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Fixed point theory on spaces with vector-valued
metrics and application
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Abstract

The purpose of this work is to prove some common �xed point theo-
rems for two operators on a set endowed with one or two vector-valued
metrics. The use of vector-valued metrics makes it possible for each
equation of a system to have its own Lipschitz property, while the use
of two such metrics makes it possible for the Lipschitz condition to
be expressed with respect to an incomplete metric. An application is
presented for a system of operatorial equations.
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1. Introduction

Fixed point theory plays a basic role in applications of many branches of mathematics.
Finding a �xed point of contractive mappings becomes the center of strong research ac-
tivity. The classical Banach contraction principle was extended for contraction mappings
on spaces endowed with vector-valued metrics by Perov in 1964 (see [4]). The starting
point of this work was the article of D. O'Regan, R. Precup (see [3]). In the �rst section
we present some results for two operators on a generalized metric space and in the second
section we will use two generalized metrics.

∗Department of mathematics, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria,
Email: bazine-safia@hotmail.fr
†Department of mathematics, University of 8 mai 1945, Guelma, Algeria,

Email: fellaggoune@gmail.com
‡Department of mathematics, University of Larbi Ben M'hidi, Oum El Bouaghi, Algeria,

Email: alioumath@yahoo.fr



420

2. Basic de�nitions and auxiliary results

The aim of this section is to present some de�nitions and results that will be needed
in the sequel.

2.1. De�nition. Let X be a nonempty set. A mapping d : X × X → Rn
+ is called a

vector-valued metric on X if the following properties are satis�ed:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

If α, β ∈ Rn with α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) and c ∈ R, then by α ≤ β
(respectively α < β), we mean that αi ≤ βi (respectively αi < βi), for i ∈ {1, . . . , n} and
by α ≤ c we mean that αi ≤ c, for i ∈ {1, . . . , n}.

A set X equipped with a vector-valued metric d is called a generalized metric space.
We will denote such a space with (X, d). For the generalized metric spaces, the notions
of convergent sequence, Cauchy sequence, completeness, open subset and closed subset
are similar to those for usual metric spaces.

2.2. De�nition. If f : X → X is a single-valued operator, then we denote by Fix(f)
the set of all �xed points of f ; that is, Fix(f) = {x ∈ X | x = f(x)}.

2.3. De�nition. Let f and g be self-mapping of a generalized metric space (X, d). An
element x ∈ X is said to be a common �xed point of f and g if and only if x = f(x) = g(x).

Throughout this paper we denote by Mn×n(R+) the set of all n × n matrices with
positive elements, by � the zero n× n matrix and by I the identity n× n matrix.

2.4. De�nition. [9] A ∈Mn×n(R+) is said to be matrix convergent to zero if and only
if Ak → �, as k →∞.

Notice that, for the proof of the main results, we need the following theorem, part of
which being a classical result in matrix analysis; see, for example, [7] (page 37) and [9]
(page 12). For the assertion (iii) see [5].

2.5. Theorem. Let A ∈Mn×n(R+). The following statements are equivalent:

(i): A is convergent towards zero.
(ii): The eigenvalues of A are in the open unit disc, that is, |λ| < 1, for every
λ ∈ C with det(A− λI) = 0.

(iii): The matrix (I −A) is nonsingular and

(I −A)−1 = I +A+A2 + · · ·+An + · · · .

(iv): The matrix (I −A) is nonsingular and (I −A)−1 has nonnegative elements.

(v): The matrices Aq and qTA converge to zero for each q ∈ Rn.

2.6. Example. Some examples of matrix convergent to zero are:

(a): any matrix A =

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

(b): any matrix A =

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

(c): any matrix A =

(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

For other examples and considerations on matrices which converge to zero, see Turinici
[8], Kannan [2] and Reich [6].
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Main result for self contractions on generalized metric spaces is Perov's �xed point
theorem, see [4].

2.7. Theorem. (Perov's theorem) Let (X, d) be a complete generalized metric space
and the mapping f : X → X with the property that there exists a matrix A ∈Mn×n(R+)
such that

d(f(x), f(y)) ≤ Ad(x, y)
for all x, y ∈ X. If A is a matrix convergent towards zero, then

(1) the mapping f has a unique �xed point z, i.e. Fix(f) = {z};
(2) the sequence of successive approximations (xm)m∈N, xm = fm(x0) is convergent

and it has the limit z, for all x0 ∈ X;
(3) one has the following estimation:

d(xm, z) ≤ Am(I −A)−1d(x0, x1), for all m ∈ N;

(4) if g : X → X satis�es the condition d(f(x), g(x)) ≤ η, for all x ∈ X, η ∈ Rn

and considering the sequence ym = gm(x0) one has

d(ym, z) ≤ (I −A)−1η +Am(I −A)−1d(x0, x1), for all m ∈ N.

Hence, it is of great interest to give �xed point results for single-valued operators on a
set endowed with vector-valued metrics or norms. The use of vector-valued metrics makes
it possible for each equation of a system to have its own Lipschitz property, while the use
of two such metrics makes it possible for the Lipschitz condition to be expressed with
respect to an incomplete metric. However, some advantages of a vector-valued norm with
respect to the usual scalar norms were already pointed out by Precup in [5]. Therefore,
we may conclude that for di�erent types of estimations, the use of the vector-valued
norm and, correspondingly, of the matrices convergent to zero, is more appropriate when
treating systems of equations. In this paper we prove some theorems for generalized
single-valued contractions on spaces endowed with vector-valued metrics. Our results are
extensions of the theorems given by Perov in [4], Hardy and Rogers in [1], O'Regan and
Precup in [3].

3. Main results

The �rst main result of this paper is the following:

3.1. Theorem. Let (X, d) be a complete generalized metric space. Assume that the
operators f , g : X → X satisfy the following conditions :

there exists matrices M,N,P ∈Mn×n(R+) with :

(i): (I −N − P ) is nonsingular and (I −N − P )−1 ∈ Mn×n(R+);
(ii): C is convergent toward zero, where C = (I −N − P )−1(M +N + P );
(iii): d(f(x), g(y)) ≤Md(x, y)+N [d(x, f(x))+d(y, g(y))]+P [d(x, g(y))+d(y, f(x))],

for all x, y ∈ X.
Then:

(1) f and g have a common �xed point z ∈ X.
(2) If, in addition, (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈Mn×n(R+),

then z is a unique common �xed point of f and g.

Proof. Let x0 be some point in X, we consider (xn)n∈N the sequence of successive ap-
proximations for f and g, de�ned by:

x2n+1 = f(x2n), n = 0, 1, . . .
x2n+2 = g(x2n+1), n = 0, 1, . . .
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We have:

d(x2n, x2n+1) = d(g(x2n−1), f(x2n))

≤ Md(x2n−1, x2n) +N [d(x2n, f(x2n)) + d(x2n−1, g(x2n−1))]

+P [d(x2n, g(x2n−1)) + d(x2n−1, f(x2n))]

= Md(x2n−1, x2n) +N [d(x2n, x2n+1) + d(x2n−1, x2n)] + Pd(x2n−1, x2n+1)

≤ Md(x2n−1, x2n) +N [d(x2n, x2n+1) + d(x2n−1, x2n)]

+P [d(x2n−1, x2n) + d(x2n, x2n+1)].

This implies that:

d(x2n, x2n+1) ≤ (I −N − P )−1(M +N + P )d(x2n−1, x2n) = Cd(x2n−1, x2n).

Similarly, we have:

d(x2n+1, x2n+2) = d(f(x2n), g(x2n+1))

≤ Md(x2n, x2n+1) +N [d(x2n, f(x2n)) + d(x2n+1, g(x2n+1))]

+P [d(x2n, g(x2n+1)) + d(x2n+1, f(x2n))]

= Md(x2n, x2n+1) +N [d(x2n, x2n+1) + d(x2n+1, x2n+2)] + Pd(x2n, x2n+2)

≤ Md(x2n, x2n+1) +N [d(x2n, x2n+1) + d(x2n+1, x2n+2)]

+P [d(x2n, x2n+1) + d(x2n+1, x2n+2)].

Thus

d(x2n+1, x2n+2) ≤ (I −N − P )−1(M +N + P )d(x2n, x2n+1) = Cd(x2n, x2n+1).

We obtain that:

d(xn, xn+1) ≤ Cnd(x0, x1), for each n ∈ N.
To prove that (xn)n∈N is a Cauchy sequence, we estimate d(xn, xn+p) using the triangle

inequality:

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ Cnd(x0, x1) + Cn+1d(x0, x1) + · · ·+ Cn+p−1d(x0, x1)

≤ Cn(I − C)−1d(x0, x1).

Note that (I − C) is nonsingular since C is convergent to zero. This implies that the
sequence (xn)n∈N is a Cauchy sequence. Using the fact that (X, d) is complete we get
that (xn)n∈N is convergent in X. Thus, there exists z ∈ X such that d(xn, z) → 0, as
n→∞.

Now, we show that z is a �xed point for f by esteeming d(f(z), z) we obtain:

d(f(z), z)− d(x2n+2, z) ≤ d(f(z), g(x2n+1))

and

d(f(z), g(x2n+1)) ≤ Md(z, x2n+1) +N [d(z, f(z)) + d(x2n+1, g(x2n+1))]

+P [d(z, g(x2n+1)) + d(x2n+1, f(z))].

We obtain:

d(f(z), z)− d(x2n+2, z) ≤ Md(z, x2n+1) +N [d(z, f(z)) + d(x2n+1, x2n+2)]

+P [d(z, x2n+2) + d(x2n+1, z) + d(z, f(z))].

Passing to the limit and taking into account that (I − N − P ) is nonsingular and (I −
N − P )−1 ∈Mn×n(R+) we get that z is a �xed point for f .
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Let us show that g(z) = z using the condition (iii), we have:

d(z, g(z)) = d(f(z), g(z))

≤ Md(z, z) +N [d(z, f(z)) + d(z, g(z))] + P [d(z, g(z)) + d(z, f(z))],

we obtain:

(I −N − P )d(z, g(z)) ≤ 0.

Note that (I −N −P ) is nonsingular and (I −N −P )−1 ∈Mn×n(R+) we conclude that
z = g(z) so we obtain that z is a common �xed point for f and g.

Now, we show that f and g have a unique common �xed point. For this, we assume
that there exists another point w �xed by f . Using the condition (iii), we have:

d(w, z) = d(f(w), g(z))

≤ Md(w, z) +N [d(w, f(w)) + d(z, g(z))] + P [d(w, g(z)) + d(z, f(w))].

We obtain:

(I −M − 2P )d(w, z) ≤ 0.

Taking into account that (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈Mn×n(R+)
this implies that z is a unique common �xed point for f and g.

�

If n = 1 in the previous theorem, then we get the concept of the usual metric space,
in this case we have:

3.2. Corollary. Let (X, d) be a complete metric space. Assume that the operators f, g :
X → X satisfy the following conditions:

there exists constants M,N,P ∈ R+ with:

(i) d(f(x), g(y)) ≤Md(x, y)+N [d(x, f(x))+d(y, g(y))]+P [d(x, g(y))+d(y, f(x))],
for all x, y ∈ X;

(ii) 0 < C < 1 with C =
M +N + P

1−N − P .

Then:

(1) f and g have a common �xed point z in X.
(2) If, in addition, M + 2P < 1 then z is unique.

As an application of the previous results we present an existence theorem for a system
of operatorial equations.

3.3. Theorem. Let (X, |.|) be a Banach space and let f, g : X×X → X be two operators.
Suppose that there exist mij , nij , pij ∈ R+, with:

M =

(
m11 m12

m21 m22

)
, N =

(
n11 n12

n21 n22

)
, P =

(
p11 p12
p21 p22

)
such that, for each x = (x1, x2), y = (y1, y2) ∈ X ×X, one has:
(1) |f1(x1, x2) − g1(y1, y2)| ≤ m11|x1 − y1| + m12|x2 − y2| + n11(|x1 − f1(x1, x2)| +
|y1 − g1(y1, y2)|) + n12(|x2 − f2(x1, x2)|+ |y2 − g2(y1, y2)|) + p11(|x1 − g1(y1, y2)|+ |y1−
f1(x1, x2)|) + p12(|x2 − g2(y1, y2)|+ |y2 − f2(x1, x2)|)
(2) |f2(x1, x2) − g2(y1, y2)| ≤ m21|x1 − y1| + m22|x2 − y2| + n21(|x1 − f1(x1, x2)| +
|y1 − g1(y1, y2)|) + n22(|x2 − f2(x1, x2)|+ |y2 − g2(y1, y2)|) + p21(|x1 − g1(y1, y2)|+ |y1−
f1(x1, x2)|) + p22(|x2 − g2(y1, y2)|+ |y2 − f2(x1, x2)|).

In addition, we assume that the matrix (I − N − P ) is nonsingular and (I − N −
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P )−1 ∈ Mn×n(R+) and C is convergent to zero.
Then, the system

u1 = f1(u1, u2) = g1(u1, u2),
u2 = f2(u1, u2) = g2(u1, u2),

has at least one solution z ∈ X ×X. Moreover, if, in addition, the matrix (I −M − 2P )
is nonsingular and (I −M − 2P )−1 ∈Mn×n(R+), then the above solution is unique.

Proof. Consider E = X ×X and the operators f, g : E → E given by the expression:

f(x1, x2) = (f1(x1, x2), f2(x1, x2))
g(y1, y2) = (g1(y1, y2), g2(y1, y2)).

Then our system is now represented as a �xed point equation of the following form:
w = f(w) = g(w), w ∈ E. Notice also that the conditions (1)+(2) can be jointly
represented as follows:

‖f(x)− g(y)‖ ≤M‖x− y‖+N(‖x− f(x)‖+ ‖y − g(y)‖)
+P (‖x− g(y)‖+ ‖y − f(x)‖) for all x, y ∈ X ×X.

Hence, theorem (3.1) applies in (E, d), with d(u, v) = ‖u− v‖ =
(
|u1 − v1|
|u2 − v2|

)
. �

Now, we present another result in the case of a generalized metric space but endowed
with two metrics.

3.4. Theorem. Let (X, δ) be a complete generalized metric space and d another vector-
valued metric on X. Assume that the operators f, g : X → X satisfy the following
conditions:

(a): There exists a matrix U ∈ Mn×n(R+) such that δ(x, y) ≤ U · d(x, y), for all
x, y ∈ X;

(b): f is (δ, δ)-continuous;
(c): There exists matrices M,N,P ∈Mn×n(R+) with:

(i): (I −N − P ) is nonsingular and (I −N − P )−1 ∈Mn×n(R+);
(ii): C is convergent toward zero, where C = (I −N − P )−1(M +N + P )
(iii): d(f(x), g(y)) ≤ Md(x, y) + N [d(x, f(x)) + d(y, g(y))] + P [d(x, g(y)) +
d(y, f(x))], for all x, y ∈ X .

Then :

(1) For any x0 ∈ X we have δ(fk(x0), z) → 0, as k → ∞, where z is a �xed point
for f and g.

(2) If, in addition, (I −M − 2P ) is nonsingular and (I −M − 2P )−1 ∈Mn×n(R+),
then z is a unique common �xed point of f and g.

Proof. Let x0 be some point in X, we consider (xn)n∈N the sequence of successive ap-
proximations for f and g, de�ned by:

x2n+1 = f(x2n), n = 0, 1, . . .
x2n+2 = g(x2n+1), n = 0, 1, . . .
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We have:

d(x2n, x2n+1) = d(g(x2n−1), f(x2n))

≤ Md(x2n−1, x2n) +N [d(x2n, f(x2n)) + d(x2n−1, g(x2n−1))]

+P [d(x2n, g(x2n−1)) + d(x2n−1, f(x2n))]

= Md(x2n−1, x2n) +N [d(x2n, x2n+1) + d(x2n−1, x2n)] + Pd(x2n−1, x2n+1)

≤ Md(x2n−1, x2n) +N [d(x2n, x2n+1) + d(x2n−1, x2n)]

+P [d(x2n−1, x2n) + d(x2n, x2n+1)].

This implies that:

d(x2n, x2n+1) ≤ (I −N − P )−1(M +N + P )d(x2n−1, x2n) = Cd(x2n−1, x2n).

Similarly, we have:

d(x2n+1, x2n+2) = d(f(x2n), g(x2n+1))

≤ Md(x2n, x2n+1) +N [d(x2n, f(x2n)) + d(x2n+1, g(x2n+1))]

+P [d(x2n, g(x2n+1)) + d(x2n+1, f(x2n))]

= Md(x2n, x2n+1) +N [d(x2n, x2n+1) + d(x2n+1, x2n+2)] + Pd(x2n, x2n+2)

≤ Md(x2n, x2n+1) +N [d(x2n, x2n+1) + d(x2n+1, x2n+2)]

+P [d(x2n, x2n+1) + d(x2n+1, x2n+2)].

Thus

d(x2n+1, x2n+2) ≤ (I −N − P )−1(M +N + P )d(x2n, x2n+1) = Cd(x2n, x2n+1).

We obtain that:

d(xn, xn+1) ≤ Cnd(x0, x1), for each n ∈ N.
To prove that (xn)n∈N is a Cauchy sequence, we estimate d(xn, xn+p) using the triangle

inequality:

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+p−1, xn+p)

≤ Cnd(x0, x1) + Cn+1d(x0, x1) + · · ·+ Cn+p−1d(x0, x1)

= Cn[I + C + · · ·+ Cp−1]d(x0, x1)

≤ Cn(I − C)−1d(x0, x1).

Note that (I − C) is nonsingular since C is convergent to zero. This implies that
the sequence (xn)n∈N is d-Cauchy. It follows from (a) that (xn)n∈N is δ-Cauchy se-
quence. Since (X, δ) is a complete generalized metric space, there exists z ∈ X such that
δ(x2n+1, z)→ 0, as n→∞.

By (b), we have δ(f(x2n), f(z)) = δ(x2n+1, f(z)). Hence we have z = f(z). Thus z is
a �xed point for f and

δ(fn(x0), z)→ 0, as n→∞.
The rest of the proof follows as in theorem (3.1). �
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