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A single pairwise model for classi�cation using
online learning with kernels

Engin Tas ∗†

Abstract

Any binary or multi-class classi�cation problem can be transformed
into a pairwise prediction problem. This expands the data and brings
an advantage of learning from a richer set of examples, in the expense
of increasing costs when the data is in higher dimensions. Therefore,
this study proposes to adopt an online support vector machine to work
with pairs of examples. This modi�ed algorithm is suitable for large
data sets due to its online nature and it can also handle the sparsity
structure existing in the data. Performances of the pairwise setting and
the direct setting are compared in two problems from di�erent domains.
Results indicate that the pairwise setting outperforms the direct setting
signi�cantly. Furthermore, a general framework is designed to use this
pairwise approach in a multi-class classi�cation task. Result indicate
that this single pairwise model achieved competitive classi�cation rates
even in large-scaled datasets with higher dimensionality.
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1. Introduction

In multi-class classi�cation, we have a set of examples each belongs to one of the
M di�erent classes. The task is to learn a classi�cation function which, given a new
example, will predict the class to which the new observation belongs. Learning process
starts by introducing a loss function which measures the error between the prediction
and the actual class of the new example. An empirical risk function is then de�ned over
a training data to estimate this loss accordingly. For instance, in classi�cation tasks, we
try to minimize the cost we pay for incorrectly assigning the examples to the wrong class.

There are two basic schemes in multi-class classi�cation. The �rst one is one-versus-
all (OVA) which we �nd M di�erent binary classi�cation functions, each one try to
discriminate the examples in a single class from the examples in all remaining classes.
For the ith classi�er, we let the positive examples be all the observations in class i, and
let the negative examples be all the observations not in class i. The second scheme, all-
versus-all (AVA), builds M(M − 1)/2 binary classi�ers, one classi�er for separating each
pair of classes i and j. In both schemes, a new example is attained to the class which
has the highest classi�er score. Although, there exist so many studies proposing more
complicated methods for multi-class classi�cation, a recent study [27] showed that the
OVA scheme is extremely powerful, using well-tuned binary classi�ers such as support
vector machines (SVMs), producing results that are often at least as accurate as other
methods. In these approaches, the main problem lies in the fact that one has to �nd
an e�ective way of combining di�erent binary classi�er functions in a single multi-class
classi�cation model.

The critical point in multi-class classi�cation is to have a powerful binary classi�er
rather than a search for much more complex models. The central idea of SVM is to
construct an optimal separating hyperplane over linearly separable data [5]. It can also
learn a large margin hyperplane over linearly inseparable data by using kernels and soft
margin formulations. SVMs also impose a form of regularization by controlling the ca-
pacity of the classi�er function in order to avoid over-�tting or under-�tting problem.
This provides a key support in building powerful binary classi�ers. However, SVM is
originally designed for binary classi�cation and there are two principal approaches for
extending SVM to the multi-class scenario. One approach is to generalize the binary
algorithm to multi-class [25, 15], another approach is to decompose the multi-class prob-
lem into a series of binary problems. Pairwise classi�cation is an alternative technique
for solving multi-class problems by considering pairwise comparisons obtained from each
of the two-class problems [10]. A test observation is assigned to the class that wins the
most pairwise comparisons.

In this paper, we recast the multi-class classi�cation problem in a pairwise setting.
Let us denote a pair formed by two examples from the same class as a positive pair
and a pair formed by two examples from di�erent classes as a negative pair. Then, we
construct a single pairwise SVM model for classifying pairs This pairwise SVM model
is able to identify a given pair, whether it is a positive pair or not. However, in a
pairwise setting n examples correspond to n2 pairwise examples and training a support
vector machine with such amount of data introduces serious computational costs in most
cases with large scaled data. SVMs, in the batch setting, requires the evaluation of the
objective function at each step and this involves basically the summation of a prede�ned
loss over a set of data to be trained. Gradient-based methods must compute this sum
for each evaluation of the objective, respectively its gradient whereas standard numerical
optimization techniques such as variation of Newton's method, and the conjugate gradient
algorithm needs the second-order information of the objective function. As available data
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sets grow ever larger, such classical second-order methods are impractical in almost all
useful cases.

Online gradient-based methods such as Perceptron [19, 16] and its variants [1, 9, 14,
11], by contrast, have a major advantage in large and redundant data sets. In fact,
simple online gradient descent [6, 26, 21] outperforms sophisticated second-order batch
methods in general since the computational requirements of online methods are extremely
reduced by the fact that they only process examples one by one or small sub-samples of
the training data. Therefore, this work depends on two basic ideas related to the problem
setting and the choice of a proper method. First, we know that any binary or multi-class
classi�cation problem can be converted into a pairwise classi�cation problem. This brings
an advantage of learning from a larger data set of pairs. Secondly, traditional learning
algorithms become ine�cient in this setting and in some cases impossible to apply (e.g.
batch methods), we propose to modify our single pairwise SVM algorithm to work with
pairs of examples in an online manner. This brings an advantage of processing pairs
one by one and overcomes the di�culties arising from large scaled data with higher
dimensions.

2. General Framework

We have a set of examples X = (x1, x2, ..., xm),∀xi ∈ Rn. One can think of any
combination of two examples as a pair p = (xi, xj) ∈ P ⊆ X2 and denote a sequence
T = {(p, yp) : p ∈ P} be a training sample drawn according to a probability distribution
over a sample space Z = P×{+1,−1}. An example from T is a triple consisting of a pair
of an n-dimensional column vector of real-valued features and a corresponding label yp
indicating whether an interaction exists between these two pairs of examples. The task is
to learn a suitable function f : P→ {+1,−1} from the training sample. We consider the
linear case where the decision function represented as f(p) = 〈w,Φ(p)〉, where w ∈ Rn is
a vector of parameters that needs to be estimated based on training sample T .

An optimal decision function (optimal hyperplane with the biggest margin) is found
by minimizing the following objective function in the feature space [20]:

(2.1) min
w
‖w‖2 + C

n∑
i=1

ξi with

{
∀i yiŷ(pi) ≥ 1− ξi
∀i ξi ≥ 0

The slack variables ξ = ξ1, ξ2, . . . , ξn allow for some pairs to be on the wrong side of the
margin. For very large values of the regularization parameter C, we have a high penalty
for nonseparable examples and we may store many support vectors. Smaller values of C
softens the e�ect of this penalty and produce better results on noisy problems but, we
may have the risk of under�tting.

Maximizing the dual of this convex optimization problem is a simpler convex qua-
dratic programming problem than the primal 2.1. The coe�cients αi of the SVM kernel
expansion are found by de�ning the dual objective function.

(2.2) W (α) =
∑
i

αiyi −
1

2

∑
i,j

αiαjK(pi, pj)

and solving the SVM Quadratic Programming (QP) problem:

(2.3) max
α

W (α) with


∑
i αi = 0

Ai ≤ αi ≤ Bi
Ai = min(0, Cyi)

Bi = max(0, Cyi).
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Since we have a large number of growing pairs even in moderate size data sets, we
need an e�ective SVM solver to handle these large data sets with large dimensions. A fast
kernel classi�er with online and active learning LASVM ‡ [4] is used to overcome these
types of di�culties. Due to its online nature, it has several advantages in the pairwise
setting. LASVM deals with complexity problems by processing examples one by one and
keeping the most informative support vectors in its expansion. This reduces the amount
of calculations signi�cantly. Another advantage of LASVM is its compatibility for sparse
data sets since the main problem in working with large dimensions, most of the data sets
have a critical sparsity structure. LASVM overcomes this problem using convenient fast
sparse vector products. This brings the bene�ts of learning from a richer data set formed
by the combination of examples and by processing pairs of examples online. LASVM
introduces a support vector removal step which means that the vectors collected in the
current kernel expansion can be removed during the online process. It is also related to
the sequential minimal optimization (SMO) [18] algorithm and converges to the solution
of the SVM quadratic programming problem.

LASVM itself is not suitable for a pairwise setting. Because, in this form, you have to
use its kernel cache to keep the kernel values between pairs and this brings quite expensive
costs. This makes the algorithm unscalable to large data sets. It's also meaningless to
keep kernel values between pairs, because once you have the kernel values between these
examples than you need three operations to calculate the kernel value between any pair.
Therefore, in this study, there are several modi�cations made at the implementation
level in order to adapt LASVM to work in the pairwise setting. We name the resulting
algorithm as pw-LASVM. The �rst main contribution of this paper is the following base
modi�cations to LASVM in order to build pw-LASVM.

• We de�ne the set P and S to keep the indices of the support pairs and the in-
dices of the corresponding examples of the pairs respectively. When pw-LASVM
inserts one pair to its current kernel expansion (process), we insert the index of
the pair into the set P , and simultaneously add the corresponding indices of the
two examples into the set S. We use the set P just to keep the indices of the
pairs, it does not have a kernel cache since the kernel values are calculated for
the examples as we mentioned before. On the other hand, the set S has a kernel
cache which keeps the kernel values between examples.

• All the procedures for processing an example are modi�ed to process a pair of
examples. This includes the calculation of the gradient of a pair, identi�cation
of the τ -violating quadruple (formed by two pairs) with the maximal gradient
and the direction searches.

• Reprocess removes some pairs from P . This corresponds to removing two ex-
amples of the related pair from the set S. Finally all the quantities like the
bias term b and the gradient δ of the most τ -violating quadruple in the P are
computed.

LASVM is an online kernel classi�er introducing a support vector removal step which
means that the vectors collected in the current kernel expansion can be removed during
the online process. It is also related to the sequential minimal optimization (SMO) [18]
algorithm and converges to the solution of the SVM quadratic programming problem.
As LASVM is adapted to work with pairs of examples, it is named as pw-LASVM. It
�rst inserts at least one pair into its current kernel expansion (process) and then searches
for redundant support pairs that are already existed in the current kernel expansion
(reprocess). In the online setting, this can be used to process a new pair at time t. Now,
the pairs in the current kernel expansion with coe�cient αi 6= 0 are called support pairs

‡http://leon.bottou.org/projects/lasvm
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and the indices in the set S of potential support pairs correspond to the indices of pairs.
The coe�cient αi are assumed to be null if i /∈ S.

In a pairwise setting, the structure of pw-LASVM deserves much more attention, since
the process and reprocess steps nicely retain more informative pairs and bail out the pairs
that are not needed in the current kernel expansion. This is most useful in the pairwise
setting where the pairs grow quadratically with the size of the data set.

2.1. Pairwise setting. Let's start with two introductory examples to explain the pair-
wise setting of the problem. First, assume a network formed by a set of proteins where
one can observe several interactions between these proteins according to a particular bi-
ological function. A link is created between two proteins whenever an interaction occurs.
Basically, the data we have from this event is the features of these proteins and a positive
label indicating the interaction. This data can basically be structured in two ways:

- In the direct setting, two proteins are regarded as one example by combining
their features and assigning a positive class membership. A sample of examples
from negative class can also be generated in a similar way considering non-
interacting proteins. If a new protein joins into this network, in order to predict
new links between the new protein and existing ones, features of the new protein
and the features of any existing protein in the network are combined as if a new
example and compared with the examples which were previously formed and a
label is assigned indicating the relation (interacting or non-interacting).

- In the indirect (pairwise) setting, we can think of two interacting proteins as a
positive pair and two non-interacting proteins as a negative pair. There is no
feature conjunction in this setup. Comparisons are made in a pairwise manner
where all combinational relations considered between the members of the two
pairs. In the �rst setup, the problem is de�ned as a standard binary classi�cation
task whereas in the second setting we have a link prediction problem between
pairs of proteins. Consequently, the structure of the data we have also depends
on the problem setup. Finally, this approach can also be applied in binary
classi�cation problems.

In order to learn a mapping from pairs, we need an additional type of structure for
representing a pair in a joint feature space. [2] uni�ed user ratings and item features
in a common learning architecture and gave good examples of designing suitable kernels
for di�erent pairs of examples and also illustrated several ways of combining kernels into
a single kernel. They used tensor products to simply join distinct feature maps. [17]
proposed a kernel method for using combinations of features across example pairs in
learning pairwise classi�ers. In this context, [3] proposed the tensor product pairwise
kernel (TPPK) that converts a kernel between single proteins into a kernel between
pairs of proteins, and illustrated the kernel's e�ectiveness in conjunction with a support
vector machine classi�er. [23] proposed the metric learning pairwise kernel (MLPK) for
the reconstruction of biological networks. [13] proposed a special case of this general
framework where they used Cartesian kernel to speed up the online training process
since, Cartesian kernel has a much sparser structure than TPPK and MLPK. They also
provide generalization bounds for the two pairwise kernels based on eigenvalue analysis
of the kernel matrices.

In this paper, we used TPPK in the conjunction with an element-wise kernel between
examples. TPPK between the pairs p1 = (x1, x2) and p2 = (x3, x4) is given as

(2.4) KTPPK((x1, x2), (x3, x4)) = K(x1, x3)K(x2, x4) +K(x1, x4)K(x2, x3).

With an appropriate choice for element-wise kernel, such as the Gaussian RBF kernel,
the kernel TPPK generates a class H of universally approximating functions for learning
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any type of relation between pairs. We had also examined the performance of MLPK in
all experiments and didn't �nd any statistically signi�cant di�erences from TPPK.

3. Experiments

In the �rst part of the experiments, we demonstrated the performance of the pairwise
setting with respect to the direct setting in two examples from di�erent domains. These
examples have distinct characteristics in dimensionality and sample size. Second part
of the experiments demonstrates the useful application of the pairwise model on the
standard multi-class or binary classi�cation problems. In all experiments, pw-LASVM
is used with a soft margin loss and a small tolerance τ = 0.001 on gradients. Unless
otherwise speci�ed, a grid-search is done for the regularization parameter C in the interval
[0.001, 0.1, 1, 10, 100, 100] and for the γ parameter of the Gaussian RBF kernel in the
interval [0.001, 0.01, 1, 10].

3.1. Pairwise Experiments. In the �rst example, we have two biological networks, a
protein-protein interaction network (von-Mering) [24] and a metabolic network (ligand)�

[22]. A biological network can be regarded as a graph with proteins as nodes and protein-
protein relations as edges. In each network, an edge indicates that the two proteins
are enzymes that catalyze successive reactions between them according to a particular
function. The protein-protein interaction network contains 2617 nodes and 11855 edges.
Each protein is described by a 76-dimensional feature vector, where each feature indicates
whether the protein is related to a particular function or not. The metabolic network
contains 755 nodes and 7860 edges where each protein is described by a 36-dimensional
feature vector. Throughout the text, we denote an interacting pair as a positive pair
and non-interacting pair as a negative pair. We start with forming a positive pairs set
by obtaining all interacting pairs from the network. Then we generate all negative pairs
set from the remaining non-interacting proteins. In order to have a balanced data set we
include all positive pairs and sample randomly from negative pairs set with the sample
size equals to the number of positive pairs. These sets of positive and negative pairs are
then combined to form training pairs. This training pairs data is used to create 3 × 5
cross-validation data sets for the �rst set of experiments. Given a new pair of proteins,
the task is to determine whether it's a positive (interacting) pair or not.

Linear and Gaussian RBF kernels are used as element-wise kernels in conjunction with
the pairwise kernels. A grid search is done for the regularization parameter C and the
parameter γ of the RBF kernel. Best parameter pairs obtained from the grid-search are
given in Table 1. Kernel cache size is set to 256MB.

We compared the classi�cation performance of the pairwise setting and the direct
setting according to the classi�cation accuracy (ACC) and the area under the ROC
curve (AUC). Table 2 summarizes results from 3 × 5 cross validation. We see that the
pairwise settings achieved signi�cantly better classi�cation performances than the direct
setting.

In the second example, we used 20-Newsgroups ¶ data set which is a collection of
approximately 20000 documents organized in 20 distinct newsgroups, each corresponding
to a di�erent topic. Each document is described by a 25736-dimensional vector formed
by frequencies of words occurring in the document. We formed the training pair data set
using documents from two groups related to sports and computers. Two documents in the
same group are considered as a positive pair and as a negative pair if they are in di�erent
groups. Since the number of pairs grows quadratically with the number of documents.

�http://www.genome.ad.jp/ligand
¶http://qwone.com/∼jason/20Newsgroups/
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Table 1. Best parameter values obtained from the grid-search

Data set Setting Element-wise kernel Pairwise kernel C γ

Ligand
Direct

Linear - 1 -
RBF - 1 1

Pairwise
Linear TPPK 1 -
RBF TPPK 10 0.1

von-Mering
Direct

Linear - 1 -
RBF - 1 1

Pairwise
Linear TPPK 0.1 -
RBF TPPK 10 0.1

a C and γ is chosen from [0.01, 0.1, 1, 10, 100]

Table 2. Classi�cation performance comparisons between the direct and
indirect approaches with linear and Gaussian RBF element-wise kernels

Linear RBF
Direct TPPK Direct TPPK

Ligand 0.65 / 0.70 0.77 / 0.82 0.73 / 0.76 0.82 / 0.87
von-Mering 0.68 / 0.73 0.79 / 0.86 0.78 / 0.85 0.84 / 0.90

a Bold numbers indicate statistically signi�cant di�erences from the di-
rect approach.

For 10000 documents, we have 100 million pairs of documents in total. Therefore, it
is impossible to include all the positive pairs existing in the data; a balanced data set
is formed by randomly sampling from the whole set of positive and negative pairs with
sample sizes ranging from 10000 to 250000. Test pairs data set are created in the same
manner as in the training, but using di�erent newsgroups rather than the groups used
in the training in order to have independent training and test sets. Given a pair of
documents, the task is to determine whether these documents are in the same group or
not.

At �rst, we tried to use linear and Gaussian RBF kernels as element-wise kernels,
but we observed that the RBF kernel performs poor in this data set because of the
curse of the higher dimensionality. This conforms with the fact that RBF kernel has
lost the sense of locality [12, 8]. Therefore, we used the linear kernel as an element-wise
kernel. A grid search is done for the regularization parameter C, and we found C = 10
as the optimal value. Kernel cache size is set to 512MB. Since this data set are not
normalized beforehand, all kernel values between examples are normalized in an online
manner during the calculation of the pairwise kernel.

In this experiment, we tried to see the e�ect of enriching the original data by forming
pairs using several combinations of documents. Therefore, we generated training pair
data sets with sample sizes ranging from 10000 to 250000. Results indicated that indirect
setting performs signi�cantly better than the direct setting. Figure 1 shows that the
classi�cation performances of the pairwise setting are increased proportionally with the
size of the training data whereas the direct setting performs poor almost in all cases.

3.2. Pairwise to Multi-class Classi�cation. This section is the second main con-
tribution of the paper which we would like to demonstrate the idea of using a pairwise
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Figure 1. Classi�cation performances in 20-Newsgroups data set
using criteria a)ACC b)AUC

SVM model in a multi-class classi�cation task. Let us start with an introductory example
which is a simple character recognition task. First, assume that each example in the data
set represents a character written in a speci�c font. We coded these characters with a
letter and a number (A1, A2, B1, B3, C1, C2, etc.) in 2. We used A1 and A2 to denote
the binary images of handwritten letter "A" which are written in di�erent fonts. The
task is to recognize these characters and assign the correct label (A,B,C, etc.).

We can think of the whole process in two stages such as the training and the testing.
The �rst step is to preprocess the data in order to make it convenient for pairwise
learning. Therefore, the data is divided into three sets such as train, validation and
test. Then, pairwise train data is formed by taking all pairwise combinations (if possible,
otherwise we randomly sample from all pairwise combinations) in the train set and a
pairwise validation data is formed similarly by taking all possible pairwise combinations
in the validation set. These pairwise data sets are formed by positive and negative pairs
of examples, where we assign a positive label if it includes two examples from the same
class and a negative label if it includes examples form di�erent classes. An online pairwise
SVM model is trained on pairwise train data. Pairwise classi�cation performance of the
trained SVMmodel is evaluated on the pairwise validation data and the hyper-parameters
of the model is tuned. Once an ideal model is built, we proceed to the testing stage.

In the testing stage, consider a test example which we have never seen before, we couple
it with a speci�c number (ex. 100) of train examples. Proceeding in this way, by coupling
test examples with a speci�ed number of train examples (with known labels), we form the
pairwise test data. This pairwise test data is given as an input to the built pairwise SVM
model and the pairwise predictions obtained. Once we have these predictions, we have
the votes of the speci�ed number of train examples for the corresponding test example.
This provides us with the information whether the test example is coming from the same
class of the corresponding training example or not. In other words, every train example
in a pair gives a vote to the test example whether it's coming from the same class or not.
Finally, we simply use the majority vote to assign the test example to the winning class.
The whole process is illustrated in Figure 2.

For the �nal experiments, 20-Newsgroups and MNIST ‖ datasets are used for multi-
class classi�cation. 20-Newsgroups datasets is used again in the �nal experiments in
order to demonstrate the scalability of the pw-LASVM and the above approach. Up to

‖http://yann.lecun.com/exdb/mnist
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Figure 2. Schematic illustration of multi-class classi�cation using pw-
LASVM

Table 3. Pairwise and �nal classi�cation accuracies of best models trained according
to the given process in �gure 2

Nr. of
training pairs

Nr. of
voters

Pairwise
accuracy

Final
accuracy

D
a
ta

se
t 20-Newsgroups 250000 200 90.09 83.00

MNIST 100000 100 95.89 94.00

now, multi-class classi�cation experiments are limited to small-scaled datasets both in
sample size and dimensionality. MNIST dataset is chosen in order to see the performance
of the new approach in a problem with low dimensionality.

In 20-Newsgroups experiments, linear kernel is used as element-wise kernel, pw-LASVM
is initialized with a regularization parameter C = 10. Kernel cache size is set to 1024MB.
Since this data set are not normalized beforehand, all kernel values between examples
are normalized in an online manner during the calculation of the pairwise kernel. In
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MNIST experiments, Gaussian RBF kernel is used with γ = 0.01 as element-wise kernel,
C = 1000 is set for the regularization parameter.

Results of the �nal experiments are summarized in Table 3. Although, these are
not the best results when comparing with the existing methods in the literature, it's
noteworthy that pw-LASVM achieved these classi�cation performances using a single
pairwise model which is totally di�erent from general approaches such as "one-against-
all" and "one-against-one".

4. Conclusion

pw-LASVM is developed by e�ectively modifying the LASVM algorithm as to work
with pairs of examples. Performance of the pw-LASVM is demonstrated in two types of
relational networks. Results demonstrated that, the pairwise approach achieved a better
performance than the direct approach. A general framework is built in order to solve
multi-class classi�cation problems with pw-LASVM. Final experiments indicate that the
proposed approach is scalable to large datasets with higher dimensionality.

pw-LASVM can be used in binary, multi-class classi�cation problems in domains such
as statistics, �nance, information retrieval,collaborative �ltering and social network anal-
ysis where the data is very large with higher dimensionality. On the other hand, in do-
mains like bioinformatics, genetics and biostatistics, since the cost of obtaining a sample
is quite high, we have data sets with small sample sizes in classi�cation or link predic-
tion problems. This makes the model building process much harder because there is
not enough data to validate or even test the model performance. In these cases, this
approach can also be applied since one can extend this data by transforming the classi-
�cation problem into a pairwise setting, and use pw-LASVM as an e�ective online SVM
solver which can work with pairs of examples using suitable pairwise kernels.
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Appendices

The codes developed and the datas used in this paper can be found under the link
http://blog.aku.edu.tr/engintas/publications/




