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Approximation of fractional�order Chemostat
model with nonstandard �nite di�erence scheme
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Abstract

In this paper, the fractional-order form of three dimensional chemostat
model with variable yields is introduced. The stability analysis of this
fractional system is discussed in detail. In order to study the dynamic
behaviours of mentioned fractional system, the well known nonstandard
�nite di�erence (NSFD) scheme is implemented. The proposed NSFD
scheme is compared with the forward Euler and fourth order Runge-
Kutta methods. Numerical results show that the NSFD approach is
easy and accurate when applied to fractional-order chemostat model.
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1. Introduction

Competition modelling is one of the important topics in the mathematical biology.
The simplest form of competition, however, occurs when individuals of di�erent species
compete for the same limited source foods, in some way species inhibit each other growth.
This is called exploitative competition. A simple example of this type of competition
occurs in a laboratory device, called a chemostat or a continuous culture, that models
competition in a very simple lake [25].

As we know, most of the mathematical models of the biological systems are based
on ordinary di�erential equations (ODEs) of integer-order. However, the behaviour of
most biological systems has memory or after-e�ects, for which the ODEs of integer-order
disregard such e�ects. It is worth noting that describing the behaviour of these systems
by fractional-order di�erential equations is more useful than their classical integer-order
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counterpart, due to good memory and hereditary properties of fractional derivatives. It
should be emphasized that in the literature the fractional calculus has been used as an ef-
�cient tool to simulate the true nature of so many systems in diverse and widespread �elds
of science and engineering. For example, fractional calculus has been successfully applied
to system biology [2, 3, 6, 8, 9], physics [10, 11], chemistry and biochemistry [26], hydrol-
ogy [14, 24], medicine [12, 5], and �nance [7]. Hence study and use the fractional-order
di�erential equations help us to have a better understanding of the biological systems
behaviour. In the other hand, analytical solutions of these types of fractional equations
cannot generally be obtained, hence good numerical schemes are playing important role
in identifying the solution behaviour of such fractional equations and exploring their ap-
plications. Nevertheless, Among numericals methods, NSFD schemes can alternatively
be used to obtain more qualitative results and remove numerical instabilities.

This paper organized as follows: In next Section, we elaborate the de�nition and some
basic properties of Günwald�Letnikov (GL) approximation as well we discuss that how
NSFD scheme can be implemented for systems of ODEs. In Section 3, fractional-order
form of the chemostat model is introduced and also stability theorem and fractional
Routh-Hurwitz stability conditions are given for the local asymptotic stability of the
fractional-order systems. Section 4 is devoted to the study of the stability analysis of the
fractional-order chemostat model. In Section 5, the idea of NSFD scheme for solving the
fractional-order chemostat model is presented. Finally, the theoretical results obtained
in former section are compared with the other numerical methods and the simulated
numerical results are given.

2. Preliminaries

Although the discussion of the fractional calculus is as old as integer-order calculus,
the complexity and the lack of applications postponed its progress till a few decades ago.
Recently, most of the dynamical systems, based on the integer-order calculus, have been
modi�ed into the fractional-order domain due to the extra degrees of freedom and the
�exibility which can be used to precisely �t the experimental data much better than the
integer-order modelling.

2.1. Grünwald�Letnikov Approximation. Derivatives of fractional-order have been
introduced in several ways. In this paper we consider GL approach. The GL method for
the one-dimensional fractional derivative takes the following form [23]:

Dαx(t) = f(t, x(t)), x(0) = x0, t ∈ [0, tf ],(2.1)

Dαx(t) = lim
h→0

h−α
[ t
h
]∑

j=0

(−1)j
(
α

j

)
x(t− jh),

where Dα, h and [t/h] denote fractional derivative, stepsize and the integer part of t/h,
respectively. Therefore, the Eq. (2.1) is discretized as follows:

n∑
j=0

cαj xn−j = f(tn, xn), n = 1, 2, 3,...

where tn = nh, xn−j is approximation of x(tn−j) and c
α
j , j = 1, 2 . . . , n are the binomial

coe�cients that are de�ned as:

cαj = (1− 1 + α

j
)cαj−1, cα0 = h−α, j = 1, 2, 3, ..., n.
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2.2. Nonstandard Finite Di�erence Schemes. NSFD schemes were �rstly proposed
by Mickens[20, 21] for ODEs and successively, their use has been investigated in several
�elds. To describe NSFD scheme, we consider an ODE such as

(2.2)
dx

dt
= f(t, x, λ), x(0) = x0, t ∈ [0, tf ],

where λ is a parameter. Given a discretization tn = nh, NSFD is constructed by following
two main steps:

(i) The derivative at the left-hand side of the Eq. (2.2) is replaced by a discrete
form

(2.3)
dx

dt
≈ xn+1 − xn

φ(h, λ)
,

where xn is an approximation of x(tn).
(ii) The nonlinear term in the Eq. (2.2) is replaced by a nonlocal discrete representation

F (t, xn+1, xn, . . . , λ) depending on some of the previous approximation. Hence
the gained scheme described as follows:

(2.4)
xn+1 − xn
φ(h, λ)

= F (t, xn+1, xn, . . . , λ).

The discrete derivative on the left-hand side of the Eq.(2.4) is a generalization of the
classical discrete representation for the �rst derivative that is obtained by using φ(h, λ) =
h. The denominator function φ(h, λ), that is function of stepsize, must have consistency
condition

(2.5) φ(h, λ) = h+O(h2),

to ensure that the discrete representation of (2.3) converges to the corresponding contin-
uous derivative as h → 0. Examples of denominator function that satisfy the condition
(2.5) are h, sin(h), 1−e−h, (1− e−λh)/λ and so forth. The papers of Mickens [16, 17, 19]
give a general procedure for determining φ(h) for systems of ODEs. In general, for an
ODE with polynomial terms,

dx

dt
= ax+ (NL), NL ≡ Nonlinearterms,

the NSFD discretization for the linear expression is given by Mickens [16]

xn+1 − xn
φ

= axn + (NL)n,

where the denominator function is

φ(h, a) =
eah − 1

a
.

Note that if a = 0 then the denominator function is just h, i.e., φ(h) = h.
The �rst NSFD requirement is that the dependent functions should be modelled non-

locally on the discrete-time computational grid. Particular examples of this include the
following functions [17, 18]

xy ≈ xn+1yn xy ≈ xnyn+1,

x2 ≈ 2xn+1xn, x2 ≈ 2xn
xn+1 + xn

2
.
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By applying this technique and using the GL discretization method, it yields the
following relation

xn+1 =

−
n+1∑
j=1

cαj xn+1−j + f(tn+1, xn+1)

cα0
, n = 0, 1, 2, ...

where cα0 = φ(h)−α.

3. Fractional-Order Chemostat Model

At time t, let s(t) denotes the concentration of nutrient in the vessel, x(t) and y(t)
denote the concentration of two microorganism. The mathematical model takes the form

ds

dt
= (s0 − s)Q− 1

δ1
( m1s
k1+s

− L)x− 1
δ2

m2s
k2+s

y,

dx

dt
= x( m1s

k1+s
− L−Q),

dy

dt
= y( m2s

k2+s
−Q),

s(0) = s0, x(0) = x0, y(0) = y0,

(3.1)

where s0 is the input concentration of nutrient, Q is the washout rate, mi is the maximal
growth rates, ki is the Michaelis-Menton constants, δi is the yield coe�cients and L is
the intrinsic consumption rate for the �rst microorganism, which are all positive. This
model is usually called the Monod model or the model with Michaelis Menten dynamics
[4, 13, 22].

Here we investigate system Eqs. (3.1) with yield coe�cients δ1 = A+Bs, δ2 = C+Ds3,
which means that the production of the microbial biomasses is very sensitive to the
concentration of the nutrient. In the system Eqs. (3.1) we have used the growth rate
functions

Fi(s) =
mis

ki + s
, i = 1, 2,

which have following common features:

(i) Fi(0) = 0.
(ii) Fi is an increasing function of s.
(iii) Fi approaches to a constant value as s approaches to in�nity.

Now we introduce fractional-order form of the system Eqs. (3.1). The new system is
described by the following set of fractional di�erential equations of order α1, α2, α3 > 0,
with initial population; i.e., s(0) > 0, x(0) > 0, y(0) > 0.

Dα1s(t) = (s0 − s)Q− 1
δ1
( m1s
k1+s

− L)x− 1
δ2

m2s
k2+s

y,

Dα2x(t) = x( m1s
k1+s

− L−Q),

Dα3y(t) = y( m2s
k2+s

−Q),

s(0) = s0, x(0) = x0, y(0) = y0,

0 < αi ≤ 1, i = 1, 2, 3.

(3.2)
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In order to analyze the stability of the model, stability theorem on fractional-order sys-
tems and fractional Routh-Hurwitz stability conditions are introduced.

3.1. Theorem. [15] Consider the following commensurate fractional-order system:

(3.3) Dαx(t) = f(x(t)), x(0) = x0, t ∈ [0, tf ],

where, 0 < α ≤ 1 and x ∈ Rn. Equilibrium point E of the system (3.3), calculated by

solving f(x) = 0, is locally asymptotically stable if all eigenvalues of the Jacobian matrix

J ≡ ∂f
∂x

that evaluated at the equilibrium point E, satisfy:

(3.4) |arg(λ)| > α
π

2
.

3.2. Proposition. [1] Suppose P (λ) = λ2 + bλ + c is characteristic polynomial of the

Jacobian matrix ∂f
∂x

, evaluated at the equilibrium point E. For 0 < α ≤ 1, the eigenvalues

of Jacobian matrix J ≡ ∂f
∂x

, satisfy condition (3.4) in Theorem 3.1 if

b > 0, c > 0,

or

b ≤ 0, 4c > b2,
∣∣∣tan−1(

√
4c− b2/b)

∣∣∣ > α
π

2
.

4. Stability Analysis of the Equilibrium Points

In this section we deal with stability of the equilibrium points of the system Eqs.
(3.2). The equilibrium points of this system are:

E0 = (s0, 0, 0),

E1 = (β1, (s0 − β1)(A+Bβ1), 0),

E2 = (β2, 0, (s0 − β2)(C +Dβ3
2)),

where

β1 =
k1(L+Q)

m1 − (L+Q)
, β2 =

Qk2
m2 −Q

.

Note that the equilibrium points Ei, i = 0, 1, 2, have real biological meaning if their
components are non-negative. Since s0 > 0, the equilibrium point E0 exists by biological
meaning. Also the equilibrium points E2 and E3 have real biological meaning when
0 < βi < s0, i = 1, 2. Now let us verify stability of these equilibrium points. The
Jacobian matrix of the system (3.2) at the equilibrium point E = (s, x, y) is

(4.1) J(s, x, y) =


T (s, x, y) − 1

A+Bs
( m1s
k1+s

− L) − 1
C+Ds3

m2s
k2+s

m1k1x
(k1+s)2

m1s
k1+s

− L−Q 0

m2k2y
(k2+s)2

0 m2s
k2+s

−Q

 ,
where

T (s, x, y) = −Q− x
A+Bs

m1k1
(k1+s)2

+ Bx
(A+Bs)2

( m1s
k1+s

− L)

− y
C+Ds3

k2m2y
k2+s

+ 3Ds2y
(C+Ds3)2

m2s
k2+s

.

The characteristic equation of the Jacobian matrix J at the equilibrium point E0 is

P (λ) = (λ+Q)(λ2 + b1λ+ c1) = 0,

where

b1 = L+ 2Q− (
m1s0
k1 + s0

+
m2s0
k2 + s0

), c1 = (L+Q− m1s0
k1 + s0

)(Q− m2s0
k2 + s0

).
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Eigenvalues of the matrix J at the equilibrium point E0 are

λ1 = −Q, λ2 = −(L+Q− m1s0
k1 + s0

), λ3 = −(Q− m2s0
k2 + s0

).

These eigenvalues are real, hence by Theorem 3.1 the equilibrium point E0 is stable if
λi < 0, i = 1, 2, 3. Since Q > 0 , the inequality λ1 < 0 holds. Also inequalities λ2 < 0
and λ3 < 0 are satis�ed when βi > s0, i = 1, 2. Therefore the equilibrium point E0 is
stable if

βi > s0, i = 1, 2.

The characteristic equation of the Jacobian matrix J , evaluated at the equilibrium point
E1, is

P (λ) = (λ− a2)(λ2 + b2λ+ c2) = 0,

where

a2 = m2β1
k2+β1

−Q,
b2 = Q− (s0 − β1)( BQ

A+Bβ1
− m1k1

(k1+β1)
2 ),

c2 = (s0 − β1) m1k1
(k1+β1)

2Q.

To consider stability of the equilibrium point E1, Let

R1 =
Q(s0 − β1)(k1 + β1)

2 −Q(k1 + β1)
2 −m1k1β1(s0 − β1)

Q(k1 + β1)
2 +m1k1(s0 − β1)

.

Note that a2 is a real root of the characteristic equation of the Jacobian matrix J at the
equilibrium point E1, therefore conditions a2 < 0, or equivalently β1 < β2 and c2 > 0, are
necessary for stability of the equilibrium point E1 ( Theorem 3.1 and Proposition 3.2).
Since all parameters in chemostat model are positive and 0 < β1 < s0, the condition
c2 > 0 holds. We now consider the following two cases:

(i) If b2 > 0 or equivalently A
B
> R1 then by Theorem 3.1, E1 is stable equilibrium

point of the system Eqs. (3.2).
(ii) If b2 ≤ 0 or equivalently A

B
≤ R1 and

(4.2) 4c2 > b22,

∣∣∣∣∣tan−1(

√
4c2 − b22
b2

)

∣∣∣∣∣ > α
π

2
,

then the equilibrium point E1 is stable ( Proposition 3.2).

In case (ii) the second condition in (4.2), that satisfy the �rst condition, is equivalent to

4cos2(α
π

2
)c2 > b22.

If we let

R2 =
Q(s0 − β1)(k1 + β1)

2

(Q+ 2 cos(απ
2
)
√
c2)(k1 + β1)

2 +m1k1(s0 − β1)
− β1,

then case (ii) follows that R2 <
A
B
≤ R1.

The characteristic equation of the equilibrium point E2 is

P (λ) = (λ− a3)(λ2 + b3λ+ c3) = 0,

where

a3 = m1β2
k1+β2

− L−Q,
b3 = Q− (s0 − β2)( 3Dβ2

2

C+Dβ3
2
− m2k2

(k2+β2)
2 ),

c3 = (s0 − β2) m2k2
(k2+β2)

2Q.
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Let

R3 =
3β2

2(s0 − β2)(k2 + β2)
2 − β3

2Q(k2 + β2)
2 − β3

2(s0 − β2)m2k2

Q(k2 + β2)
2 + (s0 − β2)m2k2

,

like equilibrium point E1, conditions a3 < 0 and c3 > 0 are necessary for stability of
the equilibrium point E2. Positivity of the parameters and condition β < s0, show that
c3 > 0. But inequality a3 < 0 holds provided that β2 < β1. Now, we have the following
two cases:

(i) If b3 > 0 ( equivalently C
D
> R3 ) then by Theorem 3.1 the equilibrium point E2

is stable.
(ii) If −2√c3 cos(απ2 )) < b3 ≤ 0 then the equilibrium point E2 is stable (Proposition

3.2).

Like equilibrium point E1, case (ii) is equal to R4 <
C
D
≤ R3 , where

R4 =
3β2

2(s0 − β2)(k2 + β2)
2

(Q+ 2 cos(απ
2
)
√
c3)(k2 + β2)

2 +m2k2(s0 − β2)
− β3

2 .

4.1. Theorem. Let 0 < α ≤ 1, then for the equilibrium points E0 , E1 and E2 of system

Eqs. (3.2), the following statements hold.

(i) If βi > s0, i = 1, 2, then the equilibrium point E0 is stable.

(ii) If β1 < β2 and A
B
> R1 or β1 < β2 and R2 <

A
B
≤ R1 , then the equilibrium

point E1 is stable.

(iii) If β2 < β1 and C
D
> R3 or β2 < β1 and R4 <

C
D
≤ R3 , then the equilibrium

point E2 is stable.

5. NSFD Scheme for Fractional-Order Chemostat Model

In this section, we present numerical simulation to illustrate the results obtained in
the previous section. By using de�nition of GL derivative and use NSFD scheme for the
model we have:

n+1∑
j=0

cα1
j sn+1−j = (s0 − sn+1)Q−

1

A+Bsn
(
m1sn+1

k1 + sn
− L)xn

− 1

C +D(sn)3
m2sn+1yn
k2 + sn

,

n+1∑
j=0

cα2
j xn+1−j = xn(

m1sn+1

k1 + sn+1
)− (L+Q)xn+1,

n+1∑
j=0

cα3
j yn+1−j = yn

m2sn+1

k2 + sn+1
−Qyn+1,

where tn = nh and cαi
j , i = 1, 2, 3 are the GL coe�cients de�ned as:

cαi
j = (1− 1 + αi

j
)cαi
j−1, cαi

0 = (φi(h))
−αi , j = 1, 2, 3, ..., n+ 1, i = 1, 2, 3,

with

φ1(h) = h, φ2(h) = h, φ3(h) = h.

The previous discretization of system Eqs. (3.2) has the following principles:

(i) φi, is an increasing function of h for i = 1, 2, 3.
(ii) Comparing to the system Eqs. (3.2) in the �rst equation −s changed to −sn+1

and in the second and the third equations changed to sn+1.
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(iii) In the second equation −x changed to xn+1 and in the third equation −y changed
to yn+1.

Manipulating previous discretization we get the following equations:

(5.1)

sn+1 =

−
n+1∑
j=1

cαi
j sn+1−j + s0Q+ Lxn

A+Bsn

cαi
0 +Q+ m1xn

(A+Bsn)(k1+sn)
+ m2yn

(C+Ds3n)(k2+sn)

,

xn+1 =

−
n+1∑
j=1

cαi
j xn+1−j + xn(

m1sn+1

k1+sn
)

cαi
0 + L+Q

,

yn+1 =

−
n+1∑
j=1

cαi
j yn+1−j + yn

m2sn+1

k2+sn+1

cαi
0 +Q

.

5.1. Proposition. The numerical solutions obtained from system (5.1) for case 0 <
αi ≤ 1, i = 1, 2, 3 satisfy

(5.2)
sn > 0 sn+1 > 0
xn > 0 ⇒ xn+1 > 0
yn > 0 yn+1 > 0

Proof. Since cαi
0 > 0 , by recursive relation

cαi
j = (1− 1 + αi

j
)cαi
j−1, j = 1, 2, . . . , n+ 1,

we have cαi
j < 0, j > 0, therefore the system equations (5.1) show that relation (5.2) is

established. For case αi = 1, i = 1, 2, 3, by considering the following system

sn+1 − sn
φ1(h)

= (s0 − sn+1)Q−
1

A+Bsn
(
m1sn+1

k1 + sn
− L)xn

− 1

C +D(sn)3
m2sn+1yn
k2 + sn

,

xn+1 − xn
φ2(h)

= xn(
m1sn+1

k1 + sn+1
)− (L+Q)xn+1,

yn+1 − yn
φ3(h)

= yn
m2sn+1

k2 + sn+1
−Qyn+1.

and solving this system in terms of sn+1, xn+1, yn+1 we conclude that relation (5.2)
holds. �

6. Numerical results

Analytical studies always remain incomplete without numerical veri�cation of the
results. In this section we present numerical simulation to illustrate the result obtained
in previous sections. Now we consider the fractional-order chemostat model in several
cases. For the parameter values m1 = 1.625, m2 = 1.875, k1 = 1, k2 = 1.25, Q = 1 and
initial conditions s0 = 1, x0 = 0.5, y0 = 0.4, numerical solutions of the system Eqs. (3.2)
converge to the equilibrium point E0 (Fig. 1). These values satisfy conditions β1 > s0
and β2 > s0 (for these set of data β1 = 1.6860 and β2 = 1.4286) . For parameter values
A = 0.0005, B = 1.3, k1 = 0.53, k2 = 1, m1 = 1.05, L = 0.002, Q = 0.5 and initial
conditions s0 = 1.4, x0 = 0.1, y0 = 0.4, numerical solutions of the system Eqs.(3.2)
converge to the equilibrium point E1 (Fig. 2). For these values we have A

B
> R1 and

β1 < β2 that ensure solutions converge to the equilibrium point E1 (for this set of data
β1 = 0.9161, β2 = 1.25, A

B
> 0 and R1 < 0). Finally for parameter values C = 2,
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Figure 1. Numerical solutions of the system Eqs. (3.2) converge to
the equilibrium point E0 for di�erent αi with stepsize h = 1.5.
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Figure 2. Numerical solutions of the system Eqs. (3.2) converge to
the equilibrium point E1 for di�erent αi with stepsize h = 1.5.

D = 1.5, k2 = 0.75, m2 = 1.5, L = 0.001, Q = 1 and initial conditions s0 = 2.2, x0 = 0.5,
y0 = 0.4, we have C

D
> R2 and β1 > β2 (for this set of data, C

D
= 1.3333, R2 = −.649,

β1 = 4.0201 and β2 = 1.5 ). With these conditions numerical solutions converge to the
equilibrium point E2 . All numerical solution illustrated in Figs. 1∼ 3, gained by step
size h = 1.5, this step size shows high accuracy of NSFD scheme.
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Figure 3. Numerical solutions of the system Eqs. (3.2) converge to
the equilibrium point E2 for di�erent αi with stepsize h = 1.5.
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Figure 4. Numerical solutions of the system Eqs. (3.2) converge to
the equilibrium point E2 for di�erent αi with stepsize h = 1.5 and
b3 = −0.274

6.1. Remark. Note that the conditions b2, b3 > 0 are necessary for stability of the
equilibrium points E1 and E2 when αi = 1, but in obtained fractional-order model
b1 and b2 might be less or equal to zero and the equilibrium points E1 and E2 are stable
yet. We observe that for parameter values A = 0.0005 , B = 1.3 , C = 0.005 , D = 2 ,
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k1 = 1 , k2 = 2.9 , m1 = 2 , m2 = 3 , L = 0.02, s0 = 5 and Q = 1.31, the sing of b2 is
negative ( b2 = −0.0025), but for some 0 < αi < 1 the numerical solutions of the system
Eqs. (3.2) converge to the equilibrium point E1. Also by using the values, B = 1.3,
C = 2, D = 1.5, k1 = 1, k2 = 0.6 , m1 = 1.25, m2 = 1.5, L = 0.02, s0 = 2.1 and Q = 1,
the value of b3 is less than zero ( b3 = −0.274 ), but the equilibrium point E2 is stable
yet ( Proposition 3.2 and Figs. 4 and 5). Two dimensional plots s − x illustrate better
this matter.
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Figure 5. Numerical solutions of the system Eqs. (3.2) converge to
the equilibrium point E1 for di�erent αi with stepsize h = 0.8 and
b2 = −0.0025.

In Tabs. 1∼3 the NSFD scheme for the system Eqs. (3.2) with forward Euler and
fourth order Runge-Kutta methods are compared when αi = 1, i = 1, 2, 3. This com-
parison done for di�erent time stepsize h and the CPU times of the NSFD scheme are
compared with forward Euler and fourth order Runge-Kutta schemes. As we observe,
the CPU times of NSFD scheme are less than the CPU times of forward Euler and fourth
order Runge-Kutta methods. Therefore the numerical solutions of NSFD scheme have
better manner than Euler and Runge-Kutta methods. Also in Figs. 6 and 7, the forward
Euler and fourth order Runge-Kutta methods are compared with NSFD scheme graph-
ically. The stepsizes that used in these �gures show the accuracy of the NSFD scheme.

7. Conclusion

In this paper the fractional form of the chemostat model is introduced. The stability
of the equilibrium points is studied. Exploiting the NSFD scheme, we study the stability
analysis as well as the dynamic behaviour of mentioned system. Moreover the obtained
numerical results of NSFD scheme are compared with forward Euler and fourth order
Runge-Kutta methods in integer-order case. Numerical results show the accuracy and
e�ciency of the NSFD scheme.
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Figure 6. Numerical solutions with step size h = 0.002 for forward
Euler and fourth order Runge-Kutta and step size h = 0.005 for NSFD
methods converge to the equilibrium point E1 .
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Figure 7. Numerical solutions with step size h = 0.002 for forward
Euler and fourth order Runge-Kutta and step size h = 0.02 for NSFD
methods converge to the equilibrium point E1.
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h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.5 Convergence 0.004342 Convergence 0.005209 Convergence 0.000186
1 Convergence 0.001203 Convergence 0.003202 Convergence 0.000094
2 Divergence Convergence 0.001018 Convergence 0.000053
2.5 Divergence Convergence 0.001018 Convergence 0.000053
5 Divergence Divergence Convergence 0.000008
10 Divergence Divergence Convergence 0.000003

Table 1. Qualitative result of the equilibrium point E0 for di�erent
stepsizes h.

h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.001 Convergence 0.016342 Convergence 0.032029 Convergence 0.002066
0.002 Convergence 0.015242 Convergence 0.022028 Convergence 0.002024
0.025 Convergence 0.013242 Convergence 0.021011 Convergence 0.002003
0.003 Divergence Divergence Convergence 0.002002
0.5 Divergence Divergence Convergence 0.001103
5 Divergence Divergence Convergence 0.000023
10 Divergence Divergence Convergence 0.000023

Table 2. Qualitative result of the equilibrium point E1 for di�erent
stepsizes h.

h Euler CPU time Runge-Kutta CPU time NSFD CPU time

0.01 Convergence 0.003423 Convergence 0.008292 Convergence 0.001146
0.02 Divergence Divergence Convergence 0.000956
0.5 Divergence Divergence Convergence 0.000123
5 Divergence Divergence Convergence 0.000054
10 Divergence Divergence Convergence 0.000004
50 Divergence Divergence Convergence 0.000003

Table 3. Qualitative result of the equilibrium point E2 for di�erent
stepsizes h.
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