirical method given in Subsection 3.4. In this case, the posterior distributions of
β1 and β2 have gamma distributions with parameters (2n + 1, 2T1(rn;α0)) and (2m +
1, 2T2(sm;α0)), respectively and the 100(1− γ)% Bayesian credible interval for R can be
obtained as

(3.19)

(
1

1 + C1F(4m+2),(4n+2); γ
2

,
1

1 + C1F(4m+2),(4n+2);1− γ
2

)
where C1 = (4m+2)T1(rn;α0)

(4n+2)T2(sm;α0)
, F(4m+2),(4n+2); γ

2
and F(4m+2),(4n+2);1− γ

2
are the lower and

upper γ
2
th percentile points of a F distribution with (4m+ 2, 4n+ 2) degrees of freedom.

4. Numerical experiments

In this section, �rstly the Monte Carlo simulations for the comparison of the derived
estimates are presented, then two real life data sets are analysed.

4.1. Simulation study. In this subsection, we present some numerical results to com-
pare the performance of the di�erent estimates for di�erent sample sizes and di�erent
priors. The performances of the point estimates are compared by using estimated risks
(ERs). The performances of the con�dence and credible intervals are compared by us-
ing average interval lengths and coverage probabilities (cps). The ER of θ, when θ is

estimated by θ̂, is given by

ER(θ) =
1

N

N∑
i=1

(
θ̂i − θi

)2
,

under the SE loss function. Moreover, the ER of θ under the LINEX loss function is
given by

ER(θ) =
1

N

N∑
i=1

(
ev(θ̂i−θi) − v

(
θ̂i − θi

)
− 1
)
,

where N is the number of replications. All of the computations are performed by using
MATLAB R2010a. All the results are based on 3000 replications.

We consider two cases separately to draw inference on R, namely when the common
�rst shape parameter α is unknown and known. In both cases we generate the upper
record values with the sample sizes; (n,m) = (5, 5), (8, 8), (10, 10), (12, 12), (15, 15) from
the Burr Type XII distribution and di�erent values of n and m, given in Table 1, are
considered.

In Table 1, the ML and Bayes estimates of R and their corresponding ERs are listed
when α is unknown. The Bayes estimates are computed by using Lindley's approximation
and MCMC method under the SE and the LINEX (v = −1 and 1) loss functions for
di�erent prior parameters. In the Bayesian case, Prior 1: (a1, b1) = (4, 2), (a2, b2) = (4, 2),
(a3, b3) = (3, 3), Prior 2: (a1, b1) = (5, 1), (a2, b2) = (3, 3/2), (a3, b3) = (3, 3/2) and Prior
3: (a1, b1) = (5, 1/2), (a2, b2) = (3, 3), (a3, b3) = (3, 3/2), are used for R = 0.5006,
0.7145 and 0.9095, respectively. Moreover, the 95% asymptotic con�dence intervals,
which are computed based on Fisher information and observation matrices, and HPD
credible intervals with their cps are listed. From Table 1, the ERs of all estimates
decrease as the sample sizes increase in all cases, as expected. The Bayes estimates
under the SE and LINEX loss functions generally have smaller ER than that of ML
estimates. Moreover, the ERs of the Bayes estimates based on Lindley's approximation
are generally smaller than that of MCMC method. These estimates are close to each
other as the sample sizes increase. The average lengths of the intervals decrease as the
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sample sizes increase. The asymptotic con�dence intervals based on Fisher information
and observation matrices are very similar, as expected. The average lengths of the HPD
Bayesian credible intervals are smaller than that of the asymptotic con�dence intervals.

In the MCMC case, we run three MCMC chains with fairly di�erent initial values
and generated 10000 iterations for each chain. To diminish the e�ect of the starting
distribution, we generally discard the �rst half of each sequence and focus on the second
half. To provide relatively independent samples for improvement of prediction accuracy,
we calculate the Bayesian MCMC estimates by the means of every 5th sampled values
after discarding the �rst half of the chains (see Gelman et al. [20]). The scale reduction

factor estimate
√
R̂ =

√
V ar(ψ)/W is used to monitor convergence of MCMC simula-

tions where ψ is the estimand of interest, V ar(ψ) = (n−1)W/n+B/n with the iteration
number n for each chain, the between- and within- sequence variances B and W (see
Gelman et al. [20]). In our case, the scale factor value of the MCMC estimates are found
below 1.1 which is an acceptable value for their convergency.

In Table 2 and 3, the ML, UMVU and Bayesian estimates of R and their corresponding
ERs are listed when α is known (α = 3). In this case, the Bayes estimates are evaluated
analytically under the SE and the LINEX (v = −1 and 1) loss functions for di�erent
prior parameters. Moreover, it is also computed by using Lindley's approximation and
MCMC method. In the Bayesian case, Prior 4: (a1, b1) = (6, 5/2), (a2, b2) = (4, 2), Prior
5: (a1, b1) = (12, 2), (a2, b2) = (3, 3/2) and Prior 6: (a1, b1) = (15, 5/4), (a2, b2) = (2, 2)
are used for R = 0.5484, 0.7506 and 0.9165, respectively. In addition, the empirical
Bayes estimates are obtained. All point estimates of R are listed in Table 2. The exact
and asymptotic con�dence intervals are computed from Equations (3.2) and (3.4). The
Bayesian and empirical Bayesian credible intervals are computed from Equations (3.18)
and (3.19). The HPD credible interval is constructed by using the MCMC samples. All
interval estimates of R are listed in Table 3.

From Table 2, the ERs of all estimates decrease as the sample sizes increase in all
cases, as expected. The Bayes estimates with their corresponding ERs based on Lindley's
approximation and MCMC method are very close to the exact values. The ERs of the
ML, UMVU, Bayes and empiric Bayes (under the SE loss function) estimates are ordered

as ER(R̂BS) < ER(R̂EBS) < ER(R̂MLE) < ER(R̂U ) when R = 0.5484, 0.7506 and

ER(R̂BS) < ER(R̂U ) < ER(R̂MLE) < ER(R̂EBS) when R = 0.9165. Moreover, the
ERs of the Bayes estimates under the LINEX loss function have smaller than that of ML
estimates. From Table 3, the average lengths of the intervals decrease as the sample sizes
increase. The average lengths of the empirical Bayesian credible intervals are smallest,
but their cps are not preferable. The HPD Bayesian credible intervals are more suitable
than others in terms of the average lengths and cps.

In Table 4, the ML, UMVU and Bayesian estimates of R and their corresponding ERs
are listed when α is known (α = 3). In this case, the Bayes estimates are evaluated
analytically and by using Lindley's approximation under the SE and the LINEX (v = −1
and 1) loss functions for the non informative prior. Moreover, the exact and asymptotic
con�dence intervals are computed from Equations (3.2) and (3.4). The point and interval
estimates are computed for R = 0.25, 0.33, 0.50, 0, 70, 0.90 and 0.92 when (β1, β2) =
(2, 6), (2, 4), (2, 2), (7, 3), (18, 2) and (23, 2), respectively. From Table 4, the ERs of
all estimates decrease as the sample sizes increase in all cases, as expected. The Bayes
estimates under the SE loss function with their corresponding ERs are close to their
response in the ML case. Moreover, the Bayes estimates with their corresponding ERs
based on Lindley's approximation are very close the exact values. The ERs of the ML,

UMVU and Bayes (under the SE loss function) estimates are ordered as ER(R̂∗BS) <

ER(R̂MLE) < ER(R̂U ) when R = 0.25, 0.33, 0.50, 0.70 and ER(R̂U ) < ER(R̂MLE) <
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ER(R̂∗BS) when R = 0.90, 0.92. The ERs of ML and Bayes estimates have larger values
when the true value of R is around 0.5 and it decreases as the true value of R approaches
the extremes. Furthermore, the average lengths of the intervals decrease as the sample
sizes increase. When R = 0.25, 0.90 and 0.92 the lengths of the asymptotic con�dence
intervals are smaller than that of exact con�dence intervals, but for R = 0.33, 0.50 and
0, 70 it is other way around.

On the other hand, to compare the performance of the di�erent estimates of R, the
graphs of MSEs and Biases are obtained for di�erent n and m when α is unknown and
known cases. When α is unknown, the graphs are plotted based on the MLE and Lindley
methods in Figure 1. When α is known, the graphs are plotted based on the MLE,
UMVUE and Lindley methods in Figure 2. For each choices of (β1, β2, α) or (β1, β2), we
use the following procedure for the comparison of the estimates.

Step 1: For given (β1, β2, α) or (β1, β2), we compute R.
Step 2: For given di�erent n and m, we generate a sample from the Burr Type XII

distributions for the strength and the stress variables.
Step 3: The di�erent estimates of R are computed.
Step 4: Steps 2-3 are repeated 3000 times, the MSEs and Biases are calculated and

are given by MSE(Rs,k) =
∑N
i=1(R̂(i) −R)2/N and Bias(Rs,k) =

∑N
i=1(R̂(i) −R)/N .

From the Figures 1 and 2, it is observed that the MSEs and Biases of the estimates
decrease when the sample size increases, as expected. The MSEs of the Bayes estimates
under the SE and LINEX (v = −1, 1) loss functions are smaller than that of other
estimates. Moreover, the MSE is small for the extreme values of R, but it is large when
R is around 0.5 for all types of estimates. When R is around 0.5, the MSEs of UMVUE
are greater than that of MLE and when R is around extreme values, the MSEs of UMVUE
are smaller than that of MLE in Figure 2. Notice that the similar outcomes are observed
in all Tables.

4.2. Real life examples. In this subsection, we consider the two real life data sets to
illustrate the use of the methods proposed in this paper.

4.2.1. Lifetime data for insulation specimens. Nelson described the results of a life test
experiment in which specimens of a type of electrical insulating �uid were subjected to a
constant voltage stress in [37]. The length of time until each specimen failed, or "broke
down," was observed. The results for seven groups of specimens, tested at voltages
ranging from 26 to 38 kilovolts (kV) were presented. The data sets for 36kV and 38 kV,
reported in Lawless [27], are considered and corresponding upper record values are given
in Table 5. We �t the Burr Type XII distribution to the two data sets. The Kolmogorov-
Smirnov (K-S) distances between the �tted and the empirical distribution functions and
corresponding p-values, the parameters and the reliability (R) estimates are computed.
All these results are presented in Table 6. From Table 6, we observe the Burr Type XII
distribution provides an adequate �t for both of the data sets.

4.2.2. Lifetime data for steel specimens. Crowder gave the lifetimes of steel specimens
tested at 14 di�erent stress levels in [19]. The data sets for 38.5 and 36 stress levels are
considered and corresponding upper record values are given in Table 7. Since all record
values are greater than unity, we encounter the problem for the uniqueness of the ML
estimates of the parameters. To overcome this situation, these data sets are divided by
the corresponding maximum values. Then, we compute the K-S distances between the
�tted and the empirical distribution functions based on the Burr Type XII distribution.
Moreover, for this example it is recommended to compare the Burr Type XII distribution
with common distributions such as Weibull and two-parameter bathtub-shaped based on
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Figure 2. MSE and Bias for R when α is known (α = 6) and di�erent
pair of (n,m).
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Table 5. Upper record values from 36kV and 38kV data sets.

i 1 2 3 4

r 1.97 2.58 2.71 25.50
s 0.47 0.73 1.40 2.38

Table 6. K-S values and estimates when the �rst shape parameters
(α) are common.

Kolmogorov-Smirnov and corresponding p values

Data Set K-S(MLE) p-value K-S(Lindley) p-value

r 0.6111 >0.05 0.4796 >0.2
s 0.3879 >0.2 0.4180 >0.2

Parameter and reliability estimates

Parameter MLE Lindley(SEL)

β1 0.5468 0.4227
β2 1.9134 0.4736
α 2.2587 1.9249
R 0.2222 0.3311

the goodness-of-�t test. The Weibull distribution is considered by Baklizi [11] based on
upper records for the reliability problem and the two-parameter bathtub-shaped distri-
bution is considered by Selim [42] and Asgharzadeh et al. [8] based on upper records for
the parameter and interval estimation problems. The Weibull distribution parameters
have the unique ML estimates. However, the existence and uniqueness of the ML esti-
mates of the two-parameter bathtub-shaped distribution parameters are not considered
in literature, but these parameters are obtained for this example. The K-S values and the
corresponding p-values, the parameters and the reliability (R) estimates are presented in
Table 8. From Table 8, it is observed that the Burr Type XII distribution gives a better
�t than the other distributions for both of the data sets.

Table 7. Upper record values from 38.5 and 36 stress levels.

i 1 2 3 4 5

r 60 83 140 − −
s 173 218 288 394 585

5. Conclusion

In this paper, we have derived the estimates of the stress-strength reliability based
on upper record values when the stress and strength variables follow the Burr Type XII
distribution under the non-Bayesian and Bayesian frameworks. The �rst shape param-
eters of the distributions of the measurements are assumed to be the same. When the
�rst shape parameters are unknown, the ML and Bayes estimates are obtained by using
Lindley's approximation and MCMC method. It is observed that the performance of
the Bayes estimates are better than ML estimates. When the �rst shape parameters are
known, the Bayes estimates are obtained exactly and approximately by using Lindley
and MCMC methods for the informative prior case. It is observed that the performance
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Table 8. K-S values and estimates when the �rst shape parameters
(α) are common.

Kolmogorov-Smirnov and corresponding p values

based on Burr Type XII based on Weibul based on bathtub

Data Set K-S(MLE) K-S(Lindley) K-S(MLE) K-S(MLE)

r 0.5104(p >0.2) 0.4464(p >0.2) 0.5058(p >0.2) 0.6626(0.05< p <0.1)
s 0.4431(p >0.2) 0.3098(p >0.2) 0.4636(0.1< p <0.2) 0.4601(0.1< p <0.2)

Parameter and reliability estimates

based on Burr Type XII based on Weibull based on bathtub

Parameter MLE Lindley(SEL) MLE MLE

β1 4.3281 15.1596 0.006 0.0365
β2 7.2135 14.3937 0.001 0.0056
α 2.0278 4.3117 1.7096 0.3008
R 0.3750 0.7283 0.8737 0.8672

of the Bayes estimates are better than ML and UMVU. Moreover, for the non informa-
tive prior case, it is observed that the performance of the Bayes estimates are better
than others when the true values of the stress-strength reliability is not close to the ex-
tremes (0 or 1), while near the extremes the UMVU and ML estimates are better than
the Bayes estimates. It is observed that the performance of the HPD Bayesian credible
interval are better than others in all cases. When the �rst shape parameter is known,
we observe that the stress-strength reliability estimates are very close for both exact and
approximate methods. This is encouraging when the �rst shape parameter is unknown,
because the stress-strength reliability estimates can be obtained from the approximate
methods only. Furthermore, the Bayes estimates based on Lindley's approximation and
the MCMC method are close to each other. Since the computation time for the MCMC
method is much more than Lindley's approximation, the Bayes estimates based on Lind-
ley's approximation are recommended.

To obtain the point and interval estimates of the stress-strength reliability are di�cult
due to lack of explicit form of the reliability when the measurements follow from the
Burr Type XII distribution with no common parameters. More work is needed along
that direction.
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