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Abstract

In this paper we consider the problem of estimation of population mean
in circular systematic sampling design along with the non-response
problem. For the population mean using auxiliary information three
generalized classes of estimators are suggested. The biases and the
mean square errors of the suggested classes of estimators are obtained
and compared with sample mean, linear regression estimators, [23] es-
timator and [21] estimators. A numerical study is provided to show
that the proposed classes of estimators based on circular systematic
design can be more e�cient than the estimators based on simple ran-
dom sampling. Moreover, a simulation study is accomplished when
some population parameters are assumed to be unknown.
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1. Introduction

Systematic sampling is a simple scheme in which the sample selection is based on
one random start i.e. from a �nite population of N units, the �rst unit is selected
randomly from the �rst k units and every kth unit thereafter, assuming that the sample
size n satis�es N = nk, for some integer k. Generally most of the systematic sampling
methods considered in the literature are based on this assumption to obtain estimators
for estimating the population mean of the variable of interest, see for instance [30], [13],
[18], [22], [24] and references therein. In various situations this systematic sampling,
called linear systematic sampling, provides more e�cient estimates than simple random
sampling and/or strati�ed random sampling for certain types of population [see [2], [7]
etc.]. Nowadays, systematic sampling design is becoming more popular than simple
random sampling due to its simplicity and e�ective accessibility. Recently, [20], [23],
[19], [27] and [28] suggested some classes of estimators for estimation of the population
mean using this design.

However this sampling design has some drawbacks, such as the impossibility to get an
unbiased estimator of the variance of the sample mean on the basis of a single sample.
Moreover, if k is not an integer then there will be dissimilarity between the actual sample
size and the speci�ed one. As a consequence, the resulting sample mean will be a biased
estimator of the population mean. To tackle these problems, [5] suggested a multi-start
systematic sampling. [12] proposed di�erent partially systematic sampling procedures.
Afterwards, [10] developed a circular systematic sampling method for obtaining unbiased
estimators for the population mean of the study variable when the population size is not
a multiple of the sample size. [26] proposed the additional circular systematic sampling
when the populations reveal linear and parabolic trends. Later, [11] have proposed
estimators under balanced circular systematic sampling and centered circular systematic
sampling when population trend is linear or parabolic. Circular systematic sampling can
be used in both cases, whether k is an integer or not.

The present study aims to give some contribution on this subject. For this purpose,
taking motivation from [3] and [21], three classes of estimators are modi�ed for the esti-
mation of the population mean of the variable of interest, using the auxiliary information
in circular systematic sampling design, considering the possibility that non-response may
(or may not) present in the study variable.

2. Notations and background

Let us assume that U be a �nite population consists of N distinct units labelled from
1 to N in some order and n be a �xed sample size. Let Y and X be the study and
the auxiliary variables having values yij and xij , (i = 1, . . . , N and j = 1, . . . , n). As
the aim of the present paper is the estimation of the unknown population mean Ȳ , we
consider the circular systematic sampling (CSS), proposed by [10], to collect information
of the variables Y and X. In this design, let the sample interval k is de�ned as follows

k =

 INT
(
N
n

)
, if

(
N

INT(N
n )+1

)
is an integer,

INT
(
N
n

+ 1
2

)
, otherwise,

where INT(.) denotes the truncated integer of the mentioned quantity [17].
As well known, this choice of k ensures good properties:

i- the sample size is the same for all samples;
ii- the sample mean is an unbiased estimator of the population mean;
iii- the �rst order probabilities of inclusion are the same for all units;
iv- each sample is without replacement.
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Let si be the ith possible sample of size n with a start i, randomly selected from 1 to
N , consists of units selected by the following procedure

Label =

{
i+ (j − 1)k, 1 ≤ i+ (j − 1)k ≤ N,
i+ (j − 1)k −N, N < i+ (j − 1)k.

for i = (1, . . . , N) and j = (1, . . . , n).
In this way, we may draw N circular systematic samples, each of size n, as displayed

in the following table

Table 1. Possible Circular Systematic Samples

sample number 1 2 . . . i . . . N

u1 u2 ui uN

uk+1 uk+2 uk+i u2N

...
...

...
...

u(n−1)k+1 u(n−1)k+2 u(n−1)k+i unN

From this N possible CSS, a sample of size n is selected randomly to observe Y and

X. The sample means ȳcss =

∑n
j=1 yij

n
and x̄css =

∑n
j=1 xij

n
are unbiased estimators of

the population means Ȳ =

∑N
i yij

N
and X̄ =

∑N
i xij

N
respectively. The variance of ȳcss

and x̄css can be expressed as

(2.1) V(ȳcss) =

(
N − 1

N

)
[1 + (n− 1)ρy]

S2
y

n
= S̃2

y

and

(2.2) V(x̄css) =

(
N − 1

N

)
[1 + (n− 1)ρx]

S2
x

n
= S̃2

x,

where

S2
y =

∑N
i=1

∑n
j=1(yij − Ȳ )2

n(N − 1)
, S2

x =

∑N
i=1

∑n
j=1(xij − X̄)2

n(N − 1)
,

with

ρy =
2

n(n− 1)(N − 1)S2
y

N∑
i

∑
j<u

(yij − Ȳ )(yiu − Ȳ )

and

ρx =
2

n(n− 1)(N − 1)S2
x

N∑
i

∑
j<u

(xij − X̄)(xiu − X̄),

where (ρy, ρx) are intraclass correlation coe�cients between pairs of units within the
CSS for Y and X, respectively.

We can de�ne covariance as

(2.3) Cov(ȳcss, x̄css) =

(
N − 1

N

)
[1 + (n− 1)ρy]

1
2 [1 + (n− 1)ρx]

1
2
Syx
n

= S̃yx,

where

Syx =

∑N
i=1

∑n
j=1(yij − Ȳ )(xij − X̄)

n(N − 1)
.
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We can also represent (2.1), (2.2) and (2.3) as

V(ȳcss) = S̃2
y = Ȳ 2C̃2

y , V(x̄css) = S̃2
x = X̄2C̃2

x

and

Cov(ȳcss, x̄css) = S̃yx = Ȳ X̄C̃yx.

Considering that regression estimators are always better than ratio estimators, at least
asymptotically, we can consider linear regression estimators based on CSS as benchmark
for making comparison with our suggested classes of estimators.

2.1. Regression estimator with known X̄. The linear regression estimator of the
population mean Ȳ based on CSS with known X̄ can be de�ned as

(2.4) ȳlr(1)c = ȳcss + β̂yx(X̄ − x̄css),

where β̂yx =
syx
s2x

is an estimator of the population regression coe�cient βyx with syx =∑n
j (yij − ȳcss)(xij − x̄css)

n− 1
and s2x =

∑n
j (xij − x̄css)

2

n− 1
.

The mean square error of ȳlr(1)c is given by

(2.5) MSE(ȳlr(1)c) = S̃2
y

(
1 − ρ̃2yx

)
,

where ρ̃2yx =
S̃2
yx

S̃2
y S̃2

x

.

2.2. Regression estimator with unknown X̄. When the population mean X̄ is un-
known, a two-phase sampling design is used. In the �rst phase, the population is divided
into N clusters of size n, each according to CSS, and select randomly m distinct clusters
(1 < m < k) to estimate X̄ only. In the second phase, a cluster is selected randomly
from m circular systematic samples to estimate Ȳ . Hence, the analogue of ȳlr(1)c, with

unknown X̄, can be

(2.6) ȳlr(2)c = ȳcss + β̂yx(x̄′css − x̄css),

where x̄′css =

∑m
i

∑n
j xij

mn
.

We can de�ne

(2.7) V(x̄′css) = Cov(x̄′css, x̄css) =

(
N − 1

N

)
[1 + (n− 1)ρx]

S2
x

nm
=
S̃2
x

m

and

(2.8) Cov(ȳcss, x̄
′
css) =

(
N − 1

N

)
[1 + (n− 1)ρy]

1
2 [1 + (n− 1)ρx]

1
2
Syx
nm

=
S̃yx
m

.

The mean square error of ȳlr(2)c is given by

(2.9) MSE(ȳlr(2)c) = S̃2
y

(
1 −

S2
yx

S̃2
yS

2
x

)
,

where

S
2
x =

(
m− 1

m

)
S̃2
x and Syx =

(
m− 1

m

)
S̃yx.
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3. Modi�ed classes of estimators

In this Section, we introduce three general classes of estimators for estimating the
population mean Ȳ using the auxiliary variable X, based on the CSS. The �rst class
is modi�ed by taking motivation from [3], while the second class is motivated from [21]
(hereafter SS). We consider Diana et al. and SS classes of estimators because these are
more e�cient than the regression estimator in simple random sampling without replace-
ment (SRSWOR).

3.1. First class.

3.1.1. Assuming X̄ known. Diana et al. [3] have proposed a general class of biased esti-
mators of the population mean Ȳ using known mean X̄ in SRSWOR. We take motivation
and propose a class of estimators in CSS assuming X̄ is known

(3.1) T1 =
[
w1ȳcss + w2(X̄ − x̄css)

]
exp

(
λ
(
X̄ − x̄css

)
X̄ + x̄css

)
,

where λ being a constant takes values (0, 1, -1) for designing di�erent estimators and
(w1, w2) are suitably chosen constants.
Expressing the class T1 in terms of δ's, we have

(3.2) T1 =
[
w1Ȳ (1 + δy) − w2X̄δx

]
exp

{
−λδx

2

(
1 +

δx
2

)−1
}
,

where

δy =
(ȳcss − Ȳ )

Ȳ
and δx =

(x̄css − X̄)

X̄
.

Now expanding T1 in a �rst order Taylor's series, we get

(3.3) T1
∼=
[
w1Ȳ + w1Ȳ δy − w2X̄δx −

w1Ȳ λδyδx
2

+
w2X̄λδ

2
x

2
+ w1

(
λ

4
+
λ2

8

)
δ2x

]
.

To obtain the bias and the mean square error, let us de�ne

E(δy) = E(δx) = 0,

E(δ2y) = C̃2
y , E(δ2x) = C̃2

x and E(δyδx) = C̃yx.

From now onward, we consider the bias and the mean square error (MSE) of the consid-
ered estimators by using a �rst order Taylor series [[29]].

The bias and the mean square error of T1 are given by

(3.4) Bias(T1) = Ȳ (w1 − 1) +

[
w2λX̄

2
+ w1Ȳ

(
λ

4
+
λ2

8

)]
C̃2
x − w1λȲ

2
C̃yx

and

(3.5)

MSE(T1) = Ȳ 2(w1 − 1)2 + w2
1Ȳ

2C̃2
y − w1Ȳ

(
2w2X̄ + (2w1 − 1)λȲ

)
C̃yx

+

[
4w2

2X̄
2 + 4w2Ȳ X̄λ(2w1 − 1) + w1Ȳ

2λ (2w1(λ+ 1) − λ− 2)

4

]
C̃2
x.

Now we can minimize the mean square error of T1 to get the optimum values of the
constants w1 and w2

w1 =
C̃2
x

[
λ(3λ− 2)C̃2

x − 8
]

4
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃2

y + 1) + 2C̃2
yx

] = wo1(say)



748

and

w2 = −
Ȳ
[
λ3C̃4

x + λC̃2
x

(
4C̃2

y + (2 − 3λ)C̃yx − 4
)
− 4C̃yx(λC̃yx − 2)

]
4X̄
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃2

y + 1) + 2C̃2
yx

] = wo2(say).

The minimum mean square error of T1 can be written as

(3.6) minMSE(T1) =
Ȳ 2
[
λ2(λ− 2)2C̃6

x + 16λ2C̃2
y C̃

4
x − 16C̃2

x(4C̃2
y + λ2C̃2

yx) + 64C̃2
yx

]
32
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃2

y + 1) + 2C̃2
yx

] ,

or, using (5)

(3.7) minMSE(T1) =
Ȳ 2λ2(λ− 2)2C̃4

x + 16(λC̃2
x − 1)MSE(ȳlr(1)c)

λ(λ− 1)C̃2
x − 2

(
1 +

MSE(ȳlr(1)c)

Ȳ 2

) .

3.1.2. Assuming X̄ unknown. Now suppose X̄ unknown, the analogue of T1 becomes

(3.8) T1(2) =
[
w1ȳcss + w2(x̄′css − x̄css)

]
exp

(
λ (x̄′css − x̄css)

x̄′css + x̄css

)

(3.9) =
[
w1Ȳ (1 + δy) + w2X̄(δ′x − δx)

]
exp

{
λ(δ′x − δx)

2

(
1 +

(δ′x + δx)

2

)−1
}
,

where

δ′x =
(x̄′css − X̄)

X̄
, E(δ′x) = 0,

E(δ′2x ) = E(δ′xδx) =
C̃2
x

m
and E(δyδ

′
x) =

C̃yx
m

.

The bias and the mean square error of T1(2) can be written as

(3.10) Bias(T1(2)) = Ȳ (w1 − 1) +

[
w2λX̄

2
+ w1Ȳ

(
λ

4
+
λ2

8

)]
C̃

2

x −
w1λȲ

2
C̃yx

and

(3.11)

MSE(T1(2)) = Ȳ 2(w1 − 1)2 + w2
1Ȳ

2C̃2
y − w1Ȳ

(
2w2X̄ + (2w1 − 1)λȲ

)
C̃yx

+

[
4w2

2X̄
2 + 4w2Ȳ X̄λ(2w1 − 1) + w1Ȳ

2λ (2w1(λ+ 1) − λ− 2)

4

]
C̃

2

x,

with

C̃
2

x =
S̃
2

x

X̄2
and C̃yx =

S̃yx

Ȳ X̄
.

We can obtain the minimum mean square error of T1(2) when

w1 =
C̃

2

x

[
λ(3λ− 2)C̃

2

x − 8
]

4
[
λ(λ− 1)C̃

4

x − 2C̃
2

x(C̃2
y + 1) + 2C̃

2

yx

] = wo1(say)

and

w2 = −
Ȳ
[
λ3C̃

4

x + λC̃
2

x

(
4C̃2

y + (2 − 3λ)C̃yx − 4
)
− 4C̃yx(λC̃yx − 2)

]
4X̄
[
λ(λ− 1)C̃

4

x − 2C̃
2

x(C̃2
y + 1) + 2C̃

2

yx

] = wo2(say).
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The minimum mean square error of T1(2) can be written as

(3.12)

minMSE(T1(2))

=
Ȳ 2
[
λ2(λ− 2)2C̃

6

x + 16λ2C̃2
yC̃

4

x − 16C̃
2

x(4C̃2
y + λ2C̃

2

yx) + 64C̃
2

yx

]
32
[
λ(λ− 1)C̃

4

x − 2C̃
2

x(C̃2
y + 1) + 2C̃

2

yx

] .

By using (2.9), minimum MSE of T1(2) can be expressed as

(3.13) minMSE(T1(2)) =
Ȳ 2λ2(λ− 2)2C̃

4

x + 16(λC̃
2

x − 1)MSE(ȳlr(2)c)

λ(λ− 1)C̃
2

x − 2

(
1 +

MSE(ȳlr(2)c)

Ȳ 2

) .

From [(3.4), (3.1)] and [(3.7), (3.13)], it can be observed that the bias and the minimum
mean square error of T1 and T1(2) look similar. However, the dissimilarity exists only in

terms (C̃2
x, C̃yx) and (C̃

2

x, C̃yx) due to single and two-phase sampling.

3.2. Second class.

3.2.1. Assuming X̄ known. Motivated by SS [21], the following class of estimators has
been de�ned for the population mean Ȳ assuming that X̄ is known

(3.14) T2 = ȳcss

[
w1

(
X̄

x̄css

)η
+ w2 exp

(
λ(X̄ − x̄css)

X̄ + x̄css

)]
,

where (λ, η) being constants take values (0, 1, -1) for designing di�erent estimators and
(w1, w2) are suitably chosen constants.

(3.15) T2 = Ȳ (1 + δy)

[
w1(1 + δx)−η + w2 exp

{
−λδx

2

(
1 +

δx
2

)−1
}]

.

Expanding T2 in a �rst order Taylor's series, we get

(3.16)

T2
∼= w1Ȳ

(
1 + δy − η(δx + δyδx) +

η(η + 1)

2
δ2x

)
+w2Ȳ

(
1 + δy −

λ

2
(δx + δyδx) +

λ(λ+ 2)δ2x
8

)
.

The bias and the mean square error of T2 are given by

(3.17)

Bias(T2) = Ȳ
[
w1

{
1 +

η

2

(
(η + 1)C̃2

x − 2C̃yx
)}]

+Ȳ

[
w2

{
1 +

λ

8

(
(λ+ 2)C̃2

x − 4C̃yx
)}

− 1

]
and

(3.18) MSE(T2) = Ȳ 2 [1 + w2
1A+ w2

2C + 2w1w2D − 2w1B − 2w2E
]
,

where

A = 1 + C̃2
y +

(
2η2 + η

)
C̃2
x − 4ηC̃yx,

B = 1 +
1

2

(
η2 + η

)
C̃2
x − ηC̃yx,

C = 1 + C̃2
y +

1

2

(
λ2 + λ

)
C̃2
x − 2λC̃yx,

D = 1 + C̃2
y +

1

8

(
(2η + λ)2 + 2(2η + λ)

)
C̃2
x − (2η + λ) C̃yx
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and

E = 1 +
1

8

(
λ2 + 2λ

)
C̃2
x − 1

2
λC̃yx.

The mean square error of T2 will be minimum when

w1 =
BC −DE

AC −D2
= wo1(say) and w2 =

AE −BD

AC −D2
= wo2(say).

We can write the minimum MSE of T2 as

(3.19) minMSE(T2) = Ȳ 2

[
1 − B2C − 2BDE +AE2

AC −D2

]
.

3.2.2. Assuming X̄ unknown. Now assuming that X̄ is unknown, then the analogue of
T2 becomes

(3.20) T2(2) = ȳcss

[
w1

(
x̄′css
x̄css

)η
+ w2 exp

(
λ(x̄′css − x̄css)

x̄′css + x̄css

)]
.

The bias and the mean square error of T2(2) will be almost similar of T2. The di�erence
between the bias and MSE of T2 and T2(2) will be the same like the di�erence between T1

and T1(2) explained in Section 3.1. Therefore, replacing the terms
(
C̃2
x, C̃yx

)
in (3.17)

and (3.19) by
(
C̃

2

x, C̃yx

)
, we can get the bias and the minimum mean square error of

T2(2).

3.3. Third class.

3.3.1. Assuming X̄ known. Taking motivation from the classes T1 and T2, the following
class of estimators has been proposed with known X̄

(3.21) T3 = ȳcss
[
w1 + w2(X̄ − x̄css)

]
exp

(
λ
(
X̄ − x̄css

)
X̄ + x̄css

)
,

where (λ, w1, w2) are de�ned earlier.
Now using the �rst order Taylor series to expand T3 as

(3.22)

T3
∼= Ȳ

[
w1 + w1δy −

(w1λ+ 2w2X̄)

2
δx −

(w1λ+ 2w2X̄)

2
δyδx

]
+Ȳ

[
w2X̄λ

2
δ2x + w1

(
λ

4
+
λ2

8

)
δ2x

]
.

The bias and the mean square error of T3 are given by

(3.23)

Bias(T3) = Ȳ

[
(w1 − 1) +

{
w2λX̄

2
+ w1

(
λ

4
+
λ2

8

)}
C̃2
x

]
−Ȳ

[
(w1λ+ 2w2X̄)

2
C̃yx

]
and

(3.24)

MSE(T3) = Ȳ 2(w1 − 1)2 + w2
1Ȳ

2C̃2
y + Ȳ 2(2w2X̄ + w1λ)(1 − 2w1)C̃yx

+ Ȳ 2

{
4w2

2X̄
2 + 4w2X̄λ(2w1 − 1) + w1λ (2w1(λ+ 1) − λ− 2)

4

}
C̃2
x.
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Now we can obtain the minimum mean square error of T3 when

w1 =
λ(3λ− 2)C̃4

x − 4C̃2
x(3λC̃yx + 2) + 16C̃2

yx

4
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃2

y + 2λC̃yx + 1) + 8C̃2
yx

] = wo1(say)

and

w2 =
(2C̃yx − λC̃2

x)
(
λ2C̃2

x + 4(C̃2
y − λC̃yx − 1)

)
4X̄
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃2

y + 2λC̃yx + 1) + 8C̃2
yx

] = wo2(say).

The minimum mean square error of T3 can be written as

(3.25) minMSE(T3) =
Ȳ 2L1

L2
,

where

L1 = λ2(λ− 2)2C̃6
x + 8λ2C̃4

x

(
2C̃2

y + (2 − λ)C̃yx
)

− 16C̃2
x

(
4C̃2

y(1 + λC̃yx) + λ(2 − λ)C̃2
yx

)
+ 64C̃2

yx(C̃2
y + 1)

and

L2 = 32
[
λ(λ− 1)C̃4

x − 2C̃2
x

(
C̃2
y + 2λC̃yx + 1

)
+ 8C̃2

yx

]
.

Table 2. Some members of the classes of estimators T∗

Estimators
η λ

T1(reg) =
[
w1ỹcss + w2(X̄ − x̄css)

]
- 0

T1(regre) =
[
w1ỹcss + w2(X̄ − x̄css)

]
exp

(
X̄ − x̄css

X̄ + x̄css

)
- 1

T1(regpe) =
[
w1ỹcss + w2(X̄ − x̄css)

]
exp

(
x̄css − X̄

X̄ + x̄css

)
- -1

T2(r) = ỹcss

[
w1 + w2

(
X̄

x̄css

)]
1 0

T2(p) = ỹcss
[
w1 + w2

( x̄sy
X̄

)]
-1 0

T2(re) = ỹcss

[
w1 + w2 exp

(
X̄ − x̄css

X̄ + x̄css

)]
0 1

T2(pe) = ỹcss

[
w1 + w2 exp

(
x̄css − X̄

X̄ + x̄css

)]
0 -1

T2(rre) = ỹcss

[
w1

(
X̄

x̄css

)
+ w2 exp

(
X̄ − x̄css

X̄ + x̄css

)]
1 1

T2(rpe) = ỹcss

[
w1

(
X̄

x̄css

)
+ w2 exp

(
x̄css − X̄

X̄ + x̄css

)]
1 -1

T2(pre) = ỹcss

[
w1

( x̄css
X̄

)
+ w2 exp

(
X̄ − x̄css

X̄ + x̄css

)]
-1 1

T2(ppe) = ỹcss

[
w1

( x̄css
X̄

)
+ w2 exp

(
x̄css − X̄

X̄ + x̄css

)]
-1 -1

T3(r) = ỹcss
[
w1 + w2(X̄ − x̄css)

]
- 0

T3(rre) = ỹcss
[
w1 + w2(X̄ − x̄css)

]
exp

(
X̄ − x̄css

X̄ + x̄css

)
- 1

T3(rpe) = ỹcss
[
w1 + w2(X̄ − x̄css)

]
exp

(
x̄css − X̄

X̄ + x̄css

)
- -1
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3.3.2. Assuming X̄ unknown. In case of unknown X̄, the analogue of T3 becomes

(3.26) T3(2) = ȳcss
[
w1 + w2(x̄′css − x̄css)

]
exp

(
λ (x̄′css − x̄css)

x̄′css + x̄css

)
.

Then the bias and the mean square error of T3(2) can be the same like T3. Because the
di�erence between T3 and T3(2) will be the same like the di�erence which is in T1 and

T1(2) i.e. the presence of
(
C̃

2

x, C̃yx

)
instead of

(
C̃2
x, C̃yx

)
.

There are many ways to construct classes of estimators under the class (T1, T2, T3). SS
have discussed numerous estimators members of their proposed class in SRSWOR. It is
observed that use of known population parameters of the auxiliary variable give very less
contribution for increasing e�ciency of estimators. Due to this reason, we consider only
those parameters which are giving support not only in designing the estimators but also
in increasing the e�ciency of the estimators. In Table 2, some estimators are considered
that are members of the classes (T1, T2, T3).

4. E�ciency comparison

As stated in [2], [ page-208], the mean of a circular systematic sample is more precise
than the mean of a simple random sample if and only if S2

wsy > S2
y , or equivalently

ρy < − 1

N − 1
, where S2

wsy =

∑N
i

∑n
j (yij − ȳi.)

2

N(n− 1)
is the variance of within units of the

same circular systematic sample. The same conditions hold also for CSS with respect to
SRSWOR.

Accordingly, to compare the performance of the proposed classes of estimators based
on CSS with the estimators based on SRSWOR, we can use the following estimators(
ȳ, ȳlr(1), ȳlr(2)

)
in SRSWOR

ȳ =

∑n
j=1 yj

n
, x̄ =

∑n
j=1 xj

n
, x̄′ =

∑n′

j=1 xj

n′
,

ȳlr(1) = ȳ + β̂(X̄ − x̄),

where β̂ =
syx
s2x

is an estimator of the population regression coe�cient β with syx =∑n
j=1(yj − ȳ)(xj − x̄)

n− 1
and s2x =

∑n
j=1(xj − x̄)2

n− 1
.

ȳlr(2) = ȳ + β̂(x̄′ − x̄),

V(ȳ) = θS2
y ,

MSE(ȳlr(1)) = θS2
y

(
1 − ρ2yx

)
,

and

MSE(ȳlr(2)) = θ′S2
y + θ∗S2

y

(
1 − ρ2yx

)
where

ρyx =
Syx
SySx

, θ =

(
1

n
− 1

N

)
, θ′ =

(
1

n′
− 1

N

)
, θ∗ = θ − θ′.

Note: Here using SRSWOR design, at �rst phase a large sample s′ of size n′ (n′ < N)
is selected randomly to estimate X̄ only. In second phase, a sub-sample s of size n from
n′ units (n < n′) is drawn randomly to estimate Ȳ where n′ = mn.

Remark: From eq. (3.13), (3.19) and (3.25), it is not easy to make analytical com-
parison of the proposed classes of estimators with respect to regression estimators. To
get numerical results of the minimum MSE of the considered estimators in CSS along
with the minimum MSE of the estimators in SRSWOR, we use population data set as
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earlier considered by [9] and [21]. The data concerns primary and secondary schools of
923 districts of Turkey in 2007. The description of variables is given below

y = number of teachers in both primary and secondary school;

x = number of students in both primary and secondary school.

Table 3. The minimum MSE of the considered estimators

Estimators in SRSWOR MSE Estimators in CSS MSE

ȳ 2515.17 ȳcss 1698.75

ȳlr(1) 224.62 ȳlr(1)c 151.71

t1(reg) 224.35 T1(reg) 151.59

t1(regre) 222.76 T1(regre) 151.06

t1(regpe) 220.44 T1(regpe) 150.66

t2(r) 223.10 T2(r) 151.55

t2(p) 201.40 T2(p) 141.24

t2(re) 224.55 T2(re) 146.54

t2(pe) 213.87 T2(pe) 146.34

t2(rre) 223.56 T2(rre) 151.56

t2(ppe) 158.05 T2(ppe) 125.66

t2(rpe) 222.56 T2(rpe) 151.54

t2(pre) 222.20 T2(pre) 149.77

t3(r) 201.40 T3(r) 141.24

t3(rre) 223.80 T3(rre) 150.82

t3(rpe) 110.43 T3(rpe) 109.12∗

N = 923, n′ = 360, n = 180, m = 2, Ȳ = 436.43, X̄ = 11440.50,

Sy = 749.94, Sx = 21331.13, ρyx = 0.9543, ρy = −0.00255, ρx = −0.00316.

For two-phases, one can select 1 < m < 5 (as we mentioned earlier 1 < m < k). All
possible values of m are considered and numerical results are provided only for m = 2.
Because it is observed that for m = 2, all the considered estimators are more e�cient in
CSS than SRSWOR. For m = 3 and m = 4, the estimators under SRSWOR perform a
little better than CSS. So in this numerical example m = 2 can be the best choice among
others.

Following is the description of the considered estimators in Tables 3 and 4. The
estimators

(
ȳ, ȳlr(1), t∗

)
are based on SRSWOR and

(
ȳcss, ȳlr(1)c, T∗

)
on CSS, the esti-

mators
(
ȳlr(2), ȳlr(2)c, t∗(2), T∗(2)

)
are considered for two-phase sampling. Moreover, to

highlight the numerical quantities in tables, we use �bold� to indicate the minimum MSE
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of the estimator in the same class and �bold� with �∗� to show the minimum MSE in all
considered classes of estimators.

In Table 3, it can be seen that the variance of ȳcss is smaller than the variance of
ȳ. Also, the mean square error of ȳlr(1)c is smaller than the mean square error of ȳlr(1).
Hence, we can conclude that the estimators based on CSS are more e�cient than the

estimators based on SRSWOR. Note that ρy and ρx both are less than − 1

(N − 1)
. It

is also observed that all the considered estimators
(
T1(.), T2(.), T3(.)

)
are more e�cient

than the regression estimator ȳlr(1)c. Furthermore, the estimators T1(regpe) in class T1,
T2(ppe) in class T2 and T3(rpe) in class T3 provide the minimum mean square error among
others. Henceforth, the estimator T3(rpe) results the best one in terms of e�ciency among
all considered estimators.

In Table 4, it is observed that the mean square error of the regression estimator ȳlr(2)c
is higher, as expected, than of ȳlr(1)c in Table 3. Also, all the considered estimators(
T1(.)(2), T2(.)(2), T3(.)(2)

)
are more e�cient than the regression estimator ȳlr(2)c. More-

over, the mean square error of the estimator T1(regre)(2) is minimum as compared to all
other considered estimators.

Hence, from Tables 3 and 4, we can conclude that the class T3 in case of single-phase
and T1 for two-phase may be the best choice among others.

Table 4. The minimum MSE of the considered
estimators in two phase

Estimators in SRSWOR MSE Estimators in CSS MSE

ȳlr(2) 1092.44 ȳlr(2)c 925.23

t1(reg)(2) 1086.21 T1(reg)(2) 920.76

t1(regre)(2) 1083.31 T1(regre)(2) 919.74∗

t1(regpe) 1091.58 T1(regpe)(2) 923.17

t2(r)(2) 1083.80 T2(r)(2) 920.64

t2(p)(2) 1091.86 T2(p)(2) 925.11

t2(re)(2) 1088.36 T2(re)(2) 922.36

t2(pe)(2) 1092.41 T2(pe)(2) 924.59

t2(rre)(2) 1084.52 T2(rre)(2) 920.67

t2(ppe)(2) 1084.71 T2(ppe)(2) 924.91

t2(rpe)(2) 1083.05 T2(rpe)(2) 920.61

t2(pre)(2) 1090.94 T2(pre)(2) 923.66

t3(r)(2) 1091.86 T3(r)(2) 925.11

t3(rre)(2) 1089.80 T3(rre)(2) 923.05

t3(rpe)(2) 1074.08 T3(rpe)(2) 923.67
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5. Non-response problem in CSS

When a sample of size n is selected from N circular systematic samples to collect
information of Y , then incomplete or missing information might be present. The reasons
non-response problem occurrence may vary in di�erent situations. For instance, the
reasons of non-response in the data set considered in previous the section may be due to
strikes, holidays etc.

When non-response occurs in a CSS, we can follow the well-known [8] non-respondents
sub-sampling technique. Suppose that n1 units out of n can supply information on Y and
remaining n2 = n−n1 units are taken as non-respondents. Following the technique of [8],

a sub sample of size nr =
n2

l
, (l > 1) is selected by SRSWOR from n2 non-respondent

units. Assume that all nr units show full response on second call (of course nr must
be an integer and if it isn't so, it is necessary to round). The population is said to be
divided into two groups U1 and U2 of sizes N1 and N2, where U1 is a group of respondents
that would give response on the �rst call and U2 is non-respondents group which could
respond on the second call. Obviously N1 and N2 are unknown quantities.

One can de�ne the unbiased estimator for the population mean Ȳ in CSS assuming
non-response in Y

(5.1) ȳ∗css = d1ȳ1 + d2ȳ2r,

where

ȳ1 =

∑n1
j=1 yij

n1
, ȳ2r =

∑nr
j=1 yij

nr
, d1 =

n1

n
and d2 =

n2

n
.

The variance of ȳ∗css can be written as

(5.2) V(ȳ∗css) = S̃2
y + ωS2

y(2) = S̃
2

y = Ȳ 2
C̃

2

y,

where

S2
y(2) =

∑N2
i=1

∑n2
j=1(yij − Ȳ2)2

n2(N2 − 1)
, Ȳ2 =

∑N2
i yij

N2
and ω =

N2(l − 1)

nN
.

The linear regression estimator de�ned in (2.4), in case of non-response in Y , can be
written as

(5.3) ȳ∗lr(1)c = ȳ∗css + β̂∗yx(X̄ − x̄css),

where β̂∗yx =
s∗yx
s2x

is an estimator of the population regression coe�cient βyx with

s∗yx =

∑n1
j=1 yijxij + l

∑nr
j=1 yijxij − nx̄cssȳ

∗
css

n− 1

The mean square error of ȳ∗lr(1)c is given by

(5.4) MSE(ȳ∗lr(1)c) = S̃2
y

(
1 − ρ̃2yx

)
+ ωS2

y(2).

When X̄ unknown and non-response in Y , then (2.6) becomes

(5.5) ȳ∗lr(2)c = ȳ∗css + β̂∗yx(x̄′css − x̄css).

The mean square error of ȳ∗lr(2)c is given by

(5.6) MSE(ȳ∗lr(2)c) = S̃2
y

(
1 −

S̃
2

yx

S̃2
yS̃

2

x

)
+ ωS2

y(2).
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Recently [23] suggested a class of estimators using linear systematic sampling design
assuming non-response in Y and known X̄. We can de�ne same class using CSS as

(5.7) t∗S =
[
w1ȳ

∗
css + w2(X̄ − x̄css)

]( X̄

x̄css

)p
,

where w1, w2 and p are constants.
For p = 1, the minimum mean square error of t∗S is given by

(5.8) minMSE(t∗S) =
(1 − C̃2

x)MSE(ȳ∗lr(1)c)

(1 − C̃2
x) +

MSE(ȳ∗lr(1)c)

Ȳ 2

5.1. Classes under non-response. Now we can express suggested classes (T1, T2, T3)
in presence of non-response in Y .

The analogue of the class of estimators T1 becomes

(5.9) T∗1 =
[
w1ȳ

∗
css + w2(X̄ − x̄css)

]
exp

(
λ
(
X̄ − x̄css

)
X̄ + x̄css

)
.

The bias of T∗1 will be same of T1. The minimum mean square error of T∗1 can be
written as

(5.10)

minMSE(T∗1) =
Ȳ 2
[
λ2(λ− 2)2C̃6

x + 16λ2C̃
2

yC̃
4
x − 16C̃2

x(4C̃
2

y + λ2C̃2
yx) + 64C̃2

yx

]
32
[
λ(λ− 1)C̃4

x − 2C̃2
x(C̃

2

y + 1) + 2C̃2
yx

] .

The analogue of T2 becomes

(5.11) T∗2 = ȳ∗css

[
w1

(
X̄

x̄css

)η
+ w2 exp

(
λ(X̄ − x̄css)

X̄ + x̄css

)]
and the minimum mean square error of T∗2 can be expressed as

(5.12) minMSE(T∗2) = Ȳ 2

[
1 − B2C∗ − 2BD∗E +A∗E2

A∗C∗ −D∗2

]
,

where

A∗ = 1 + C̃
2

y +
(
2η2 + η

)
C̃2
x − 4ηC̃yx,

C∗ = 1 + C̃
2

y +
1

2

(
λ2 + λ

)
C̃2
x − 2λC̃yx

and

D∗ = 1 + C̃
2

y +
1

8

(
(2η + λ)2 + 2(2η + λ)

)
C̃2
x − (2η + λ) C̃yx.

The analogue of T3 becomes

(5.13) T∗3 = ȳ∗css
[
w1 + w2(X̄ − x̄css)

]
exp

(
λ
(
X̄ − x̄css

)
X̄ + x̄css

)
.

The minimum mean square error of T∗3 can be written as

(5.14) minMSE(T∗3) =
Ȳ 2L∗1
L∗2

,

where

L∗1 = λ2(λ− 2)2C̃6
x + 8λ2C̃4

x

(
2C̃

2

y + (2 − λ)C̃yx
)

− 16C̃2
x

(
4C̃

2

y(1 + λC̃yx) + λ(2 − λ)C̃2
yx

)
+ 64C̃2

yx(C̃
2

y + 1)
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and

L∗2 = 32
[
λ(λ− 1)C̃4

x − 2C̃2
x

(
C̃

2

y + 2λC̃yx + 1
)

+ 8C̃2
yx

]
.

Recently [25] proposed a class of estimators under SRSWOR sampling when non-
response is present in the study variable. If we consider the same class in CSS design,
then it becomes member of class T∗1 for λ = 1

(5.15) T∗RDS =
[
w1ȳ

∗
css + w2(X̄ − x̄css)

]
exp

(
X̄ − x̄css

X̄ + x̄css

)
.

When X̄ is unknown, the biases of classes (T∗1(2), T∗2(2), T∗3(2)) will be same of

(T1(2), T2(2), T3(2)). For the minimum mean square errors of these classes, only replacing

the terms
(
C̃2
x, C̃yx

)
in (5.10), (5.12) and (5.14) by

(
C̃

2

x, C̃yx

)
.

5.2. Numerical illustration. To make e�ciency comparison of classes (T∗1, T
∗
2, T

∗
3),

we can use the estimators ȳ∗, ȳ∗lr(1) and ȳ
∗
lr(2) in SRSWOR

ȳ∗ = d1ȳ1 + d2ȳ2r,

where

ȳ1 =

∑n1
j=1 yj

n1
, ȳ2r =

∑nr
j=1 yj

nr
, d1 =

n1

n
and d2 =

n2

n
,

V(ȳ∗) = θS2
y + ωS2

y(2),

ȳ∗lr(1) = ȳ∗ + β̂∗∗yx(X̄ − x̄),

where β̂∗∗yx =
s∗∗yx
s2x

is an estimator of the population regression coe�cient βyx with

s∗∗yx =

∑n1
j=1 yjxj + l

∑nr
j=1 yjxj − nx̄ȳ∗

n− 1
.

MSE(ȳ∗lr(1)) = θS2
y

(
1 − ρ2yx

)
+ ωS2

y(2),

ȳ∗lr(2) = ȳ∗ + β̂∗∗yx(x̄′ − x̄),

and

MSE(ȳ∗lr(2)) = θ′S2
y + θ∗S2

y

(
1 − ρ2yx

)
+ ωS2

y(2).
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Table 5. The minimum MSE of the considered estimators

Estimators in SRSWOR MSE Estimators in CSS MSE

ȳ∗ 2940.51 ȳ∗css 2124.09

ȳ∗lr(1) 649.96 ȳ∗lr(1)c 577.05

tS 647.71 t∗S 575.29

t∗1(reg) 647.75 T∗1(reg) 575.30

t∗1(regre) = TRDS 644.51 T∗1(regre) = T∗RDS 573.89

t∗1(regpe) 648.83 T∗1(regpe) 577.04

t∗2(r) 261.76 T∗2(r) 189.69

t∗2(p) 230.68 T∗2(p) 173.23

t∗2(re) 262.12 T∗2(re) 188.73

t∗2(pe) 246.80 T∗2(pe) 180.55

t∗2(rre) 261.91 T∗2(rre) 189.68

t∗2(ppe) 179.02 T∗2(ppe) 153.10∗

t∗2(rpe) 261.60 T∗2(rpe) 189.69

t∗2(pre) 257.56 T∗2(pre) 185.30

t∗3(r) 635.35 T∗3(r) 572.00

t∗3(rre) 649.95 T∗3(rre) 577.05

t∗3(rpe) 556.65 T∗3(rpe) 546.57

We can have di�erent choices for weights of the missing values
(10%, 20%, 30%, 40%) etc. We take all these possibilities and observe that the relative
e�ciency of the considered estimators is not a�ected by di�erent weights of missing
values. Although numerical results are di�erent for di�erent weights, the behavior of
results is similar in all cases. Hence, numerical results are provided only for 10% weight
of missing values and consider last 92 values as non-respondents.

Ȳ2 = 522.80, Sy(2) = 876.42, N2 = 92, l = 2.

Remarks: Due to the inclusion of non-response problem, extra variability is introduced
in the estimators. As expected, the variability of all considered estimators with incom-
plete information (see Tables 5 and 6) are higher than the estimators with complete
response (Tables 3 and 4). Additionally, as expected, for l > 2, the mean square errors
of estimators become higher, so we show results only for l = 2. Again the estimators
based on CSS are more e�cient than the estimators based on SRSWOR. In Table 5,
the estimators

(
t∗S, T

∗
1(.), T

∗
2(.), T

∗
3(.)

)
are more e�cient than the regression estimator

ȳ∗lr(1)c. The estimator T∗1(regre) is more e�cient than [23] estimator t∗S. Furthermore, for

e�ciency, the estimators T∗2(ppe) for single-phase in Table 5 and T∗2(rre) for two-phase in
Table 6 are observed the best ones among others.
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Table 6. The minimum MSE of the considered
estimators in two-phase

Estimators in SRSWOR MSE Estimators in CSS MSE

ȳ∗lr(2) 1517.78 ȳ∗lr(2)c 1350.57

t∗1(reg)(2) 1505.78 T∗1(reg)(2) 1341.06

t∗1(regre)(2) 1501.87 T∗1(regre)(2) 1339.61

t∗1(regpe)(2) 1514.17 T∗1(regpe)(2) 1344.78

t∗2(r)(2) 1267.50 T∗2(r)(2) 1150.94

t∗2(p)(2) 1276.38 T∗2(p)(2) 1156.70

t∗2(re)(2) 1272.69 T∗2(re)(2) 1153.12

t∗2(pe)(2) 1277.17 T∗2(pe)(2) 1156.01

t∗2(rre)(2) 1267.81 T∗2(rre)(2) 1150.71∗

t∗2(ppe)(2) 1268.23 T∗2(ppe)(2) 1156.61

t∗2(rpe)(2) 1267.18 T∗2(rpe)(2) 1151.16

t∗2(pre)(2) 1275.80 T∗2(pre)(2) 1154.94

t∗3(r)(2) 1517.73 T∗3(r)(2) 1348.81

t∗3(rre)(2) 1511.05 T∗3(rre)(2) 1344.59

t∗3(rpe)(2) 1506.99 T∗3(rpe)(2) 1350.50

6. Simulation study

In Section 3, we can see that all the minimum mean square errors consist on the
population parameters e.g means, variances and covariances. In Section 4, the e�ciency
comparisons were performed with the assumption that all these population parameters
are known. But in many real situations, these parameters are generally unknown and
can not be guessed on the basis of previous data or a pilot survey. Hence they need to be
estimated. In such situations, an extra source of variability is introduced in the estimates
that could invalid the theoretical comparisons. In this section, we are concentrating
our attention to the e�ciency comparisons when unknown population parameters are
estimated from the selected sample. The empirical performance of the estimators is
analyzed by using a Monte Carlo simulation.

The simulation design is arranged as follows: we run a numerical study by considering
a population of N=100,000 values. A variable X ∼ G(a, b) is generated from gamma
distribution with parameters (a=2.2, b=3.5) and a variable Y which is related with X is
de�ned by a model as yi = Rxi + εxgi where ε ∼ N(0, 1), R=(1.0, 1.5, 2.0) and g=1.5.
This model is earlier considered by [4] for SRSWOR sampling design. Here, Circular
systematic sampling is considered for sample sizes n=(100, 500). The sampling has been
replicated B = 1, 000 times.
We investigate the behavior of the following estimators for di�erent values of ρyx(
ȳlr(1)c, T1(.), T2(.), T3(.)

)
. For each considered estimator, the simulated mean square
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Table 7. Simulated results when population parameters are estimated

Estimators ρ = 0.70 ρ = 0.59 ρ = 0.43

n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

Simulated PRE
ȳlr(1)c 100 100 100 100 100 100
T1(reg) 99.89 99.99 99.90 99.99 99.90 99.99
T1(regre) 76.55 92.75 72.77 91.52 69.04 90.26
T1(regpe) 96.52 99.01 95.25 98.92 93.69 98.77
T2(r) 100.98 100.33 101.33 100.39 101.65 100.44

T2(p) 95.98 97.95 98.03 98.60 99.88 99.23
T2(re) 100.06 99.78 100.72 99.97 101.33 100.16

T2(pe) 97.61 98.59 99.10 99.08 100.47 99.55
T2(rre) 89.16 96.19 87.64 95.69 86.03 95.16
T2(rpe) 104.40 104.04 104.41 104.54 104.19 105.01

T2(pre) 104.62 103.16 104.76 103.92 104.39 104.65

T2(ppe) 75.72 91.81 77.42 92.23 79.11 92.63
T3(r) 99.41 99.87 99.57 99.91 99.70 99.94
T3(rre) 76.02 92.60 72.45 91.43 68.96 90.25
T3(rpe) 92.92 97.98 92.33 98.09 91.46 98.14
Simulated RB (%)
ȳlr(1)c 0.000 0.005 0.000 0.004 0.000 0.004
T1(reg) -0.006 0.003 -0.005 0.003 -0.004 0.003
T1(regre) -0.216 -0.032 -0.224 -0.034 -0.231 -0.035
T1(regpe) 0.197 0.041 0.207 0.042 0.216 0.043
T2(r) -0.052 0.005 -0.038 -0.003 -0.025 -0.001
T2(p) -0.057 -0.004 -0.041 -0.002 -0.027 0.000
T2(re) -0.053 -0.005 -0.038 -0.003 -0.025 -0.001
T2(pe) -0.055 -0.005 -0.040 -0.003 -0.026 -0.001
T2(rre) -0.060 -0.003 -0.046 -0.001 -0.033 0.001
T2(rpe) -0.043 -0.007 -0.029 -0.005 -0.016 -0.003
T2(pre) -0.045 -0.007 -0.030 -0.004 -0.016 -0.002
T2(ppe) -0.072 -0.003 -0.056 -0.001 -0.040 0.001
T3(r) 0.001 -0.005 -0.002 0.004 -0.003 0.003
T3(rre) -0.236 -0.036 -0.239 -0.036 -0.241 -0.037
T3(rpe) 0.230 0.047 0.228 0.046 0.227 0.046

error and the simulated bias are calculated

̂Bias(ȳlr(1)c) =

∑B
i=1

(
ȳ
(i)

lr(1)c − Ȳ
)

B
,

̂Bias(T∗(.)) =

∑B
i=1

(
T

(i)

∗(.) − Ȳ
)

B
,

̂MSE(ȳlr(1)c) =

∑B
i=1

(
ȳ
(i)

lr(1)c − Ȳ
)2

B
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and

̂MSE(T∗(.)) =

∑B
i=1

(
T

(i)

∗(.) − Ȳ
)2

B
.

[16], [6], [14] and [1] have introduced the empirical relative bias (RB) and the empirical
relative root mean square error (RRMSE) to measure the e�ciency of their suggested
estimators. Following this, the empirical relative mean square error (RMSE) and the
empirical relative bias (RB) of each considered estimator is calculated. The performance
of each estimator is computed with respect to the regression estimator by means of the
simulated PRE (percent relative e�ciency)

̂RB(ȳlr(1)c) =
̂Bias(ȳlr(1)c)

Ȳ
×100, ̂RB(T∗(.)) =

̂Bias(T∗(.))

Ȳ
×100,

̂RMSE(ȳlr(1)c) =
̂MSE(ȳlr(1)c)

Ȳ 2
, ̂RMSE(T∗(.)) =

̂MSE(T∗(.))

Ȳ 2

and

̂PRE(T∗(.)) =
̂RMSE(ȳlr(1)c)

̂RMSE(T∗(.))
×100.

The results are shown in Table 7. To highlight the performance of the considered estima-
tors in the Table 7, we use the �bold� sign to indicate the more e�cient estimators than
regression estimator. We can see that the estimators (T2(r), T2(pe), T2(rpe), T2(pre)) are
more e�cient than the regression estimator.

Finally, for each sample, we determine simulated con�dence interval for the mean of
the suggested estimators at 95% nominal con�dence level by assuming normality∑B

i=1 ȳ
(i)

lr(1)c

B
± zα/2

√
̂RMSE(ȳlr(1)c)

and ∑B
i=1 T

(i)

∗(.)

B
± zα/2

√
̂RMSE(T∗(.))

The results are shown in Table 8, where LL denotes lower limit and UL denotes upper
limit. In Table 8, the results are displayed only for n = 100 due to less space. In Table
9, coverage rates of 95 percent rescaled bootstrap con�dence interval for the mean are
shown. It is observed that all the coverages are close to the nominal 95 percent.

Moreover, to establish the stability of results, we also consider the theoretical results
for the minimum mean square errors and the biases, assuming that the parameters of
the simulated population are known. When population parameters are assumed to be
known, the good performance of our proposed classes of estimators is achieved. In Table
10, it can be seen that all the estimators are more e�cient than the linear regression
estimator.

7. Conclusions

To our knowledge, this is the �rst time that CSS design has been considered for
sample selection when the problem of non-response is present. Considering estimators
based on CSS, three general classes of estimators have been suggested for estimation
of the population mean Ȳ with the auxiliary information using single and two-phase
sampling. The existence of non-response problem in the study variable has been well
deliberated in CSS. To tackle this problem, we have considered the well-known [8] non-
respondents sub-sampling technique and also have determined the minimum mean square
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Table 8. Con�dence Interval results when population parameters are
estimated

Estimators ρ = 0.70, n = 100 ρ = 0.43, n = 100

LL Ul LL UL

ȳlr(1)c 10.45 10.77 12.20 12.52
T1(reg) 10.45 10.77 12.20 12.52
T1(regre) 10.40 10.78 12.14 12.53
T1(regpe) 10.47 10.80 12.22 12.56

T2(r) 10.45 10.77 12.20 12.52
T2(p) 10.44 10.77 12.20 12.52
T2(re) 10.45 10.77 12.20 12.52
T2(pe) 10.44 10.77 12.20 12.52
T2(rre) 10.43 10.78 12.18 12.53
T2(rpe) 10.45 10.77 12.20 12.52
T2(pre) 10.45 10.77 12.20 12.52
T2(ppe) 10.42 10.79 12.17 12.54

T3(r) 10.45 10.78 12.20 12.52
T3(rre) 10.40 10.77 12.14 12.53
T3(rpe) 10.47 10.80 12.22 12.56

Table 9. Coverage rates (%) of the 95 percent rescaled bootstrap con-
�dence interval for the mean

Estimators ρ = 0.70 ρ = 0.59 ρ = 0.43

n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

ȳlr(1)c 0.905 0.981 0.905 0.981 0.905 0.981

T1(reg) 0.921 0.981 0.921 0.981 0.921 0.981
T1(regre) 0.917 0.985 0.928 0.985 0.917 0.984
T1(regpe) 0.864 0.963 0.864 0.96 0.864 0.959

T2(r) 0.935 0.986 0.935 0.987 0.921 0.982
T2(p) 0.935 0.980 0.935 0.980 0.935 0.981
T2(re) 0.935 0.986 0.935 0.981 0.935 0.982
T2(pe) 0.935 0.981 0.935 0.981 0.935 0.982
T2(rre) 0.908 0.974 0.908 0.973 0.908 0.970
T2(rpe) 0.921 0.991 0.906 0.991 0.898 0.991
T2(pre) 0.921 0.990 0.921 0.991 0.921 0.991
T2(ppe) 0.901 0.965 0.908 0.964 0.908 0.964

T3(r) 0.905 0.981 0.905 0.981 0.921 0.981
T3(rre) 0.918 0.987 0.928 0.987 0.912 0.985
T3(rpe) 0.850 0.959 0.850 0.959 0.850 0.957

errors of the suggested classes of estimators in both cases. The linear regression estimators
based on CSS has been considered as a benchmark for making comparison with the
suggested classes. To see the performance of the classes of estimators, we have provided
numerical results of the considered estimators not only based on CSS but also based on
SRSWOR. It has been observed that all considered estimators are more e�cient in CSS
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Table 10. Theoretical results when population parameters are known
for n = 100

Estimators ρ = 0.70 ρ = 0.59 ρ = 0.43

PRE
ȳlr(1)c 100 100 100
T1(reg) 100.01 100.00 100.00
T1(regre) 100.72 100.84 100.97
T1(regpe) 105.26 106.42 107.75

T2(r) 100.46 100.28 100.14
T2(p) 100 100.00 100.00
T2(re) 100.26 100.17 100.09
T2(pe) 100.03 100.02 100.02
T2(rre) 100.49 101.07 101.94
T2(ppe) 103.00 103.25 103.58
T2(rpe) 104.36 104.55 104.70
T2(pre) 103.00 103.49 103.97

T3(r) 100 100.00 100.00
T3(rre) 101.24 101.28 101.28
T3(rpe) 107.54 108.14 108.89

Bias
ȳlr(1)c 0 0 0
T1(reg) -0.001 -0.001 -0.001
T1(regre) -0.001 -0.001 -0.001
T1(regpe) -0.001 0.001 0

T2(r) -0.001 -0.001 -0.001
T2(p) -0.001 -0.001 -0.001
T2(re) -0.001 -0.001 -0.001
T2(pe) -0.001 -0.001 -0.001
T2(rre) -0.001 -0.001 -0.001
T2(ppe) -0.001 -0.001 0
T2(rpe) -0.001 -0.001 0
T2(pre) -0.001 -0.001 0

T3(r) -0.001 -0.001 -0.001
T3(rre) -0.001 -0.001 -0.001
T3(rpe) -0.001 -0.001 0

than SRSWOR for single-phase. In case of two-phases, the e�ciency of estimators under
CSS and SRSWOR is dependent on m. Further, it is also important to note that our
e�ciency results have dependent on the considered population and particularly from ρy
and ρx values. But from a general point of view, it is expected that CSS can be preferred
for the greater simplicity. It is noted that the �rst and third classes can be preferable in
case of complete response on Y , while second class may be a better choice in non-response
case.

Furthermore, we have analyzed the numerical comparison on the real population by a
Monte Carlo study with the intention to comprehend the validness of certain results when
extra estimates are needed in CSS design. In addition, the simulated con�dence intervals
for the suggested estimators are also analyzed. When the information of the population
parameters is unavailable, some of the proposed estimators are shown more e�cient than
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linear regression estimators. However, the results are ambiguous for some estimators in-
vestigated in the simulation study. Apart from this, all the suggested estimators are more
e�cient than regression estimator while the information of the population parameters is
accessible.

Acknowledgement

The authors wish to thank to anonymous referees for their careful reading and con-
structive suggestions which led to improvement over an earlier version of the paper.
Thanks to the Department of Statistical Sciences, University of Padova, Italy and the
Higher Education Commission (HEC), Islamabad, Pakistan for their logistic and �nancial
support for this research.

References

[1] Berger, Y. G. and Muñoz, J. F. On estimating quantiles using auxiliary information, Journal
of O�cial Statistics 31(1), 101�119, 2015.

[2] Cochran, W. G. Sampling Techniques, (New York, Wiley, 1977).
[3] Diana, G. and Giordan, M. and Perri, P. F. An improved class of estimators for the popu-

lation mean, Statistical Methods and Applications 20, 123�140, 2011.
[4] Diana, G. and Riaz, S. and Shabbir, J. Hansen and Hurwitz estimator with scrambled

response on the second call, Journal of Applied Statistics 41(3), 596�611, 2014.
[5] Gautschi, W. Some remarks on systematic sampling, The Annals of Mathematical Statistics

28, 385�394, 1957.
[6] Harms, T. and Duchesne, P. On Calibration estimation for quantiles, Survey Methdology

32, 37�52, 2006.
[7] Hajeck, J. Optimum strategy and other problems in probability sampling, Cosopis pro Pesto-

vani Mathematiky 84, 387�423, 1959.
[8] Hansen, M. H. and Hurwitz, W. N. The problems of non-response in sample surveys, Journal

of American Statistical Association 41, 517�529, 1946.
[9] Koyuncu, N. and Kadilar, C. E�cient estimators for the population mean, Hacettepe Jour-

nal of Mathematics and Statistics 38, 217�233, 2009.
[10] Lahiri, D. B. A method for selection providing unbiased estimates, Bulletin of the Interna-

tional Statistical Institute 33(2), 133�140, 1951.
[11] Leu, C.H. and Kao, F. F. Modi�ed balanced circular systematic sampling, Statistics and

Probability Letters 76, 373�383, 2006.
[12] Leu, C.H. and Tsui, K. W. New partially systematic sampling, Statistica Sinica 6, 617�630,

1996.
[13] Madow, W. G. On the theory of systematic sampling, The Annals of Mathematical Statistics

24, 101�106, 1953.
[14] Muñoz, J. F., Álvarez�Verdejo, E., García�Fernández, R. M. and Barroso, L. J. E�cient

Estimation of the Headcount Index, Social Indicators Research DOI 10.1007/s11205-014-
0757-9, 2014.

[15] Okafor, F. C. and Lee, H. Double sampling for ratio and regression estimation with sub-

sampling the non-respondents, Survey Methodology, 26(2), 183�188, 2000.
[16] Rao, J. N. K, Kovar, J. G. and Mantel, H. J. On estimating distribution functions and

quantiles from survey data using auxilairy information, Bimetrika 77, 365�375, 1990.
[17] Sengupta, S. and Chattophyadhyay, S. A note on circular systematic sampling, Sankhya B

49, 186�187, 1987.
[18] Sethi, V. K. On optimum pairing of units, Sankhya B 27, 315�320.
[19] Singh, H. P. and Jatwa, N. K. A class of exponential-type estimators in systematic sampling,

Economic Quality Control 27, 195�208, 2012.
[20] Singh, H. P. and Solanki, R. S. An e�cient class of estimators for the population mean using

auxiliary information in systematic sampling, Journal of Statistical Theory and Practice 6,
274�285, 2012.



765

[21] Singh, H. P. and Solanki, R. S. An e�cient class of estimators for the population mean using

auxiliary information, Communication in Statistics-Theory and Methods 42, 145�163, 2013.
[22] Singh, P., Jindal, K. K. and Garg, J. N. On modi�ed systematic sampling, Biometrika 55,

541�546, 1968.
[23] Singh, R., Malik, S., Chaudry, M. K., Verma, H. K. and Adewara, A. A. A general family of

ratio-type estimators in systematic sampling, Journal of Reliability and Statistical Studies
5(1), 73�82, 2012.

[24] Singh, R. and Singh, H. P. Almost unbiased ratio and product-type estimators in systematic

sampling, QUESTIIO 22(3), 403�416, 1998.
[25] Riaz, S., Diana, G. and Shabbir, J. Improved classes of estimators for population mean in

presence of non-response, Pakistan Journal of Statistics 30(1), 83�100, 2014.
[26] Uthayakumaran, N. Additional circular systematic sampling methods, Biometrical Journal

40(4), 467�474, 1998.
[27] Verma, H., Singh, R. D. and Singh, R. A general class of regression type estimators in

systematic sampling under non-response, Octogon Mathematical Magazine 20(2), 542�550,
2012.

[28] Verma, H., Singh, R. D. and Singh, R. Some improved estimators in systematic sampling

under non-response, National Academy Science Letters 37(1), 91�95, 2014.
[29] Wolter, K. M. Introduction to Variance Estimation, (Springer, New York, 1985).
[30] Yates, F. Systematic sampling, Philosophical Transactions Royal Society, London, A 241,

345�377, 1948.




