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Abstract — In this research, a modified Fletcher-Reeves (FR) conjugate gradient 
algorithm for training large scale feed forward neural network (FFNN) is presented. 
Under mild conditions, we establish that the proposed method satisfies the sufficient 
descent condition, and it is globally convergent under Wolfe line search condition. 
The evidence which is provided by experimental results showed that our proposed 
method is preferable and superior to the classic methods. 
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1 Introduction 
Multi layered feed forward neural networks have received a great deal of attention in 
many research and applications areas [1, 2, 3]. A critical factor in the use of this technol-
ogy is the training.  Off-line training of multilayer perceptions and FFNs has progressed 
considerably since the development of the batch back – propagation algorithm (BP) [4]. It 
is well known that training a neural network problem is highly consistent with the uncon-
strained optimization theory [5]. More analytically, training a neural network problem' 
can be formulated as the minimization of the error function E(W) that depends on the 
connection weights W of the network, defined as the sum of squares of the error in the 
outputs[6] i.e. the operation of the (FFN) is usually based on the following equations : 

𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑙𝑙 = ∑ 𝑤𝑤𝑖𝑖 ,𝑗𝑗𝑙𝑙−1𝑥𝑥𝑗𝑗𝑙𝑙−1 + 𝑏𝑏𝑗𝑗𝑙𝑙
𝑁𝑁𝑙𝑙−1
𝑖𝑖=𝑙𝑙 ,   𝑂𝑂𝑗𝑗𝑙𝑙 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑙𝑙)                                                                 (1) 

       Where 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑙𝑙) is the activation function , 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗𝑙𝑙   is the sum of the weight inputs for 
the 𝑗𝑗 − 𝑛𝑛ℎ  node in the 𝑙𝑙 − 𝑛𝑛ℎ  layer (𝑗𝑗 = 1,2, … ,𝑁𝑁𝑁𝑁),  𝑤𝑤𝑖𝑖 ,𝑗𝑗  is the weight from the 𝑖𝑖 − 𝑛𝑛ℎ  
neuron to the 𝑗𝑗 − 𝑛𝑛ℎ  neuron at the  𝑙𝑙 − 1, 𝑙𝑙 − 𝑛𝑛ℎ  layer ,respectively,  𝑏𝑏𝑗𝑗𝑙𝑙  is the bias of the 
𝑗𝑗 − 𝑛𝑛ℎ  neuron at the  𝑙𝑙 − 𝑛𝑛ℎ  layer and  𝑥𝑥𝑗𝑗𝑙𝑙  is the output of the 𝑗𝑗 − 𝑛𝑛ℎ neuron which be-
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longs to the 𝑙𝑙 − 𝑛𝑛ℎ  layer. The weight of training a neural network problem' iteratively 
adjusts in order to minimize the difference between the actual output of the network and 
the desired output of the training set [7]. Actually finding such minimum is equivalent to 
find an optimal minimization of the error function which defined by: 

𝐸𝐸(𝑤𝑤) = 1
2
∑ ∑ (𝑂𝑂𝑖𝑖

(𝑗𝑗 ) − 𝑇𝑇𝑖𝑖
(𝑗𝑗 ))2𝑀𝑀

𝑖𝑖=1
𝑃𝑃
𝑗𝑗=1                                                                                   (2) 

The variables 𝑂𝑂𝑖𝑖  and 𝑇𝑇𝑖𝑖   are the desired and the actual output of the 𝑖𝑖 − 𝑛𝑛ℎ neuron, respec-
tively. The index 𝑗𝑗 denotes the particular learning pattern. The vector 𝑤𝑤 is consist of all 
weights in the network. Back propagation (BBP) algorithm is the most widely used to 
train multilayer feed forward neural networks. The standard back propagation algorithm 
adjusts the weight vector 𝑤𝑤 using steepest descent with respect to 𝐸𝐸 such that : 

𝑤𝑤𝑘𝑘+1 = 𝑤𝑤𝑘𝑘 − 𝛼𝛼𝑘𝑘𝑑𝑑𝑘𝑘 ,      𝑑𝑑𝑘𝑘 = ∇𝐸𝐸(𝑤𝑤𝑘𝑘)                                                                            (3) 

Where the constant 𝛼𝛼 is the learning rate belongs to the interval (0,1) and 𝑤𝑤𝑘𝑘  is a vector 
representing the weights at iteration (epoch) step 𝑘𝑘. Since the steepest descent method has 
slow convergence rate, and since the search for the global minimum often becomes 
trapped at a poor local minimum, then this what implies that the back propagation algo-
rithm takes unendurable time to adapt the weights between the units in the network. For 
this reason, many researches proposed to improve this algorithm see [8, 9, 10, 11].  

      This paper organized as following. In section 2, we present our proposed modified 
Fletcher-Recues conjugate gradient training algorithm and in section 3, we present its 
global convergence analysis. The experimental results reports' in section 4. Finally, sec-
tion 5 presents our concluding remarks. 

2 The Methods of Conjugate Gradient (CG) 
 
The linear combination of negative gradient vector is the basic idea for determining the 
search direction in conjugate gradient methods at the current iteration with the previous 
search direction that is:  

dk+1 =  �−gk+1                   if k = 0
−gk+1 + βkdk        k ≥ 1

�                                                                                           (4) 

 
   Where gk = ∆E(Wk) and βk  is the (CG) update parameter. The first CG algorithm for 
non-convers problems was proposed by Fletcher and Reeves (FR) in 1969 [12] which 
defined βk  as  

βFR = gk +1
T gk +1

gk
T gk

                                                                                                        (5) 
       The FR method’s numerical performance is somewhat erratic [13]. It is efficient 
sometimes, but it is over all slower. Powell [14] gives an argument showed that the FR 
method with exact line searches �gk+1

T  dk = 0�, under some circumstances, will produce 
very small displacements i.e. In some cases gk+1

T gk ≈ gh
Tgh which leades to dk+1 become 

linear combination with the dk  which is the main drawbacks for the FR method. 
In the convergence analysis and implementations of CG method, one often requires the 
inexact line search (learning rate) as the Wolfe line search. The standard Wolfe line 
search requires αk  in equation (3) satisfies the following conflations 
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E(Wn + αkdk) ≤ E(Wh ) +  ρ αk gk
Tdk                                                                                     (6) 

gk
Tdk ≥  σgk

Tdk ,                                                                                                                             (7) 
where 0 <  𝜌𝜌 < 𝜎𝜎 < 1 . 

2.1 Modified FR Method  
In the following we suggest a modification to the FR method to avoid the drawback  
�gk+1

T gk ≈ gh
Tgh� of FR algorithm.  We can define the new CG update parameter βk+1

MFR   as 
follows: 

βk+1
MFR = gk+1

T gk=1
gk+1

T gk + M �dk
 T  gk +1�

  , M > 1                                                                           (8) 

Therefore the new search direction can be written as  

dk+1 = �
−gk+1                     if k = 0
−gk+1 + β 

MFR dk        k ≥ 1.
                                                                       �          (9) 

We can prove that our proposed formula β 
MFR  satisfies the sufficient descent condition. 

Theorem 1. Let 𝑑𝑑𝑢𝑢+1 defined by (8) and (9) then 𝑑𝑑𝑢𝑢+1 satisfies the sufficient descent i.e. 
𝑑𝑑𝑘𝑘+1 
𝑇𝑇 𝑑𝑑𝑘𝑘+1 ≤  −𝑐𝑐 |𝑔𝑔𝑘𝑘+1| +  𝑘𝑘 ≥ 0. 

Proof :  
If k=0 then d1 = −g1 therefore  

d1  
T g1 = −|g1|2 < 0 

For ≥ 1 , from (8) and (9)we have  

dk+1  
T gk+1 = −gk+1  

T gk+1 +
gk+1  

T gk+1

gk  
T gk + M�dk  

T gk+1�
 dk  

T gk+1 

≤  −|gk+1|2 +  
|gk+1|2

|gk|2 + M�dk  
T gk+1�

 �dk  
T gk+1� 

≤  �−1 +
�dk  

T gk+1�
M�dk  

T gk+1�
� |gk+1|2 

= �−1 +
1
M�  |gk+1|2 

Since M>1 , we obtain  
dk  

T gk+1 ≤ c |gk+1|2. 

2.2 Modified Fletcher – Reeves conjugate gradient algorithm (MER) 
Step 1:  Initiate W1 , 0 <  𝜌𝜌 < 𝜎𝜎 < 1 , EG |gk+1|2   and kmax  ; set k=0. 
Step 2:  Calculate the error function value Ek+1 and its gradient gk+1. 
Step 3:  If (Ek+1  ≤  Ec) or (|gk+1|2 ε1) return W∞ = Wu+1 and E∗ = Eu+1. 
Step4:  Compute the descent direction du+1 using equations (8) and (9). 
Step5: Compute the learning rate αk+1 using the standard Wolfe line search condition (6) 
and (7). 
Step6: Update the weight Wk = Wk +  αk  dk; set k=k+1. 
Step 7: If k >  kn+m  return to 1;  Error goal; not go to Step 2. 

2.3 Global Converges Analysis 
In order to establish the global converges result for our intended method, we will impose 
some assumptions on the error function E as follow: 
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Assumption 1: The level set ℒ = {w ∈  ℝ2 |E(w) ≤ E(w0) �} is  bounded. 
Assumption 2: In some neighborhood N ∈ ℒ , E is differentiable and its gradient g is Lip-
chitz continuous, more specifically, there exists a positive constant L>0 such that  

‖g(w) − g(w�)‖ ≤ L ‖w − w�‖ ,∀w , w�   ∈ N. 
Since {E (wk)} is a decreasing sequence, it is clear that the sequence {wk} is contained in 
ℒ .  In addition it follows directil from Assumptions 2.1 and 2.2 that there exist constrants 
B and M , such that 

‖w − w�‖ ≤ B ,∀w , w�   ∈  ℒ 
‖g(w)‖ ≤ M ,∀w ∈  ℒ 

Touati –Ahmed and story in [15] show that any conjugate gradient method with 0 <  𝛽𝛽 ≤
 βFR  is globally convergent. 

3  Experiments and Results 
A computer simulation has been developed to study the performance of the  following 
algorithms. 

1- FR: Conjugate gradient back propagation with Fletcher-Reeves updates. 
2- YH: New training algorithm. 

 The simulations have been carried out using MATLAB (7.6). The performance of the 
MSBP has been evaluated and compared with batch versions of the above algorithm. By 
using the initial weights, initialized by the Nguyen – Widrow method [19] , the algo-
rithms were tested and received the same sequence of input patterns. The network 
weight’s updates only when the entire set of patterns to be learned has been presented. 
For each of the test problems, a table summarizing the performance of the algorithms for 
simulations that reached solution is presented. The reported parameters are min the mini-
mum number of epochs for 50 simulation,  mean the mean value of epochs for 50 simula-
tion,  Max the maximum number of epochs for 50 simulation, Tav the average of total 
time for 50 simulation and Succ, the succeeded simulations out of (50) trails within error 
function evaluations limit. If an algorithm fails to converge within the above limit consid-
ered that it fails to train the FFNN, but its epochs are not included in the statically analy-
sis of the algorithm, one gradient and one error function evaluations are necessary at each 
epoch. 

 
1- Problem (XOR Problem) 
        The initial problem that we encountered with is the XOR Boolean function problem. 
It considers as a classical problem for the FFNN training. The XOR function maps two 
binary inputs to a single binary output. This function is not linearly separable. The net-
work architectures for this binary classification problem consist of one hidden layer with 
3 neurons and an output layer of one neuron. The termination criterion is set to  𝜀𝜀2 ≤
0.002  within the  limit of 1000 epochs, and table (1) summarizes the result of all algo-
rithms i.e. for 50 simulations the minimum epochs for each algorithm are listed in the 
first column (Min), the maximum epochs for each algorithm are listed in the second col-
umn, third column contains (Mean) the mean value of epochs and (Tav) is the average of 
time for 50 simulations and last columns contain the percentage of succeeds of the algo-
rithms in 50 simulations. 
         The results of the simulations presented in table (1),figure (1)and(2) where the ver-
tical  axis represent error  and horizontal axis represent the number of epochs. 
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Table 1: Results of simulations for the XOR function 

Algorithms min max Mean Tav succ 
FR 4 48 9.5 0.4125 %100  
YH 3 39 8.26 0.39016 %100  

 
Figure 1: Mean Squared Error (MSE) for FR 

 

 
Figure 2: Mean Squared Error (MSE) for YH 

 
2- Function Approximation Problem 
        The second problem we have considered is the approximation of continuous func-
tion, 
𝑓𝑓(𝑥𝑥) = cos(𝜋𝜋𝑥𝑥) + 0.1 𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑(𝑠𝑠𝑖𝑖𝑛𝑛𝑥𝑥), 
where  𝑥𝑥 = −1: 0.005: 1. This problem takes one real input to a single real output. The 
selected architecture of the FFNN is one neuron in input lager, ten neuron in hidden layer 
and one neuron in output neuron, with sigmoid function in hidden  neuron's and a linear 
function in output neuron. The error goal has been let to 0.001 and the maximum epochs 
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to 1000. The results of the simulations presented in table (2), figure (3) and (4) where the 
vertical axis represent error and horizontal axis represent the number of epochs. 

 
Table 2: Results of simulations for the Function Approximation Problem 

Algorithms min max Mean Tav succ 
FR 14 44 26.34 0.5837 %100  
YH 16 36 25.8 0.55132 %100  

 
 

 
Figure 3: Mean Squared Error (MSE) for FR 

 

 
Figure 4: Mean Squared Error (MSE) for YH 

 
 
 
3- SPECT Heart Problem 
         This dataset consist of data instances which derived from cardiac single proton 
Emission Computed Tomography (SPECT) images from the University of Colorado. 
Also, it is a binary classification task, where patients’ heart images are classified as nor-
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mal is abnormal. The class distribution has 55 instances of the abnormal class 20.6% and 
212 instances of the normal class (79.4%). There have been selected 80 instances for the 
training process and the remainder 187 for testing the neural networks generalization ca-
pability. The network architecture for this medical classification problem constitute of 1 
hidden layer with 6 neurons and an output layer of 2 neurons. The termination criterion is 
set to  𝐸𝐸𝑟𝑟𝑟𝑟 ≤ 0.1 within the limit of 1000 epochs. The results of the simulations presented 
in table (3), figure (5) and (6) where the vertical axis represent error  and horizontal axis 
represent the number of epochs 
 

Table 3: Results of simulations for the SPECT Heart Problem 
Algorithms min max mean Tav succ 

FR 13 77 27.14 0.57716 %100  
YH 15 40 24.12 0.5522 %100  

 
 

 
Figure 5: Mean Squared Error (MSE) for FR 
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Figure 6: Mean Squared Error (MSE) for YH 
 

4   Conclusions 

The Fletcher-Reeves performs gk+1
T gk ≈ gh

Tgh leads to dk+1become linear combination 
with the dk  which is the main drawbacks for the Fletcher-Reeves method. Then this lead 
loss of descent property for Fletcher-Reeves method to overcome to this problem we de-
veloped the modified Fletcher-Reeves algorithm by adding M�dk  

T gk+1� to the denomina-
tor to a void this problem, where M > 1. Experimental results provide evidence that our 
proposed method is preferable and superior to the Fletcher-Reeves algorithm. 
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