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Abstract: This paper demonstrates the effectiveness of information fusion at the feature vectors level for automatic detection of epilepsy. 

Experiments used features ranging from separate EEG frequency band waves to combinations of band waves, in addition to signal 

energy. We used three classifiers with the feature vectors: TreeBoost, Random Forests, and support vector machines. We carried out 

experiments using a real life EEG signals data set that is available from the University of Bonn Hospital in Germany. This paper shows 

the effect of combining together signal energy with different EEG frequency band waves in order to classify epilepsy, and that this 

combination has computed 97.5% accuracy over using feature vectors with fewer band wave transformations (84-95.5% accuracy), using 

the TreeBoost algorithm and 10 folds cross validation. This combination computed 99% specificity and 95.5% sensitivity. Furthermore, 

the paper demonstrates and analyses the effectiveness of using ensemble based tree learning. 

Keywords: epilepsy detection, electroencephalogram frequency bands, TreeBoost, random forests, support vector machines, signal 
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1. Introduction 

The electroencephalogram (EEG) has been used successfully in 

the literature to study brain disorder conditions that affect the 

brain’s electrical activity. Epilepsy is characterized by excessive 

electrical discharges from brain cells. It is one of the conditions 

that predisposes patients to experiencing recurrent seizures. A 

seizure is a sudden uncontrolled, transient electrical brain activity 

that causes abnormal body movements 

EEG is the recording of the electric activity of the brain. Its 

compositions include the frequency of EEG sub-signal following 

frequency bands [1]: 

 Delta (less than 4 Hz)  

 Theta (4 to 8 Hz)  

 Alpha (8 to 12 Hz)  

 Beta (12 to 40 Hz)  

Waveform activity varies according to the function of the brain 

associated with the different tasks. For example, a recorded EEG 

signal during sleep has a higher percentage of long waves (delta 

and theta), while the shorter waves (alpha and beta) dominates in 

the awake time [1].  

In this paper, we study how to detect epilepsy automatically using 

computational intelligence (CI) techniques, viz. TreeBoost, 

Random Forest, and support vector machines (SVM). We start by 

analyzing a given EEG data set and composing useful features. 

Next, CI techniques are used to detect epilepsy. 

The rest of this paper is organized as follows: literature review is 

presented in Section II. computational intelligence techniques that 

are used in this paper are presented in section III. Feature 

composition is presented in section IV. The used dataset is 

described in Section V. Section VI discusses the computed results 

and Section VII concludes the paper. 

2. Literature Survey 

Different researchers addressed the problem of automatically 

detecting epilepsy using different approaches [2]–[9]. A recent 

survey on the topic can be cited in [10]. The proposed approaches 

used different types of features such as wavelet transform [11], 

[12]; Fourier transform [13]; or other feature extraction methods 

[2]–[9] . 

Elmahdy et al proposed the use of two types of features; viz. 

singular values (SVD) and classical features [3]. They applied 

band pass filter to EEG signals as a preprocessing step. They used 

classical features such as total average power, delta band average 

power, variance and mean. The authors established a link 

between energy and singular value decomposition, such that they 

“sensed” abrupt changes in the EEG data (due to epileptic 

seizures) and that these changes affect the distribution of energy. 

They used SVM as a classifier and computed 94.82% accuracy. 

Tawfik et al proposed the use of Weighted Permutation Entropy 

(WPE) values of EEG signals as features [8]. WPE measures the 

complexity and irregularity of a time series of a given signal. It 

consists of the ordinal pattern and the amplitude of its sample 

points. Their work was motivated by the fact that the entropy of 

EEG segments with seizures is lower than that in non-seizure 

EEG. The authors reported that the SVM classifier obtained 

better results compared to Artificial Neural Networks, with a 

93.75% accuracy. 

A recent study was proposed by Samiee et al. They used a 

technique that utilizes rational decomposition of EEG signals and 

1D LGBP for feature extraction [9]. They extracted features by 

decomposing the EEG signal into 8 sparse rational components. 
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Then, they applied 1D LGBP operator. The authors used different 

classifiers; viz. Logistic regression, Random forests, and SVM. 

Sareen et al proposed a seizure alert system [6]. They collected 

data from body sensors via patients’ mobile phones with 

Bluetooth technology. They extracted features from EEG signals 

using the fast Walsh-Hadamard transform (FWHT). Higher order 

spectral analysis was used to reduce the extracted features. They 

used a Gaussian process as the classifier. The authors evaluated 

their technique using 50,000 EEG replicated data points of five 

patients with bootstrapping technique [14], and reported 85% 

accuracy, overall. 

Xun et al proposed a context-learning model to detect seizures 

[5]. The authors used hidden and temporal features from EEG 

signal. They segmented EEG signals into several overlapped 

fragments with fixed length. Sparse auto-encoder [15] was used 

to extract the hidden inherent features from fragments. Each EEG 

fragment was translated to an EEG word. The temporal features 

were extracted by analyzing the context information of EEG 

words. A support vector machines classifier was used. The 

authors evaluated their technique using EEG data from the 

Children’s Hospital Boston (CHB-MIT) dataset [16]. The authors 

reported 22.93 % as an error rate. 

Murali et al used a low-power adaptive filter with recurrence 

quantification analysis (RQA) to classify EEG data [4]. Notch, 

wavelet and adaptive filters were used to preprocess EEG data. 

EEG data was quantified by as RQA features, viz. determinism, 

average diagonal line length, entropy, laminarity and trapping 

time. The CHB-MIT dataset [16] was used to evaluate the 

technique. The authors reported 97.4 and 93.5% as sensitivity and 

specificity, respectively, and a 95% accuracy. 

Mihandoost et al used markov random fields to select features 

from discrete wavelet transform (DWT) [12]. They used 

multilayer perceptron (MLP) neural network with three hidden 

layers. They reported 98.88 accuracy.  

Similarly, Guo et al used DWT with relative wavelet energy as 

input features to a feed-forward neural network [17]. They used 

one hidden layer with 10 neurons and reported 95.2% accuracy. 

Fu et al utilized Hilbert–Huang transform (HHT) and SVM with 

radial basis function (RBF) kernel to predict epilepsy [2]. They 

used statistical features from the histogram of HHT grayscale 

sub-images. The extracted features included mean, variance, 

skewness and kurtosis of pixel intensity. They computed 99.13% 

accuracy.  

Sharma and Pachori proposed features based on the phase space 

representation (PSR) to solve the problem [7]. Least squares 

support vector machine (LS-SVM) was used for classification. 

They computed 98.67%  accuracy. 

3. Computational Intelligence Techniques  

Different CI techniques were trained to classify EEG signals as 

normal or abnormal [2], [6], [7], [13], [18], [19]. In this work, we 

used TreeBoost, Random Forests, and SVM classifiers.  

Friedman proposed the TreeBoost algorithm to improve the 

accuracy of models built on decision trees [20]. Equation (1) 

describes the model mathematically: 

𝑉 = 𝐹0  +  B1T1(X)  +  B2T2(X)  +  … B𝑀T𝑀(X)    (1) 

where V is the target value, F0 is the starting value for the series, 

X is a vector of “pseudo-residual” values, and T1(X),T2(X) 

represent the trees given to the pseudo-residuals. TreeBoost 

algorithm computesB1, B2,… etc. as coefficients of the tree node 

predicted values. TreeBoost consists of ensembles of many trees 

and does not require preselecting or transforming predictor 

variables and it is robust against outliers [21]. A full TreeBoost 

series can have hundreds of trees. In this work, the series has 460 

trees, and the maximum depth used for any tree in the series is 5.  

The Random forest classifier was developed by Breiman as an 

ensemble classifier with collection of decision trees [22]. He 

combined bagging and random feature selection. During bagging, 

a tree is constructed using bootstrap sample of the training set. 

Random feature selection was utilized while a tree is grown on a 

new training set. The Random forest builds trees in parallel and 

uses voting to predict the target class. On the other hand, 

Treeboot creates a series of trees, each tree gradually contributes 

to the classification result [23]. 

Support vector machines builds a hyperplane or a set of 

hyperplanes in a high-dimensional space [24]. The best achieved 

separation by the hyperplane is the one with the largest distance 

to the nearest training data point from any category. SVM 

performs well in higher-dimensional spaces and copes with the 

problem of missing of data. In this work, the SVM model is built 

using an RBF kernel function. 

4. Feature Composition 

Given an EEG signal, we used a frequency band pass filter to 

compute filtered EEG waveforms. The frequency composition of 

the EEG signal include the following frequency bands [1]:  

 Delta [less than 4Hz]  

 Theta [4 to 8Hz]  

 Alpha [8 to 12Hz]  

 Beta [12 to 40Hz]  

Fig. 1 shows a raw EEG signal with the corresponding delta, 

theta, alpha, and beta filtered band waves. Data taken from these 

band forms will be selected to compose the feature vectors as will 

be described in Section 6. 

 

Fig 1. Raw signal (top) with the extracted 4 wave bands 

In addition to these features, one experiment uses energy of the 

raw EEG signal data in combination of the frequency bands, as 

will be discussed later. Given a signal x consisting of N points 

with duration T, signal energy is calculated using (2): 

𝐸 = 𝑇 ∑ x2 [𝑛]
𝑁−1

𝑛=1
  (2) 

A signal is called an energy signal if E is finite. 
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5. Dataset 

In this work, we used EEG signals from the Department of 

Epileptology at the University Hospital of Bonn [25]. The 

segments were recorded using an amplifier system with 128-

channel and were digitized using a sampling rate of 173.61 Hz 

and 12-bit A/D resolution. A band pass filter with 0.53–40 Hz (12 

dB/octave) was used to filter the digitized segments. EEG of 

health conditions was obtained using standard surface electrode 

placement system (International 10-20 system). Fig. 2 shows the 

location of electrodes in the international system as standardized 

by the American Electroencephalographic Society [26]. There are 

five subsets (A-E) with 100 single-channels, each, and EEG 

segments with 23.6 sec. duration.  

 

Fig 2. The placement of electrodes in the international 10-20 system 

Fig. 3 shows a sample taken from the corresponding set. Sets A 

and B consist of segments taken from five healthy subjects. 

Volunteers were relaxed in an awake state with eyes open (A) 

and eyes closed (B), respectively. 

 

Fig 3. EEG samples from the corresponding sets 

Signals in groups C, D, and E were recorded from five patients. 

Segments in set D were recorded from the epileptogenic zone. On 

the other hand, segments in set C were recorded from the 

hippocampal complex of the opposite hemisphere of the brain. 

Segments in sets C and D contain seizure free intervals. However, 

set E contains seizure activity only.  

6. Experimental Results 

Different experiments have been conducted using TreeBoost, 

Random Forest and SVM to detect epilepsy in a given EEG 

signal. In these experiments, we used the feature vectors 

described in Section 4. Experiments used a variety of features, 

such as separate EEG filtered frequency band waves, or 

combinations of the filtered band waves. Also, the energy feature 

was used in all experiments, unless otherwise specified. We used 

the implementations of TreeBoost and SVM by the DTReg 

software for classification [23]. Implementation of Random 

Forest in Weka was used [27]. 

EEG wave forms; Delta, Theta, Alpha, and Beta; are used 

separately in different experiments to predict epilepsy (with the 

added energy feature value per signal). We used the data sets A, 

B, C, and E, described, above. The results of the experiments 

using separate wave bands are compared to 2 experiments that 

combine together all of the wave bands, either with or without the 

energy feature value, per signal. 

A combination of filtered band waves is used to form one vector. 

The combination is obtained by appending together the first 

quarter of samples of each wave form, i.e., 1024 data points. In 

addition, the energy value is appended to the combined signal 

parts as scalar feature values, thus computing a total of 4097 data 

points (feature vector values), per EEG filtered signal. Later on, 

we will refer to the complete set of feature vectors as 

“Combined.” 

Classifiers’ performance is measured by computing accuracy, 

Table 1. Classifiers results computed using six types of feature vectors 

Feature Vector  

Type 

Accuracy Specificity Sensitivity 

TreeBoost 
Random 

Forest 
SVM TreeBoost 

Random 

Forest 
SVM TreeBoost 

Random 

Forest 
SVM 

Theta 88 88.75 90.25 92 89.8 89 84 88.8 91.5 

Alpha 89.5 84 73 92 84.2 71 87 84 75 

Beta 93.25 88.75 69 95 89.5 95.5 91.5 88.8 42.5 

Delta 85 85 89.5 92 85.8 87.5 78 85 91.5 

Combined bands without 

energy 
95.5 95.25 83.75 97.5 95.5 82.5 93.5 95.3 85 

Combined with energy  97.5 96 84.75 99 96.2 88 96 96 81.5 
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sensitivity, and specificity [29]. All experiments’ results were 

evaluated using a 10 fold cross validation. 

Table 1 compares the computed performance results using the 

three classifiers. It is clear that the maximum accuracy rate 

computed by TreeBoost using any single frequency band feature 

was 93.25%. This rate improved to 95.5% when the 4 bands are 

combined together as features. A further improvement is 

computed if we add signal energy as a feature, with a 97.5% 

computed accuracy using TreeBoost. 

Similarly, the maximum accuracy rate computed by Random 

Forests using any single frequency band feature was 88.75%. 

This rate improved to 95.25% when the 4 bands are combined as 

features. Similar to TreeBoost, adding signal energy as feature 

improved the result to 96% computed accuracy. 

Using the SVM classifier, energy has shown improvement from 

83.75% to 84.75% when all feature vectors were combined.  

 

Fig 4. Classifiers performance comparison using Accuracy 

Figs. 4, 5 and 6 offer bar plots of the accuracy, specificity 

and sensitivity results, respectively. 

 
Fig 5. Classifiers performance comparison using Specificity 

 
Fig 6. Classifiers performance comparison using Sensitivity 

Therefore, the experiments and analysis have shown the 

significance of signal energy as a feature and that it has a 

meaningful effect that enhances the results. These findings add to 

those of Elmahdy et al [3] in highlighting the significance of 

EEG signal energy. 

Fig. 7 further demonstrates the significance of the energy feature. 

As can be seen from the figure, energy is a significant 

discriminatory feature for the normal (i.e., not ill) class. 

Table 2 compares our work to other works, as described in 

Section 2, above. We find that our results are comparable to the 

literature, even though we used untransformed data. Also, our 

technique involves a larg set of the EEG signal domain by 

including EEG band sets A, B, C, and E plus signal energy. It is 

worth mentioning that the cited research works have used a 

variety of datasets and therefore it would be difficult to do and 

exact comparison of results. 

 

Fig 7. Histogram of the value of energy feature for normal and abnormal 

cases 

Table 2. Performance comparison to literature 

Work Reference Dataset Accuracy % 

Sareen et al (2015) [6] Special 85.1 

Elmahdy et al (2015) [3]  CHB-MIT 94.82 

Xun et al (2016) [5] CHB-MIT 77.07 

Murali et al (2016) [4] CHB-MIT 95.7 

Samiee (2017) [9] CHB-MIT Sensitivity (91.13)  

Guo et al (2011) [17] A, E 95.2 

Mihandoost et al (2012) [12] A, D, E 98.87 

Fu et al (2014) [2] A, E 99.13 

Sharma and Pachori (2015) 

[7] 
C, D, E 98.67 

Tawfik et al (2016) [8] A, B, C, D, E 93.75 

This work A, B, C, E 97.5 

We did not use the band set D because it proved to be unstable 

when used in learning untransformed (i.e. raw) data. However, 

using it after doing a transformation has shown success in some 

works, as can be seen from Table 2. 

7. Conclusion and Future Directions  

In this paper, we have presented a novel application that uses the 

presented approach for automatic detection of epilepsy. Signal 

energy was used as an added feature that was combined with the 

delta, theta, alpha, and beta frequency band waves extracted from 

EEG signals.  

It is notable that Treeboost computed the best accuracy results 

(97.5%), compared to Random Forests (96%), and SVM 

(84.75%).  Intuitively, TreeBoost appears to outperform SVM 

because TreeBoost considers samples that were incorrectly 

classified by its previously trained tree(s), in order to enhance 

learning in the next tree level. Additionally, Random Forests fits 

many parallel independent trees against different samples of data 
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such that the average error is computed and reduced. Both 

Treeboost and Random Forests use ensemble based tree learning 

in reducing error, and this property appears to be the reason why 

their results over performed SVM that does not have error 

reducing properties, especially that we have used untransformed 

(i.e. raw) frequency bands data. 

What is additionally interesting is that TreeBoost computed 

strong results in EEG classification problems in this paper as it 

has formerly did in one of our previous works on heart disease 

classification using electrocardiograms (ECG)  [28]–[30]. 

Therefore, TreeBoost appears to offer promise for biomedical 

signal research. 

Based on the results and this analysis, we find it promising to 

further the experimentation using the TreeBoost and Random 

Forest learning algorithms for the automatic detection of 

epilepsy. 

Moreover, this paper’s results have shown that using 

untransformed signal data can be used to detect epilepsy, 

especially when used with ensemble based tree learning. This 

implies that computationally inexpensive methods can be used in 

biomedical signal analysis. 

For future work, we plan to advance the application and analysis 

of ensemble based tree learning in biomedical signal 

classification.  

Moreover we intend to improve the results of our experiments 

using further studies into signal energy and by looking into a 

mutual information-based approach to feature extraction.,  
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