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Nonparametric Bayesian approach to the detection
of change point in statistical process control

Issah N. Suleiman∗† and M. Akif Bak�r‡

Abstract

This paper gives an intensive overview of nonparametric Bayesian
model relevant to the determination of change point in a process con-
trol. We �rst introduce statistical process control and develop on it de-
scribing Bayesian parametric methods followed by the nonparametric
Bayesian modeling based on Dirichlet process. This research proposes a
new nonparametric Bayesian change point detection approach which in
contrast to the Markov approach of Chib [6] uses the Dirichlet process
prior to allow an integrative transition of probability from the posterior
distribution. Although the Bayesian nonparametric technique on the
mixture does not serve as an automated tool for the selection of the
number of components in the �nite mixture. The Bayesian nonpara-
metric mixture shows a misspeci�cation model properly which has been
explained further in the methodology. This research shows the princi-
pal step-bystep algorithm using nonparametric Bayesian technique with
the Dirichlet process prior de�ned on the distribution to the detection
of change point. This approach can be further extended in the multi-
variate change point detection which will be studied in the near future.
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1. Overview

Change point is the detection of distributional changes in a time ordered observation
which is essential in the statistical variation analysis. There are various work done on
the detection of change point in statistical data analysis. The general approaches to the
detection of variation in a time-ordered observation can be categorized into classical and
Bayesian approach. One of the earliest classical approach to the detection of change
point is the CUSUM-procedure by Page [14] which was further investigated by Lorden
[10] and Moustakides [12]. On the Bayesian framework Shiryeav [19] was one of the
�rst to present a model in a continuous time where the change point is assumed to be a
random variable with some prior distribution.

Change point detection methods can be further categorized into parametric and non-
parametric approach. The parametric approach incorporate knowledge of the data into
the detection of the variation whereas the nonparametric makes no distributional as-
sumption about the data. This research will focus mainly on nonparametric Bayesian
approach for the change point detection.

The earlier research on change point detection as described in the survey article of Zack
[24] considers where only one change point exist or more. Bayesian parametric approach
as in Broemeling [4], Smith [20], [21], [22] and Cobb [7] uses parametric hypotheses to the
change point estimation. Pettit [16] used ranks to determine the (approximate) posterior
distribution of the change point.

Other comprehensive reviews are given in Bhattacharya [1] and in the book of Brodsky
and Darkhovsky [3] on nonparametric models. Muliere and Scarsini [13] studied change
point detection using the nonparametric Bayesian approach by computing the posterior
distribution for the change point using the Bayes estimate with Ferguson-Dirichlet prior.
They assumed the simplest case where F1 and F2 are priori independent. However this
is not a realistic in many cases as the distribution might not necessarily be independent
and unbounded. In this article we use the nonparametric Bayesian approach to detect
change point by not restricting the distributions to be just priori distributed and also we
develop that into the multiple change point case using the Dirichlet prior.

This paper focuses on using the Bayesian technique to nonparametric approach in the
detection of change point in any statistical process. Bayesian nonparametric approach
provides a Bayesian framework for model selection and adaptation using nonparametric
model which is essential in clustering and as well change point detection. Nonparametric
Bayesian model is a famous and a powerful procedures to many di�cult statistical prob-
lems which includes clustering and change point detection. The key assumption which
underlines nonparametric Bayesian model is the claim that sets of random variables are
drawn from some unknown distribution. The principle goes on further to elaborate that,
this unknown distribution by itself is also drawn from some prior distribution. In this
research we take into account that the unknown distribution is drawn from a prior dis-
tribution which is of Dirichlet process. Some existing research uses the Pitman-Yor [17]
process as the prior. The Pitman and Yor (1997) process which recently was introduced
is based on a two-parameter generalization of the Dirichlet process. Theoretically by
Bayesian we imply that, a prior is needed over the mixing distribution say G , and in
our case the most common prior to use is Dirichlet process, DP. The essence of the
Dirichlet process DP is parametrized by a concentration parameter α > 0 with a base
distribution H which is a prior over distribution (which is probability measure) G which
implies that, for any �nite partition A1, ..., An of any given parametric space, the in-
duced random vector (G(A1), ..., G(An)) is a Dirichlet distributed with the parameters
(αH(A), ..., αH(A)). Bayesian nonparametric mixture uses mixing distribution which
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consist of countably in�nite number of atoms which can be represented as:

G =

∞∑
k=1

πkδθ∗
k

This will be explained further in the methodology. The resulting solution gives rise to
a mixture model which has an in�nite components. The DP induces a distribution over
partitions of integers which ensures that, samples drawn from a DP becomes discrete dis-
tributions as represented in Figure 1. In section 2 we will be discussing the nonparametric
Bayesian approach to change point and build on it the hierarchical Bayesian nonpara-
metric. We will then explain the clustering approach to change point and discuss why
we opted to use a modi�ed Dirichlet process as the prior by performing a full Bayesian.

2. Nonparametric Bayesian approach and change point

Control chart appears to be an e�ective tool for the monitoring of the process in
statistical process control. In some process, multiple correlated quality characteristics
are interested. In such cases, multivariate control charts are applied for the monitoring
process. Control chart therefore in short, serves as structural display that helps us in the
detection of changes that occur in the process. It does this by issuing an out-of-control
signal. Although the time in which the out-of-control signal is given is not the real time
of the occurrence of the change. It still serves as a key notice to the researcher as we are
aware that it gives the signal with a delay which actually depends on the size of the shift.
The real time of the change in the statistical process is termed as the change point.

In general, change point analysis is the process of detecting distributional changes that
occur within some observed time-ordered sequence. Talih and Hengartner [23] expressed
this as a statistical change that occurs in a �nancial modeling such that, the correlated
assets are traded and modeled based on the historical data represented as multivariate
time series. Change point analysis is also used in the detection of credit card fraud
(Bolton and Hand [2]) and other anomalies. In practical applications, the applications
of change point also be found in signal processing: where change point analysis can be
used to detect signi�cant changes within a stream of images (Kim et al., [9]).

In Bayesian statistics, the observed data are considered to be constant with an un-
known parameter which is a random variable. The basic principle of Bayesian statistics
is that any forms of uncertainty are represented as randomness. Assuming we de�ne a
random variables θ within the parametric space T , the interest here is to de�ne some
assumptions on how θ is distributed. This is usually achieved by choosing a speci�c dis-
tribution Q = L(θ) The distribution of Q is referred to as the prior distribution (prior).
Then we can �nally de�ne our Bayesian model M as an observational model such that
Q represents our prior. Generally, data is generated in two stages under the Bayesian
model such that

θ ∼ Q
X1, X2, ..., \Θ

where the observed data here are conditionally iid rather than iid. Our objective here as
Bayesian approach has always been determining our posterior distribution, which can be
de�ned as the conditional distribution of Θ given the data,

Q[Θ ∈ ·\X1, , ..., Xn = xn]

which gives a di�erent form of parameter estimation compared to the classical approach
such that, the value of the parameter remains uncertain with a given �nite number of
observations. This uncertainty is expressed in the Bayesian scheme by the posterior
distributions.
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Therefore a nonparametric Bayesian model is a Bayesian model with an in�nite di-
mensional space. In order to de�ne our nonparametric Bayesian model we need to de�ne
our prior which is the probability distribution de�ned on the in�nite-dimensional space.

3. Hierarchical Bayesian non-parametric model

Nonparametric models are simply statistical model technique to model selection and
adaptation whose model size depends directly on the data size. This implies that, the
sizes of the models are allowed to increase as the data size increases. This characteristics
of the non-parametric model opposes the parametric model technique which uses a �xed
number of parameters. The non-parametric methods have been very much used in the
classical approach to statistical data analysis. Although the theoretical results for the
nonparametric models are typically harder to prove than in the case of the parametric
models. There had been some theoretical appealing features that have been stipulated
for a wide range of models.

Bayesian nonparametric approach introduces the Bayesian framework for the model
selection and adaptation through the principles of nonparametric models. The basics of
Bayesian framework de�nes as the prior and the posterior on a single �xed parametric
space but in case of the nonparametric model, the model size increases as the data
size increases. This give rise to the non-triviality of the nonparametric problems in the
case of the Bayesian formulation. The Nontrivial solution which comes as a result of
the Bayesian approach to the nonparametric problem implies, the use of an in�nite-
dimensional parameter space, and to invoke only a �nite subset from the parameters on
any given �nite data set. Such that, the subsets from the parameters increases as the
data size increases. Therefore, Bayesian nonparametric models can be interpreted as "of
�nite but unbounded" since they are form "in�nite-dimensional parametric space".

Hence a Bayesian nonparametric model is any model that introduce Bayesian frame-
work on an in�nitedimensional parametric space and can be analyzed on a �nite sample
in a manner that uses only �nite subset of the parameters to explain the sample data.
The Bayesian nonparametric model is used to �t a single model that can explain explicitly
the complexity of the data sample or process.

Traditional mixture models which are generally used for the model �tting, group data
into a pre-speci�ed number of latent clusters. The Bayesian nonparametric mixture
model, which in our case Dirichlet process mixture infers the number of clusters from the
data and allows the number of clusters to grow as new data points are observed.

The hierarchical Dirichlet process (HDP) is a prior for Bayesian nonparametric mixed
membership modeling of data groups. Hierarchically, it can be de�ned as

Gd ∼ DP (α,G0)

where, α represents a nonparametric or a semi-parametric prior distribution, and G0

denotes the base measure which is often taken to be a parametric distribution with its
parameters endowed with prior distributions as well.

The hierarchical model here takes its de�nition from the prior and hyper prior from
the features of the Dirichlet distribution which can be represented as follows:

π\ ∼ Dirichlet α ∼ (α/k, ..., α/k)

θ∗k\H ∼ H
zi ∼ π
xi ∼ zi, ϕ ∼ F (θzi)

where,

π : the mixing proportion,
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Figure 1. Dirich-
let process mixture
model

Figure 2. Dirich-
let process mixture
model

k : the number of clusters in each partition,
θ∗k : the parameter in each of the partition of cluster k,
zi : categorical (ϕ ) or categorical distribution,
ϕ : the hyper-prior function with the parameter θzi.

Dirichlet process mixture model arises as in�nite class cardinality limit uses: cluster-
ing and density estimation. This clusterial sequence of the prior can be represented
diagrammatically in the Dirichlet mixture model as indicated in Figure 1.

The Figure 1 represents a Dirichlet process mixture model G with the parameters α
and H.

G\α,H ∼ DP (α,H)

θI\G ∼ G
xI\θI ∼ F (θI)

denotes the sample drawn from the zi with the parameter θI which is a hyper function
(prior). Thus, the hierarchical distribution, G0 ∼ DP (γ,H) where γ the parameter of
the hyper- parametric function, can be de�ned from the property of the Dirichlet process
as represented in Figure 2.

4. The clustering approach

The theoretical de�nition of clustering problem can be represented in the form: given
a data set X = {X1, X2, ..., Xm} and let k be any integer then we can de�ne our clus-
tering problem as a mapping function f : X → {1, ..., k}. Using the Dirichlet process
which is basically used in particularly data clustering. Assuming we observed the fol-
lowing observations in our systems x1, x2, ..., xn and our research objective here is to
subdivide the samples into subsets (clusters). Which in our case will de�ne the di�erence
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in the observational reading which is as a result of the change detected in the reading?
The observations within each cluster therefore should be mutually similar which in our
change point detection case will imply within the speci�cation limits. Recently there is a
growing interest in the approaches to �nding multiple clustering. These methods can be
categorized as sequential (iterative) or simultaneous approach. The sequential approach
�nds an alternative clustering given that there exist one or more clusters in the process.
However, the simultaneous approach tries to �nd multiple clusters simultaneously in the
process. There are, however, a few recent work done on nonparametric Bayesian model
regarding clustering and partitioning: the cross-categorization which utilizes a CRP-CRP
and the Gibbs sampling (application of in�nite models) for inference, and multiple cluster
detection using the stick-breaking approach with a variational inference which allows the
detection of the parameter of the model and the latent variable. Both methods assume
that the feature in each clusters are disjoint and accordingly modelled as a partitioning
problem with the constraint that

∑
ν yd,v = 1 (which implies the elements in each clus-

ters belongs to ν ). In our case we utilize the Dirichlet process for inference and multiple
clustering (partitioning) using the sequential clustering approach. Suppose a process
which has a known number of change points k in the sequence and the location of the
change point is known. We can then de�ne our change points 0 < τ1 < τ2 < ... < τk < T
which partitions the sequence into a k+ 1 clusters such that, the observed values within
a particular cluster are have same characteristics (identically distributed) and observa-
tional values between di�erent clusters are not identically distributed. Harchaoui and
Cappe (2007), Rigaill [18] and Lung-Yut-Fong et al. [11] explained that, the simple and
naive approach to the change point location estimation in this case will be quickly using
computational intractable for k ≥ 3.

Change point have been extensively been analyzed in the course of identifying any
structural change in a sequence of time series observations mostly when the data are of
known parametric form. In this report, we seek to use methods of exploration through
the use of clustering techniques to detect change points in nonparametric Bayesian set-
tings. Such that, no assumptions are made with regards to the distributional structure
of the observed data. Many of the literatures written on Change points focuses primarily
on the o�ine setting where inferences are made regarding the detection of changes by
retrospectively study. But then the online setting which infers to making a sequential
analysis with respect to every new observation received. The detection of distributional
changes is essential as it aids in locating possible change points in previous observa-
tions. The nonparametric change point technique makes no distributional assumptions
regarding the data. This research focuses entirely on using the nonparametric Bayesian
approach to clustering in detecting the change point. An overview of parametric o�ine
techniques can be found in Eckley et al. [8]. The �gures below represent the output of a
simulated data which shows the occurrence of change point as a result of various factors.

In Figure 3 the means of the simulated data was varied and simulated which clearly
gives a signal of the variation in mean at the point 200 as can be seen from the output
above. Also in Figure 4 the variance of the data samples was varied and the output from
there equally shows the occurrence of change point but this time as a results of change in
variance. A similar analysis was done when the data sample was simulated from di�erent
distributions and also varying regression pattern as in Figure 6 and Figure 5 respectively,
in which case the variation as a results of change point occurring was equally observed.
In summary what we want to explain is that, change point can occur as a result of many
factors among which is explain using the Figures 3-6.
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Figure 3. Change in the
mean.

Figure 4. Change in
the variance.
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Figure 5. Change in
the regression
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Figure 6. Change in
the distribution

5. Dirichlet process mixture models

The nonparametric approach to clustering here is by performing a full Bayesian on
the model by considering the prior distribution to be a Dirichlet process. To go about
this method of clustering using nonparametric Bayesian approach, we need to de�ne two
basic characteristics:

• The likelihood term (how the data in hand is a�ected by the supposed pa-
rameters). We recall that in the nonparametric model we usually consider the
parameter θ as a function.

Assuming we consider a density estimation problem where the observed data
yi ∼ G, i = 1, ..., n and G is an in�nite dimensional distribution. Inference under
the Bayesian paradigm usually de�nes the completion by specifying a prior for
the unknown distribution G. Then we de�ne our Likelihood term as: p(Y \θ)

• With these we can de�ne our prior distribution on the supposed parametric θ
as: p(θ) where our prior here is de�ned in terms of Dirichlet process.

Therefore, we adapt the mixture model approach to clustering of the partition and
performing a full Bayesian on each clusters. Mixture model by it de�nition is a proba-
bilistic model use to represent the presence of subdivision of elements within an overall
population without the need for any observed data set to identify the sub-division to
which it belongs to. In mixture models, most of the algorithms approaches to clustering
appears to require the need for the number of data clusters to be known in the aim
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of selecting an approximate number. Nevertheless, the Dirichlet process mixture model
(DPMM) happens to provide a new platform of using non-parametric Bayesian frame-
work to explicitly describe distributions over mixture models with an in�nite number of
mixture components. By de�nition, a Dirichlet process (DP) is parameterized by a base
distribution G0 and a concentration parameter or semi-parameter α. Where α is used as
a prior over the distribution G from the mixture components such that for any observed
data points Xi we can de�ne the DPMM as

G\α,G0 ∼ DP (α,G0)

θi\G ∼ G

xi\θi ∼ F (θi)

6. Posterior distribution

LetG ∼ DP (α,H) be any distribution (random) over the space θ such that θ1, θ2, ..., θn
represents an independent sequence drawn from the distribution G. Then, we can easily
infer that the independent sequence θi takes values from the probability space Θ once G
is a distribution over the space Θ. Our research interest here will be to determine the
posterior distribution of G given the observed values θ1, θ2, ..., θn. Letting A1, A2, ..., An
represents any �nite measureable partitions on the space Θ such that nk = #{i : θi ∈ Ak}
also represents the number of observed values of Ak. The essence of partitioning is to use
the sequential approach to change point detection which allows a step-by-step �nding
of change point given an existing one in the space θ (this is explained further in the
methodology).

In a very naive example assuming we have a sample observations which is observed
from a control system, then we can easily simulate this using a sample data containing
n = 100.

7. Methodology

Change point analysis is the process of detecting distributional changes that occur
within some observed time-ordered sequence. We can start laying down our method-
ology by assuming that Z1, Z2, ..., Zτ iid

∼
F1 and Zτ+1, Zτ+2, ..., ZT iid

∼
F2 represents any

independent sequence of time-ordered observations. We would assume throughout this
research that, the time between the observations are non-negative and non-null (i.e. is
�xed or random) such that, our time index will imply time-order.

Now considering a simple (single change point) case, we can always hypothesize
this system with a single change point location say τ . Letting Z1, Z2, ..., Zτ iid

∼
F1 and

Zτ+1, Zτ+2, ..., ZT iid
∼
F2 representing the unknown probability distributions of the two

distributions. In a simple case, we can brie�y describe the distributions of these two
di�erent observation. The hypothesis here will always be to test for the homogeneity
in the two distributions ( H0 : F1 = F2 vs H0 : F1 6= F2). Now theoretically, since
the distributions show a continuous nature in the univariate observational form, we can
apply the Kolmogorov-Smirnov test. So using this test, if our H0 is rejected then we
can conclude by saying there is evidence of change point in the process at τ otherwise
we conclude therefore that there is no distributional di�erence in F1 and F2. The above
case is the setting assume for the case where the change point locaton is known, but we
can modify this setting by assuming instead that the change point location is unknown
but assumes that at most there exit one change point. In this case, the natural way to
proceed to this is choosing as any possible location of the change point based on some
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statistical criterion. We perform the test hypothesis on the homogeneity of the two distri-
butions by de�ning our as a subset from the sets {1, 2, ..., T − 1}. This should necessarily
incorporate the fact that is unknown.

In a di�erent case, assuming a process which has a known number of change points k
in the sequence and the location of the change point is known. We can then de�ne our
change points 0 < τ1, < τ1, ... < τk < T which partitions the sequence into a k+1 clusters
such that, the observed values within a particular cluster are have same characteristics
(identically distributed) and observational values between di�erent clusters are not iden-
tically distributed. Cappe and Harchaoui [5], Rigaill [18] and Lung-Yut-Fong et al. [11]
explained that, the simple and naive approach to the change point location estimation
in this case will be quickly using computational intractable for k ≥ 3. Another remedy
is maximizing the objective function through the use of dynamic programming. In a
more general case, assuming both the number of change point and as well their respec-
tive locations are unknown. In situation, a naive way to estimating will be infeasible.
We therefore deploy the bisection and model selection techniques which obvious are the
popular technique under these conditions.

Now, as the aim of this research is applying the principle of Nonparametric Bayesian
technique using the Dirichlet process prior techniques to change point analysis. Although
the Bayesian nonparametric technique on the mixture does not serve as an automated
tool for the selection of the number of components in the �nite mixture. The Bayesian
nonparametric mixture shows a misspeci�cation model property. To explain this better,
we can perform the Dirichlet process on the data sample of a given size n, then for any
clustering solution which is supported by the posterior (as Bayesian) and as well for
any corresponding �nite and random number of clusters in the process. We therefore can
de�ne the posterior distribution on the number of clusters though it does not imply model
selection technique (since there is a single model involve). By this, the possible values
of the clusters are assumed to be mutually exclusive such that we can simple assume a
solution for the number of clusters. However, for a Dirichlet process we use a random
measure on an in�nite number of sequences. By this we mean, the model assumption
implicit in a DP mixture is that as n→∞, we will surely observe an in�nite number of

clusters.
Bayesian non-parametric or semi parametric frameworks have always been useful in

many statistical applications especially with the clustering techniques. We can start
explain this further by looking at the Dirichlet process mixture models.

8. Dirichlet process application

An intuitive description of the Dirichlet process as in in�nite dimensional generaliza-
tion of the Dirichlet distribution can be made by �rst considering it in a form of Bayesian
mixture model consisting of K components:

π\α ∼ Dir
(α
k

)
, ...,

(α
k

)
θ∗k\H ∼ H

zi\π ∼Mult(π) xi\zi, {θ∗k} − F (θ∗zi)

where π is the mixing proportion, α is nonparametric or a semi-parametric prior distri-
bution and G0 base measure.

We can de�ne the Dirichlet process on a space measure in respect with our observed
data with an in�nitedimensional parametric space. Let (x,Ω) represent any measurable
space with the measure µ = αG0 (unnormalized density) on a �nite, additive, non-
negative and non-null. Then we say that a random probability measure ρµ on (x,Ω)
is Dirichlet process with parameter µ if the following conditions are satis�ed: whenever
{A1, A2, ..., AK} is a measureable partition on the space Ω (i.e. each of the partitions
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µ(Bk) > 0 for ∀k), then the joint distribution of the random probabilities of the parti-
tions can be expressed as ρµ(A1), ..., ρµ(Ak) distributed according to standard Dirichlet
distribution µ(A1), ..., µ(Ak) Ferguson (1973-1974). That is to say, ρµ is a Dirichlet pro-
cess takes it characteristics from the Dirichlet distribution on any �nite partition of the
original space.

Generally, most of the popularly known clustering algorithms require the number of
the data clusters to be known a priori or used as heuristics in the selecting of an approxi-
mated number of clusters. Nevertheless, the Dirichlet process mixture models (DP-MMs)
provides a new technique of using the non-parametric Bayesian framework to de�ne the
distribution over mixture models with an in�nite number of mixture components.

The Dirichlet process has identi�ed as a commonly-used prior distribution for a process
with an unknown probability distribution.

F (.) ∼ DP (θ, F0)

where F0 is a probability measure which represents the prior belief in the distribution F
with the weighted parameter θ (which equally represents the degree of the belief in the
prior from F0. Here the essence of the Dirichlet process is that, it induces a discretized
posterior distribution which serves well in our Bayesian framework. Ferguson (1974),
using a Dirichlet process, the distribution DP (θ, F0) prior for F (.) results in a posterior
mixture of F0 and point masses of unknown observations Xi:

F (.)\X1, X2, ..., Xn ∼ DP

(
θ + n, F0 +

n∑
i=1

)
Such that, density estimation is done with convolution with kernel functions to produce
a continuous density estimate instead of discreteness though it is not a disadvantage in
other statistical applications. We can therefore explain the detection of change point
using the posterior distribution under the Dirichlet process prior in the next section.

9. Simple change point

The general idea of using the Bayesian framework in making inference for a simple
change-point problem can be easily explained as:

θ ∼ π

(X1, ..., Xn)θ ∼ f(x\θ)
Such that the posterior is used to compute the point estimator which represents the
posterior mean θ. The posterior can then be plotted by drawing a large sample of
θ1, ..., θn from the posterior π(θ\X).

Assuming we have any randomly distributed data (X1, X2, ..., Xn) rom any Dirichlet
process which is conditionally i.i.d. according to d.f. F such that f is a DP whose
parameter is also a measure and that X1, X2, ..., Xn\F are are from any nonparametric
distribution which can be expressed in the form:

Xi ∼ F1 i = 1, ..., C

Xi ∼ F2, i = C + 1, ..., n

where C is the change point and unknown. Nonparametric Bayesian inference is carried
out by using the Dirichlet process priors to F1 and F2 . We can therefore write the model
in the form:

P (X1 ≤ x1, X2 ≤ x2, ..., Xn ≤ xn\C,F1, F2)

where C here is the unknown change point. This implies that, the observations (X1, X2, ..., Xn)
are conditionally i.i.d according to F1 up to the time C and i.i.d according to F1 from
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time (C + 1). Now we can then make the inference that, if C = 0 or C = n then there is
no change point in the distribution and hence the Data are conditionally i.i.d as F2 ya
da F1 accordingly.

Cifarelli and Regazzini (1978), the prior assumes that C and (F1, F2) are independently
distributed with probability mass function p(c) and (F1, F2) as a mixture of products of
Dirichlet processes. The prior distribution can then be expressed in the form,

(F1, F2, C) ∼ p(C)

∫
Y(α1(.; θ1))Y(α2(.; θ2)dH(θ1, θ2)

Muliere and Scarsini (1985) studied a special case of this model assuming the distributions
F1, F2 to be independent. Mira and Petrone [15] also by the application of the Gibbs
sampler algorithm approximated the posterior distribution in the above model. This can
therefore be shown that, when α1(.; θ1) and α2(.; θ2) with densities M2f2α1(.; θ1) and
M1f1α1(.; θ2) respectively, as explain above using the probability measure theory, the
likelihood function is:

f(x1, x2, ..., xn\c, θ1, θ2) =
1

M
[r]
1

c∗∏
i=1

M1f1(.; θ1)
1

M
[n−1]
2

n∗∏
i=c+1

M2f2(.; θ2)

Here the sign ∗ implies taking the product over a distinct values only. We can there-
fore make an inference that, the posterior distribution of (C, θ1, θ2) can be computed
using the Bayes theorem. In particular in the continuous case and if the observations
(x1, x2, ..., xn) are distinct, we can therefore de�ne the mass function condition on the
distinct observations,

p(c\x1, ..., xn) ∝ k(c,m1,M2, n)I(c)p(c)

where, for c = 0, 1, ..., n such that, we can de�ne the indicator function of c is,

I(c) =

∫ c∏
i=1

f1(xi; θ1)

n∏
i=c+1

f2(xi; θ2)dH(θ1, θ2)

such that

k(c,M1,M2, n) =
Mc

1M
[n−c]
2

M
[c]
1 M

[n−c]
2

where this expression represents the tie factor within the observations. We will then
apply the discussed method in a case study using a simulated data.

10. Case study

In this section we will illustrate the algorithms for the detection of change point using
the Bayesian nonparametric approach. We will be using command tool in our case study.

We will begin by considering the simple case for the detection of variation of changes
in the system or distribution. For this we randomly generate 100 independent observed
sample from 5 samples (x1, x2, x3, x4, x5). We will try to clarify by starting with the
parametric approach then setup the procedure for the nonparametric Bayesian.

Commands

% Algorithm of the Nonparametric Bayesian approach to Change point

% estimation assuming (X1,... , Xn) are any randomly distributed data from

% nonparametric distribution. Such that;

% X1 ,...,Xn each of the samples with size n=20
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% Simple Case

% H0: X1∼F1 i=1,...,c

% H1: X2∼F2 i=c+1,...,n

% where c represents our change point.

% This implies, performing Bayesian on the two distribution to make

% inference on the distribution.

% Now;

% nonparametric Bayesian infers the use of Dirichlet process. This means

% that; for any measure space with a finite partition {A1,...,An} we can

% define our DP on the distribution such that;

% G~DP(?,G0)

% (G(A1),...,G(An)) ; which means defining DP on the partitions.

% By Definition: Xi\theta~F(x\theta_i), theta~G, G~DP(alpha,G0)

% So here by DP we will define a distribution on the Prior as;

% P(theta)=Beta(a,b) such that for any uniform distribution a=b=1, P(theta)

=Beta(1,1)

N = 100

n1=20

n2=20

n3=20

n4=20

n5=20

mu1=10

mu2=10

mu3=10

sigma = 1

Lambda= 4

x1=normrnd(mu1,sigma,1,n1)

x2=normrnd(mu2,sigma,1,n2)

x3=normrnd(mu3,sigma,1,n3)

x4=poissrnd(Lambda,1,n4)

x5=poissrnd(Lambda,1,n5)

We can then run a distribution �t tool command to calculate the Statistics about
the data (e.g.parameter estimation, Likelihood and Log-Likelihood). Now considering a
simple case of x1 and x2 we run a d�ttool and �nd the descriptive statistics of x1 and x2
from the manage �t option. Since we will be interested in comparing our nonparametric
inference with the parametric inference, we therefore use Bayes Factor to make inference
about the parameter. Hence we can estimate our posterior from the distribution using
the likelihood estimation from the "d�ttool" for both x1 and x2 from the command

L1=Likelihood of x1
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L2=Likelihood of x2

With similar approach let us conduct an application with the simulated data. We intend
to apply the algorithm explained above in this report to detect whether or not the data
set or samples which in this case (x1, x2, x3, x4, x5) are from the same distribution and
use that as a basics to conclude that the variation that is between the samples are due
to a change point which is resulted from the samples coming from di�erent distribution
hence di�erent parametric values.

Using the practical examples from this report, assuming (x1, x2, x3, x4, x5) are drawn
from any simulated values such that, we de�ne a DP prior distribution on our parameter.
We can determine our Posterior Distribution from the expression

f(D\x) = f(x\θ)f(θ)/f(x)

Such that the expression f(x) de�nes our evidence probability which can be de�ne in the
form:

f(x) = Df(x\θ)f(θ)d(θ)

This can be determined from the expression below from the command:

g= Likelihood * Prior

which in this case our Likelihood function is calculated from the samples (x1, x2, x3, x4, x5)

Likelihood = g = f(x\θ)f() = f(x1, x2\θ)f(θ)

where f(x\θ) = Likelihood and f(θ) = B[0.3, 0.3].
Since our observed data samples are from a multinomial distribution whose prior is

de�ned on Dirichlet process then we expect our posterior distribution as well to be a DP
from the Lemma of Dirichlet being a conjugate to multinomial observations. As in our
case study, since our data sets are derived from a multinomial distribution such that,

D ∼ c\p
where p(c = j\θ) = θj . Then the posterior is equally a Dirichlet which can be expressed
in the form:

p(θ/c = j, α) =
p(c = j/θ)p(θ/α)

p(c = j/α)
= Dir(α)

Hence the Posterior can be observed to also be a DP. As in our example, for which is the
hyper parameter (prior parameter). Suppose our data set is represented by {1, 1, 1, 2, 2}
such that, we observed the samples c = {1, 2} from the distribution with the prior
α = {0.3, 0.3}.

Then we can de�ne our Posterior distribution as:

p(θ/c = j, α) = {3.3, 2.3}
Which is equally a Dirichlet process indicating the occurrence of clustering in the process
at those particular points.

If we have two distributions A1 and A2, then we can compare the marginal likelihoods
of each, i.e., compare Pr({xi}|A1) to Pr({xi}|A2) and ask which is better (larger) or
even di�erent. Or, if we have more than two distributions, we can compute the marginal
likelihoods of each and ask which among the set is the largest. The whole point of
marginalization is to eliminate the e�ect that di�erent numbers of parameters have (that
is, distributions with more parameters are more "complex" and thus more �exible, but,
as a result, they assign lower likelihoods to all the data sets they can generate). In
contrast, simpler distributions assign higher likelihoods to a smaller range of data sets,
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and thus should win under this kind of distribution comparison. Thus, marginalization
in the Bayesian framework is a kind of formalization of Occam's razor. Bayes factors are
a slight variation on the general marginalization approach that makes the procedure look
a lot like a likelihood ratio test. That is, a Bayes factor is the ratio of marginal likelihood
of A1 to that ofA2:

% K=(Pr({xi} | A1))/(Pr({xi} | A2))

% The interpretation of Bayes factors is done by heuristic:

% if K > 1 then the result is interpreted as strong support for A1, while

% if

% K < 1, we rule in favor of A2.

% If K = 1,

Then we say that we cannot explicitly make a decision about the distribution or we cannot
tell which of the distribution is better. This is one place where a true likelihood ratio test
o�ers an advantage over the Bayesian approach: in a likelihood ratio test, by assuming
that the data are random variables and thus that the likelihoods (or marginal likelihoods)
are also random variables, the likelihood ratio test can quantitatively estimate just how
close to 1 is "too close to call".

As in this research it was observed that, when the mean of the samples x1, x2 and x3
the decision or hypothesis H0 cannot be rejected, which implies that, the samples x1, x2
and x3 are obtained from the same distribution while in the case of x4 and x5 when the
theta was slightly varied, there was a clear observation of evidence rejecting H0 implying
that x4 and x5 unlike x1, x2 and x3 are not from the same distribution and hence they are
independently distributed. Below are the commands use for the hypothetical inference.

% For z2

n2=20; %number of samples to collect

s=1; % assume standard deviation s=1

mu2; % assume the mean mu2=10

time=-2:0.1:5; %the time series interval

L=zeros(1,length(time)); %Place holder for likelihoods

% Calculate Likelihoods for each parameter value in the range

L2 = exp(-sum((x2-mu1).^2)/(2*s^2))

% neglect the constant term (1/(sqrt(2*pi)*sigma))^N as it will pull down

% the likelihood value to zero for increasing value of N

[maxL,index]=max(L); %Select the parameter value with Maximum Likelihood

display('Maximum Likelihood of A');

display(time(index));

% Bayes Factor;

K=(Pr({xi} | A1))/(Pr({xi} | A2))

B1= L1/L2

n3=20; %Number of Samples to collect

% the process is repeated for B2, B3, B4 and B5

The result no doubt a�rms the theoretical claims. Inferring that, the observed sample
data which were from the same distribution shown a positive test for the null hypothesis
which claims the observed sample data are from the same distribution. Hence no change
point detected. Whiles in the other cases where the sample were randomly simulated
from an unknown distribution, we observed a sudden change in the pattern showing
clearly the presence of change point. The Table 1 shows the values of the simulated data
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from the command from a normal distribution with n = 20 observed data. A cumulative
hazard graph is plotted from the simulated data (x1, x2, x3, x4, x5). The essence of the
cumulative hazard graph is to observe how the observed data points behaves with respect
to the speci�cation limits (cluster: whether it belongs to the same cluster) and the line
of �t which is the targeted value (the targeted value here infer to the change point).
The speci�cation limits are the limits within which we de�ne the quality of a process or
observed data points (same cluster). In this case it shows whether or not the observed
data points comes from similar distribution or not. A density function graph is equally
plotted to observe the normality of the simulated data points. We observed that the
simulated data points (x1, x2, x3) were normally distributed whereas (x4, x5) showed a
nonparametric behavior.

Table 1. The simulated sample of (x1, x2, x3)

Sample no x1 x2 x3
1 8.9109 10.6715 9.1315
2 10.0326 8.7925 9.9699
3 10.5525 10.7172 9.8351
4 11.1006 11.6302 10.6277
5 11.5442 10.4889 11.0933
6 10.0859 11.0347 11.1093
7 8.5084 10.7269 9.1363
8 9.2577 9.6966 10.0774
9 8.9384 10.2939 8.7859
10 12.3505 9.2127 9.9932
11 9.3844 10.884 11.5326
12 10.7481 8..529 8.7859
13 9.8076 8.9311 8.8865
14 10.8886 9.1905 9.9932
15 9.2352 7.0557 11.5326
16 8.5977 11.4384 9.2303
17 8.5776 10.3252 10.3714
18 10.4882 9.2451 9.0744
19 9.8226 11.3703 9.7744
20 9.8039 8.885 11.1174

The Figure 7 represents the empirical density functions for the simulated sample
(x1, x2, x3), where (a), (b) and (c) are the density functions of (x1, x2, x3) respectively. A
density function graphs of (x1, x2, x3) clearly show that they are all normally distributed
about the mean.

The Figure 8 shows the cumulative hazard graph. The essence of the cumulative
hazard graph is to observe how the observed data points (x1, x2, x3) fair with the spec-
i�cation limit and the line of �t which is the targeted value (the targeted value here
infer to the change point). The speci�cation limits are the limit within which we de�ne
the quality of a process or observed data points. In this case it shows whether or not
the observed data points comes from similar distribution or not. The Figure 8 shows a
cumulative hazard of (x1, x2, x3) which clearly with the red line representing the line of
�t clearing showing that (x1, x2, x3) falls within our speci�cation limit. We can equally
infer from this that (x1, x2, x3) appears from the same cluster and hence from the same
distribution.
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Figure 7. The empirical density functions of (x1, x2, x3).

The Figure 9 represents the empirical density functions for the simulated sample
(x4, x5), where (a), (b) and are the density functions of (x4, x5) respectively.

Density function of (x4, x5) indicating clearly nonparametric characteristics because
the distribution is far from the targeted value (change point). The Figure 9 shows clearly
that the sample is not normally distributed as in the case of Figure 7.

The Figure 10 shows a cumulative hazard of the samples, (x4, x5) which clearly can be
observed to have deviated from the targeted value. The line of �t (change point) which
can be seen in the brown line which show the deviation of the samples (x4, x5) from the
con�dence bounds (cluster).

Figure 11 shows the probability plot for the simulated samples (x1, x2, x3, x4, x5).
We can easily observed that, there are clearly two clusters which can be seen. These

clusters are (x1, x2, x3) and (x4, x5). Hence we can easily conclude that the data in each
clusters are have the same characteristics and hence the same distribution but data across
clusters are di�erent and hence from distinct distributions.

11. Contribution

Statistically, there are some cases that, the data observed often do not conform to the
normality assumption. In such cases, using the parametric model in estimation usually
might not be the right method to the data analysis.
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Figure 8. The hazard function of (x1, x2, x3)

Table 2. The simulated sample of (x4, x5)

Sample no x4 x5
1 5 2
2 4 2
3 2 3
4 7 3
5 6 5
6 4 4
7 4 5
8 4 6
9 3 4
10 3 6
11 1 7
12 3 5
13 5 4
14 3 3
15 3 5
16 5 5
17 0 8
18 4 3
19 4 8
20 4 4
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Figure 9. The empirical density functions of (x4, x5).
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Figure 10. The cumulative hazard of (x4, x5)

Here the Dirichlet process distribution appears well in the model analysis. That is to
say, in many cases, extreme values are more likely than would be dictated by a normality
assumption. This is mostly observed when the data is from a �nancial source. The aim
of this research is applying the principle of nonparametric Bayesian technique using the
Dirichlet process prior techniques to detect the change point. Although the Bayesian
nonparametric technique on the mixture does not serve as an automated tool for the
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Figure 11. The probability plot for the simulated samples (x1, x2, x3, x4, x5)

selection of the number of components in the �nite mixture. The Bayesian nonparametric
mixture shows a misspeci�cation model properly which has been explained further in the
methodology.

Considerable research has been done relating to statistical process control aiming to
enhance the quality of product and also reduce the variability in the statistical results or
outcome in the form of industrial, clinical or economic produce. A lot of these researches
adopt the assumption that the observations from a multivariate process are independent.
But then, there is no doubt about the increase in the rate of control chart giving false
alarm in the presence of an autocorrelation.

This research aims at using the Bayesian nonparametric approach to statistical analy-
sis in detecting any variation that occur in control chart and making interpretations using
the outcomes with some practical examples. The researcher achieves this aim by taking
a critical consideration of theories about change point detection and extending it to the
Bayesian nonparametric concept where the observed data are an unknown distribution
or violates the normality assumption. The researcher updates the posterior distribution
using the likelihood function putting in mind the conjugate Dirichlet priors. Such that
if the distribution and the prior distribution is from a particular distribution then the
posterior distribution will equally be from same distribution (example if the distribution
comes from a multinomial distribution with the prior distribution equally de�ned from
the multinomial distribution then the Posterior will equally be a multinomial distribu-
tion).

Researchers for many years have worked on �nding more e�cient techniques from the
use of these paradigms in designing models that can be used analytically in developing
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a more scheme for a better inference and decision making. A lot of these research focus
on how to de�ne the limits of the control chart using variety methods. The use of the
control chart serve well for both statisticians and companies as it give a much better and
more e�ective way for statisticians to make a good inference and equally serves as an
e�ective ways for companies to maintain and improve product quality and standard.

12. Conclusion

Parametric model operates on restrictive assumptions that does not con�ne with many
real world process and applications that exhibit behaviours that are not well de�ned.
It is often di�cult to justify the use of parametrric models in changees detection in
a process or system due this reasons. This paper deals with procedures that can be
adapted to detect change points without making any restrictive assumptions. We have
therefore been able to a�rm that the nonparametirc Bayesian approach gives a statistical
approach to the detection of any variation that occur in any statistical process by making
an interpretations using the outcomes with some practical examples from a simulated
values. We achieved this aim by taking a critical consideration of change point theories
and extended that in the Bayesian nonparametric concept. The posterior distribution
was also updated using the likelihood function putting in mind the property of conjugacy
in Dirichlet priors. Giving the step-by-step Dirichlet process approach using clustering in
model mixture but allowing the data to determine the complexity of the model, we clearly
oberved that, the nonparametric Bayesian approach can be used to detect the occurance
of change point in statistical process. I will suggest a further study and expansion of this
�eld in the multivariate case as this study is carried out in the univariate case.
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