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EXISTENCE OF ENTROPY SOLUTIONS FOR STRONGLY
NONLINEAR ANISOTROPIC ELLIPTIC PROBLEM INVOLVING
LOWER ORDER TERMS AND HARDY POTENTIAL

E. AZROUL, M. BOUZIANI, AND H. HJIAJ

ABSTRACT. In this work, we give an existence result of entropy solutions for
the following strongly nonlinear anisotropic elliptic Dirichlet problem
— SN | DU(|Du|Pi—2Diu) 4 h(z, u, Vau) 4 [u[Po~2u + |ul*~lu

|u|PO— 2y

=f+u [P0 div ¢(u) in Q,
u=0 on 09,

where Q is an open bounded subset of R containing the origin, ¢ € CO(IR, RY).
We assume that the datum f belongs to L(Q), u is a positive constant and
h(z,u, Vu) is a nonlinear lower order term with natural growth with respect
to |Vul, satisfying the sign condition.

1. INTRODUCTION

In the last decades one of the topics from the field of calculus of variations
and partial differential equations that gained interest is the study of anisotropic
problems, as witnessed by a number of researches that have introduced anisotropic
Sobolev spaces which are the appropriate framework to deal with a class of problems
with non-standard structural conditions, involving a growth exponent p, where
prototype of the differential operator considered is the p-laplacien

i=N
Ap(w) = 5 0,

i=1

P 205,u),

Oz, U

which generalize the p-laplace operator.

Let 2 be a bounded open subset of RY (N > 2), containing the origin with bound-
ary  and let pg,p1,...,pn be N 41 exponents, with 1 < p; < oo fori=0,...,N.
Our aim is to prove the existence of entropy solutions for the following anisotropic
strongly nonlinear elliptic problem

- Zf\;l DY (|D*ulPi~2 D) + h(zx, u, Vu) + [ulPo2u + |ul* " u

(1.1) = f4pR div g(u) i
u=20 on 052,
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with g >0, f € LY(Q), ¢ € C°(IR, RY) and
N(po—1) 1 )
N—po "po—1
The nonlinear lower order term h(z, s,€) : Q x IR x IRY +—— IRY is Carathéodory
functions, (measurable with respect to x in Q for every (s,&) in IR x IRV and

continuous with respect to (s, &) in IR x IRY for almost every x in {2), which satisfies
the following conditions

(1.3) h(z,s,&)s >0,

(1.2) s(x) > max (

N
(1.4) |7z, 5,8)] < U(z) +J’(|S|)Z &l”"

where j : IRY — IRT is a continuous nondecreasing function and [ € L(Q). The
notion of anisotropic Sobolev spaces were introduced and studied by Nikolskiii [35],
and Troisi [38], and later by Trudinger [39] in the framework of Orlicz spaces.
This rise of interest for the study of such spaces was motivated by their physical
applications in the thermistor problem, flow of electroreological fluids and processes
of image restoration (see for example [36], [15] and [5, 28]). It is important to
point out the classic result of Boccardo et al. [10] in which they have studied the
anisotropic equations with right hand side measures

(1 5) —div (j(Du)> = f(.’L‘) in Q,
' u= 0 on 0f,
where j(€) is the vector whose components are |&;[Pi72¢; (i =1,...,N,p; > 1), and

also when f is a measurable function such that [, |f[log(1 + |f|) < co. Antonsev
et al. have studied the uniqueness of weak solutions for elliptic equations of the
following type
—0p, (a;(z,u)|0p, ulP 20,,u) + b(z,u) = f(z)

in a bounded domain Q C IRY with Lipschitz continuous boundary I' = 99 and
particular mixed boundary conditions and they have established a similar result for
the parabolic case. Anisotropic elliptic equations have been considered under many
other différent aspects, for instance with respect to the maximum principle and to
the multiplicity of solutions; see e.g. P. Pucci, V. Radulesco et al. [27] and [32],
while the authors in [8] and [7] proved the existence of solutions of some anisotropic
elliptic equations for a general class of operators of higher order.For more details
concerning the anisotropic problems we refer to [4, 3, 14, 16, 17, 41, 40, 33] and the
references therein. It would be interesting to refer to some Embedding theorems
for anisotropic Sobolev-Orlicz spaces [26] and a fully anisotropic Sobolev Inequality
established by Cianchi in [13]. we can also refer the reader to [24] for some basics
properties of anisotropic Orlicz-Musielak spaces, moreover Gwiazda et al. in [25]
dealt with anisotropic parabolic problems where the N-function was assumed to
be homogeneous in space. we mention also that the author in [37] had treated
anisotropic behaviour in a parabolic problem in a framework of maximal monotone
graphs, possibly multi-valued with growth conditions formulated with help of an
x-dependent N-function.

For the isotropic case, i.e p; = p attention has been focused on elliptic problems with
singularity on its right-hand side particularly the so- called Hardy potential and
its effect that give rise to the existence (or nonexistence) of solutions. Abdellaoui
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and Peral have treated the optimal power in order to find a solution the following
equation
U

||
where (2 is domain containing 0. they assumed that A and ¢ are positive real numbers
and f is nonnegative function under some extra hypotheses. In [30], Mercaldo et
al. were interested on existence and nonexistence for positive solutions to the
degenerated nonlinear elliptic equations

(1.6) —Au=\ + | Aul? + cf (x),

S

—div (A(z,u, Vi) = A\ + f(z)  in Q
17 ||
(1.7) u(z) > 0 on (),
u(z) = 0 on 09,

with © be an open bounded subset of RN (N > 3), 1 < p < N, X and s are
positives numbers, f is nonnegative function in some Lebesgue space, and A :
QO x R x RN — IR™ is such that

Co p

@@ + )7 |€|P < (A(z,t,£),&) for some 0<o<1

which provide a non coercive operator when u — oo. To investigate other problems
of this kind we refer the reader [2, 34, 21, 22]. It is meritorious mentioning that this
type of problems appear in several contexts. The problem (1.7) could be seen as a
reaction model which produces a saturation effect in some solid combustion prob-
lems, while (1.6) is the stationary counterpart of some flame propagation models.

It should be pointed out that it was used for the resolution of this problem the
notion of entropy solutions which was introduced by Bénilan et al. in [9], for the
reason that the data f belong to L!(€). Motivated by the papers [34],[2] and [42],
we try to deal with strongly nonlinear anisotropic elliptic Dirichlet problem by using
the Galerkin method, and to remove the non-existence effect produced by the sin-

—2
gular term ‘“;ZTPO “ by exploiting the regularizing effect of the term |u|*~!u. On the

other hand the function ¢ € C°(IR, IR™) then ¢ does not belongs to (L}, (), so
that proving existence of a weak solution seems to be an arduous task. to overpass
this difficulty we will use some techniques in the framework of entropy solutions.

The remaining part of this paper is organized as follows: This paper is organized as
follows: Section 2 is devoted to introduce some preliminary results including a brief
discussion on the anisotropic Sobolev spaces. In section 3, we recall some technical

lemmas and we state and prove our main existence results.

2. PRELIMINARY
Let Q be a bounded open subset of RY (N > 2),
Let po, p1,...,pn be N+1 exponents, with 1 < p; < oo for i =0,..., N. We denote

ou
ﬁxi

—

p=(po.--..pn), Du=u and D'u= for i=1,...,N,

and we define

(2.1) p = min{po, p1,...,PN} then p>1
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The anisotropic variable exponent Sobolev space W17() () is defined as follow
WIP(Q) ={ue LP(Q) and Diue LP(Q) for i=1,2,...,N},

endowed with the norm

N
(2.2) lulliz = D"
i=0

Ppi-

We define also Wol’ﬁ(Q) as the closure of C§°(9) in WHP(Q) with respect to the
norm (2.2). The space (Wol’p(Q), |ull1,5) is a reflexive Banach space (cf. [31]).

Lemma 2.1. We have the following continuous and compact embedding
Np

N—£7

o ifp< N thenWyP(Q) > LY(Q)  for q€[p,p*[, wherep* =
o if p=N then WyP(Q) s LI() Vg € [p, +o0],

o if p> N then WyP(Q) < L>(Q) N CO(Q).

The proof of this lemma follows from the fact that the embedding W, P(Q)
I/VO1 () is continuous, and in view of the compact embedding theorem for Sobolev

spaces.

Proposition 1. The dual of W, () is denote by WLy (Q), where p/ = (p}, ..., ply)
and pi + ﬁ =1, (cf. [6] for the constant exponent case).

7
i

For each F' € W_l’ﬁ(Q) there exists F; € LPi(Q) for i = 0,1,..., N, such that
N

F=F— Z D'F;. Moreover for any u € Wol’ﬁ(Q), we have
i=1

N
(F,u) :Z/ F; Diu dx.
i=0 /%

We define a norm on the dual space by

N N
IF|_, 7 = inf { SN IFly | F=F-Y D'F with F e LPE(Q)}.
i=0 i=1
We set
761’5(9) = {u: @ — IR measurable, such that Ty (u) € Wol’ﬁ(Q) for any k > 0}.

Note that, a measurable function u verifying T (u) € VVO1 P(Q) for all k > 0, does

not necessarily belong to W, (€2). However, for any u € T, 7(Q) it is possible to
define the weak gradient of u, still denoted Vu.

Proposition 2. Let u € ’761’5((2). For any i € {1,..., N}, there exists a unique
measurable function v; : Q — IR such that
vk >0 DTy (u) = Vi X{|ul<k} A€ T €,

where x4 denotes the characteristic function of a measurable set A. The functions
v; are called the weak partial derivatives of u and are still denoted D*u. Moreover, if
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u belongs to W, (Q), then v; coincides with the standard distributional derivative
of u, that is, v; = D'u.

The proof of the Proposition 2.2 follows the usual techniques developed in [9]
for the case of Sobolev spaces. For more details concerning the anisotropic Sobolev
spaces, we refer the reader to [6] and [17].

3. MAIN RESULTS

Let Q be a bounded open subset of RY (N > 2), containing the origin. First
of all, we can give a simpler definition of an entropy solution of (1.1) as follows.

Definition 3.1. A measurable function u is an entropy solution of the strongly
nonlinear anisotropic elliptic Dirichlet problem (1.1) if

|U|P0*2u
|$|p0

we TgPQ), |ulue LYQ),

for i =1,..., N such that
(3.1)

N .
;/Q|Du

+/ |u|P° 2 uTy (u — ) da + / lu|* " uTy (u — @) da
) )

Pi=2 DD Ty (u — ) da + / h(z,u, Vu)Tk(u — @) dx
Q

Po—2
Qka(u—@)daH—/\ Q|u||$pou dx+z u) DTy (u — ) dz,

for any o € W "P(Q) N L>=().
Our purpose is to establish the following existence theorem:

Theorem 3.2. Let A\ > 0 and f € LY(Q), assuming that ¢ € C°(IR, RY) and
(1.3) — (1.4) hold true. Then, the problem (1.1) has at least one entropy solution u
such that u € Wy'9(Q), with

(3.2) d=(s,q1,---,9n) and lgqi<% for i=1,...,N.
s

3.1. Technical Lemmas.

Lemma 3.3. (see [23], Theorem 15.47) Let (un)n be a sequence in L'(Q) and
u € LY(Q) such that

(1): up = u a.e. inQ,

(ii): up >0 and u >0 a.e. in Q,

(iii): / Up, dT — / u dz,
then u, — u in L'(Q)

Lemma 3.4. Let (up)new be a sequence in Wol’ﬁ(Q) such that u,, — u in Wol’ﬁ(ﬂ)
and

N
(3.3) Z/ (ID*un|P~2D'uy, — |Diu
i=0 79

pi_zDiu) (Diun - Diu) dxr — 0,

then w, — u in Wy P(Q) for a subsequence.

€ LYQ), h(z,u,Vu) e LY(Q), é;i(u) € LPi(Q)



EXISTENCE OF ENTROPY SOLUTIONS FOR STRONGLY NONLINEAR ANISOTROPIC ..67

Proof of Lemma For the proof of (3.4) we exploit some techniques of [1].
Let’s remark that
(3 4)

Z/|Du —D'u pldx—Z/ |D*u,, — D'u

with A; = {z € Q/1 < p; < 2}.Note ©,, = Zi\io Jo (ID%un P2 Diup—| D'u
D'u) dz, then by applying the following known inequality

Pidg.

p’dm+2/ Diu,, — D'u
O\A;

pi*2Diu) (Diu,,—

227P|q — b|P if p>2,
-2 -2 2
(lafP~2a—|b["~2b) (a—b) > (p—1) 1 :a ‘ b||)2p for 1<p<2, Va,b € RR.
al+1b
On the one hand, by virtue of the Holder inequality we get
(3. 5)
i i u’ﬂ — Dlu| ’ 4 i Pi)
Z |D — D'ul|Pi dm—z - (ID"un| + |D u|) dx
\D |+ | Diuf) 5
Zun 1
|D U, — D" U|p7 TREETR) (|Dzun‘ + |Diu|)1’i(22—m)
(|Diuy| + | Diu 2 A, 2 A,
P 2—p;

N

B Z {(/ |D’un - D )3 / D, — D'uf® }
max - . i - . x
= s (D] + D)7 v (D] + D)7

: émx{@% =0 eun =0 ([ 40w+ 10

Pi

2—p;

On the other hand it’easy to check that

(3.6) 0, > Z 9%pi / Up — D'ulP? d.

Q\A

Passing to the limit as n — oo while bearing in mind (3.4) and (3.4) — (3.6), we
conclude that u,, — u in Wy"?

Proof of the Theorem 3.2.

Step 1 : Approximate problems. Let (f,)nemw be a sequence of smooth func-
tions such that f, — f in LY(Q) and |f,| < |f| (for example f, = T,,(f)). We
consider the approximate problem

(3.7)

T, () [P0 2T,
Antin i (2t Vit )+t [Pt T (1) [~ T (1) = f-tpo 28] T (1)

1
|lz[Po + &

where
N
Ayv ==Y D(|D'w[P2D') + [u[Po~2, Pn(s) = &(Tn(s)

i=1

—le ¢n (un) 9
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and

hn(l', s, ) _ h(.’l?,S,é-)

—_M&SS) yi—1,... N
1—|—71Lh(x,s,§)

let’s mention that
|hn(.’£,875)| S n, |h’ﬂ(x’ S,£)| S |h($,8,f)| a‘nd hn($,8,£)8 2 07 Vn € N*

We consider the operator G, : Wol’ﬁ(Q) s WL () by

Ty () [P0~2T,
(Gpu,v) = / b (x, u, Vu)vder/ \Tn(u)|571Tn(u)vdx—,u/ [T (w)] T (u) vdz,
Q Q Q |z|Po 4 =
for any u,v € WD1 P (©). Using the Holder’s type inequality, we deduce that
(3.8)
s | T (w)[Po"
KGru,v)| < [[hn(@; u, Vu) ||y (0] pe + A T (w)]® |v] dz + p A W\vl dx
< Voot Vg ol + * [ Jold g | o] o
Q Q
< Collvlrz-
Moreover,we define the operator R, : Wol’ﬁ(Q) — WL (Q) by
(Rp(w),v) = {(div ¢p(u),v) = — | ¢p(u)Vvdz, forany wu,v€ Wol’ﬁ(Q),
Q

with ¢, (u) = (¢in(u),...,¢nn(n)). Thanks to the Holder’s type inequality, we
have

N
| / ) Vuia| <3 / (5.0 (w)] | D] d
N

(3.9) < ; i ()l | D"

Pi

ClEw>

Lemma 3.5. The bounded operator B, = A, + G, + R,, acting from Wol’ﬁ(Q) into
W=LP'(Q) is pseudo-monotone. Moreover, B, is coercive in the following sense:

<ana U>

ol — 400 as ||vll1,p = o0 for UGWOL]E(Q).
v

Ly

Proof of the Lemma 3.5
In view of the Holder’s inequality and by (3.8) and (3.9), it’s easy to see that the
operator B, is bounded.
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For the coercivity, we have for any u € W, 7(Q),

(Bru,u) = (Apu,u) + (Gru, u) + (Bn(u),v)

™ [ i : Tl
= Z D'up|Pidx + [ hn(z,u, Vo)uds + [ |Ty(uw)|’|ul de —p | ————|u|dz
— /o Q Q o lz/Po+5

N
=3 [ orntwliDl ds
i=17%
p £
> |lullt 5+ /Q T (w) [P da — 2pmP || 1| ull1,5 — Chllullyp
P
> |ullT 5 — Callullz
it follows that

—)— — 400 as |ull1,yp— oc.

1,p

It remains to show that B,, is pseudo-monotone. Let (ux)renw be a sequence in
W,yP(€2) such that

Up — U in Wol’ﬁ(Q)a
(3.10) Buug = xn  in WHP(Q),
lim sup(Bpuk, ur) < (Xn,u).
k—o0

We will prove that

Xn = Bpu and  (Bjpug,ur) — (xn,u) as k — +oo.

We have
(3.11) |Diug [P 2Dy, — |D'ulPi 2Dy in  LP(Q) ask— oo
(3.12) lug|P 2w — [u|P "2 in LP(Q) as k — oo

In view of Lebesgue’s dominated convergence theorem, we obtain
(3.13) | T () |5 T () — | T () | T () in L7 (),

and

| T (ar) [P0 T (), [T () [P0~ T ()

3.14
19 EEE EEE

in  LPo(Q).

It easy to check that (h,(z,ur, Vug))r is bounded in L¥ (Q), then there exists a
function ¢,, such that

(3.15) o (%, up, V) — 0 in L2 (Q)  as k — oo

Furthermore, since ¢,, = ¢ o T}, is a bounded continuous function and ux — w in
LE(Q), by using the Lebesgue dominated convergence theorem, we deduce that

(3.16) Gin(ug) = din(u) in  LP(Q) for i=1,...,N.
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For any v € Wol’ﬁ(Q), we get

(3.17)
(Xn,v) = lm (Bpug,v)
k—o0
= lim Z/ | D¥uy|Pi =2 Duy D' da + hm / (x, ug, Vug)v dz
k—o0

|T Uk ‘po 2T (uk)

2] + T vdx

+ hm / T, (uge) |57 T (g v dae — hm 7
— )D*
kILH;OZ/ ¢z n uk de
ALY
i=0 7%

[T ()|~ 2T

Q |z[po + L Z/ $in(uw)D'v da.

Having in mind (3.10) and (3.17), we obtain
(3.18)
lim sup(By, (u), ug)

k—o0

Pi=2 Dy D' da + / onv dx + |Tn(u)|s_1Tn (u)v dx

N
= limsup{Z/ | Dy, |P? dm+/ b, (22, ug, Vug ) ug dx—i—/ Ty, (uge) |57 T (g Jug, e

k—o0

|T U |p(J 2T uk

|x|P0+ g, dx—Z/ Gin(ug)D P dw}
<Z/|D’u|pldx+/<pnudm+/|T |*71T (u)u dx
e ;
2] + udr — Z ¢z n( Diu dx.

Thanks to (3.13) and (3.14), we have
|

(3.19) / Ty (ur) 57T, (un ) us, dx—>/ T, (w)|* T, (w)u de,
Q Q
and
T ;vo 2T T I)o 2T
(3.20) / [T ()| (k) ug, dx —>/ [ Tn(w)] (u )udx.
|z|po + L |z[po + 1
Due to (3.15) and (3.16), it ylelds
(3.21) /hn(m,uk,Vuk)uk dx—)/gonudx,
Q Q
(3.22) Z/ ®in(uk) D'y, dr — Z/ @in(u)D'u dz.
=179 =179
Therefore

(3.23) hmsupZ/ | Dy, P2 dx<2/ |DiulP da.
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On the other hand, we have
N
(3.24) > / (|Dug [P =2 Dy, — | D'ulPi~2Diu)(Duy, — D'u) dz > 0,
o /0
then
Z/ | D uy P dx > Z/ | D¥uy|Pi =2 Dy D'u da + Z / (|D*u|Pi~2D'u(Diuy, — D'u) de.
=079 i=0 /% i=0 /%

In view of (3.11) and (3.12) we get

N N
lim inf Diuy|Pt dx > DulPi dx.
1]€H_1>£Z/§l| ug da:_Z/Q\ ulPt dx
=0 =0
Having in mind (3.23), we conclude that
(3.25) Jim Z / |Diug [P do = / |DiulPi d.

1=0

Therefore, by combining (3.17), (3.19) — (3.22) and (3.25) we obtain
(Bpug,ug) — {Xn,u) as Kk — oo.

Now, by (3.25) we can prove that

N

and so, by virtue of Lemma 3.4, we get

Pi=2 Dy, — | D*

u pi*2Diu)) (D'uy, — D'u) dx = 0.

up —u in Wol’ﬁ(Q) and D'up — D'u ae.in Q,
then
b (2, ug, Vug) = hy(x,u, Vu) in LPo(Q),
which implies x, = Bn’L_li. Finally, in view of Lemma 3.5, there exists at least one
weak solution u,, € Wy?(Q) of the problem (3.7) (cf. [29], Theorem 8.2).

Step 2 : A priori estimates.

Lemma 3.6. Let u, be a weak solution of the approzimate problem (3.7), then
the following regularity results hold true

(3.26) u € W(}"T(Q) with ¢=(8,q1,--,4N)
N(po—-1) 1
N—po "po—1

where the exponent s verify the condition s > max( ) and 1 <

pPis
q; < 3—:—717 then

D e s(pi — i)
(3.27) Z/ T < C  forall 1<9<T,

N
(3.28) Z/ | DTy, (un)[Pide < C(1+ k) forall k>0,
. Q

with C' is a positive constant that doesn’t depend on k and n.
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Proof of Lemma 3.6
Let 6 > 1 which will be chosen later, we consider the two functions ¢(t) : IR — IR
defined by

T )sion@) and ) = [ i(loap

o(t) = (1—W

It’s clear that o(uy)exp(J(|jun])) € Wi P(Q) N L=(), and 0 < J(c0) < 0.
By taking ¢(uy) exp(J(Jun|)) as test function in (3.7) we get

Dun”
0 —1) Z/ 1|+ | - oxp(J(Junl)) dx—i—Z/ |Du,,

+ /Q hn<x7umwn>so<un>exp< (lun])) dar + /Q 1 P 2t (11) exp(T (1))

/ [T () " T () () exp(J (Jtun)) daz

T, () [PO 2T (w,)
= || ot expfua) oo [T

+; / 61 (tn) D' (9 () exp(J () .

P g ([unl)l o (un)| exp(J (funl)) dz

p(un) exp(J(Junl)) dz

Since ¢(uy,) have the same sign of u,, thus the fourth term on the left-hand side of
the previous inequality is positive. Also, we have
(3 29)

/(bzn un) D* (¢ (un) exp(J ([unl))) d$<2/ |bin(un)| [D"((un) exp(J (Jun))| da

=3 sup Jon(o) / 1D (s (tn) exp(J ([u]))) | diz < Cs.

i—1 IsI<n

Seeing that, |¢(-)] <1 and in view of (1.4) and (3.29) we obtain
(3.30)

o-1) Z [, 3 T 0 ) [ TG ot exp( )

| T () [P0
o lzlro+ 5

exp(J(fun|)) dz + /Q(Ifl + 1) exp(J(lunl)) dz + Cs.

It is clear that

1 1 1
5 S].*W for |Un| zR:maX(QG’I 71,1)

Thus, we have

1 1

- T (u)|?de < T (u)?(1 — ———— ) dx
2/{uan}| () /{uan}| (un)| ( (1+\Un\)9_1>

e (1= e )

IN
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which implies

1 ) 1 1 )
7/ T (un)|* dz = f/ |Tn(un)|5dx+f/ (T ()| e
2 Ja ? {Jun|<R} 2 (lun|2F)

< RO To(uy)* (1= —— ) da.

< gl [ (1= e ) d

Using (3.30), we deduce that
(3.31)

N
|Dun|pl /
0—1 d Tn(un)|® d
z/ G do g [ T ) da

|T un Yfpo—t

R Q|+ p e exp(J(o0)) dz + / (| £ + |7]) exp(J(00)) dz + Cs.
Q

l\.')\»—l

Inasmuch as s > pg — 1, the Young inequality enables us to obtain

T n Po 1 1 d.
/ Tnlun) 77 (T (00)) da < 1/ |Tn(un)|sdz+6’4/ ———
Q

|x|p0 Q |x|s=PoF1

with Cy is a positive constant depending only on s, pg, exp(J(00)) and p. Thus, we
obtain

(3.32)
N
Dl
6—1) Z/ l+| 5 dr + ~ /|T (un)|® dx

Q

1
<RI+ [ — T bewp((ec) [ (1f1+ ) do+ Ca
Q |z Q

S—po+1

N(po—1)
N

dz
Under the assumption s > , the integral / ——po— is finite. Therefore

0 o o

(3.27) is deduced. Moreover, we have
(3.33) / (T ()| da < C.
Q
Taking ¢; such that 1 < ¢; < p; for ¢ = 1,..., N. By virtue of the generalized

Hoélder’s inequality we get
(3.34)

N ' N Diy | 0as
S [ D)o da Z n H(1 +lua) 7|
=179 i=1 || (14 |up \) ol i
‘17,
N a; 4
|D un|p Pi ;6 -5
S (/7d$)1< 14+ |u Pi—%dx—kl) ‘.
;0
We now choose 6 > 1 such that g < s, such a real number 6 exists if
Pi —4qi
1< M that is q < pis

Qi s+1°
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Combining (3.32) — (3.34), we obtain the desired estimates (3.26).
To get (3.28), we have thanks to (3.27) that

T k2 |D1u |p1
Z/|DTk )P dm—Z/ Diuy |Pi dz < (1+ k) Z/ T TP

Step 3 : The weak convergence of (Ti(uy)), in Wol’ﬁ(Q). In order to establish
the weak convergence of (Tj(un))n in Wy ?(2), we begin by proving that (uy,), is
a Cauchy sequence. In fact, thanks to (3.28), we can obtain

N
;)/Q | DT (un, )

Therefore, the sequence (Tj(uy)), is bounded in W, P(Q), and there exists a sub-
sequence still denoted (T (uy)), such that

(3.35) Te(un) e in Wy (@)
Ti(up) = mr  in LE(Q) and ae. in Q.

Iun\<k}

Pide <C(14k)? +kPQ  for k>1,

On the other hand, we have

N N
Z/ | DTy, (w,) [P da > Z/(\DiTk(un)pz_ 1) dz
i=17% i=17% ,

= [IVTk(un)llp — NI,

Thanks to (3.28), we deduce that there exists a constant C5 that does not depend
on k and n, such that

(3.36) IVTk(un)ll, < Csk?  for k> 1.
Thanks to the Poincaré type inequality, we obtain
k meas{|u,| > k} = / | Tk (uy)| dz < / [Tk (un)| dz
{lun|>k} Q

(3.37) < Co|Ti(un)ll
< ColI VT (),

< Csh,
Choosing 6 small enough (1 < 6 < p), we conclude that

— 0 as k — +oo.

1
(3.38) meas{ |u,| > k} < Cs —
ke
For all § > 0, we have
meas{|un—um| > §} < meas{|u,| > k}+meas{|uy,| > k}+meas{|Tk(un)—Tk(um)| > 5}
Let € > 0, using (3.38) we can choose k = k(e) large enough such that
(3.39) meas{|u,| > k} < % and meas{|um,| > k} < %

On the other hand, thanks to (3.35) we can assume that (Tx(u,))nev is a Cauchy
sequence in measure. Thus, for any k£ > 0 and §,e > 0, there exists ng = ng(k, 9, ¢)
such that

(3.40) meas{|Tx(un) — Tk (um)| > 0} < for all m,n > ng(k,d,€).

Wl M
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In view of (3.39) and (3.40), we deduce that

Vd,e > 0 there exists ng =mnp(d,e) such that meas{|u,—un| >0} <e Vn,m > ng(d,¢),

which proves that the sequence (u,), is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u. Consequently, we
have

(3.41) Ti(un) = Tp(u) in WyP(Q),
and in view Lebesgue’s dominated convergence theorem, we obtain

(3.42) T (up) — Tk(uw) in  LP°(Q) and aein €.

Step 4 : Strong convergence of truncations. In the sequel, we denote by
gi(n), i =1,2,..., various real-valued functions of real variables that converge to
0 as n tends to infinity.

Let h > k > 0, taking z, := u, — Th(un) + T(un) — Tk(u), M = 4k + h and
Wy, = Top(zn)-

We also consider 1y (s) = s.exp(As?) where A = (b(k)/(2))2. It is simple to see that
([11], Lemma 1)

Uy (s) — b(k)[ypr(s)| > for any s € IR.

N | =

By using ¢ (w,) as a test function in the approximate problem (3.7) we obtain

N
Diu,
> ) o
+ / it PO~ (w0 e + / I () T (1) ()
Q Q

_ / |Tn(un)|p0_2Tn(un)
= lu’ Q |5[)_|p0 + %

Pi=2 Dy (wn ) D'wn dz 4 | By (2, U, Vg )tg(wy) do
Q

For M = 4k + h, it’s clear that Dw, = 0 on the set {|u,| > M}, and since
hon (2, Upy V)t (wr) > 0 on the set {|u,| > k}, therefore

N

N .
wk(wn) dx + /Q fnwk(wn) dx + Z /Q ¢i,n(un)¢;c(wn)Dan dz.
i=1

i=1 {lun|<M} {lun|<k}
+ (] ) ITk(un)‘po_QTk(un)¢k(wn) dx +/ ‘Tn(un)‘s_lTn(un)wk(wn) dx
wn|<k Q
|Tn(un)|p0_2Tn(Un)
< Yr(wn) dz + | fobr(wn) do
0 jlpo + 1 (wn) A (wn)
N
; {lun|<AM}
Thanks to the Young inequality, we have
T (ug) [P0~ s Wn,
pf o I ite s [ T Pl Cr el
{unl>k}y 2P0+ 3 {Jun| >k} (lunl>k} || T PorT
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and since w;,, = Tg(u,) — Tk(u) on the set {|u,| < k}, then

(3.43)
N
> / | D' g (un ) [P~ D Ty (un )3, (wn) D', dae + / B (5 U, Vi )hg () d
i=1 7 {lun|<M} {lun|<k}
T ut) P22 T (i ()l + / T ()T (o ()
i) 1 ) o n(en)
/ n wk(wn) dx + / fnlllk(wn) dx + Cyg / pof dx dx
| |Po _|_ 1 Q {Jun|>k} |z|7rorT

+Z/{MH<M}¢, (un ) (con) D'y i

Now, we will study each terms in the previews inequality.
Firstly, we have

N

> / | DTy (un)
i=1 {lun|<M}
N

(3.44) = / | DTy (un)
; {lun|<k}
N

=y / DiThs ()

{k<lun|<M}

Pi=2 DTy () ) (wn ) Diw,, da

Pi=2 DTy ()20 (wn ) D Tog (1, — Th(w)) daz

Pi=2 DTy ()0 (wn ) Diw,, da.

on one hand, since |u, — Ti(u)| < 2 on {|u,| < k}, then
Z / DT )2 DT, ) D T 1 — T ) e
{lun|<k}
(3.45) = Z / | DV T 1) [P~ 2D Tt Y () (D Ti (1) — DT (1) it

¥ Z / (DT () P2 D T 1) (0 DV T ()

{E<|unl}

Seeing that 1 < wk(wn) < ¢.(2k), then

Z/k<|u7ll} |DlTk )
< (2k) Z/ | DTy (un)

{k<|un|}

Pi=2 DTy ()Y (Wi ) DT (1) dx|

P DT (u)] da,

and since | DTy (u,,)
that | DTy, (uy,)

Pi=1 is bounded in LPi(£2), then there exists ¢ € LPi(Q) such
pi=1 s ¢ in LPi(£2). Thus,

Z/ | DTy ()
{k<|un}

subsequently

(3.46) Z/K ‘}|DTk Up,)

PimY DTy (u)| do — ¢|D'Ty(u)] dz = 0.
{k<|ul}

PED T () (wn) D' Tk () dir = o (n).
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Taking 2z, := u, — Th(un) + Tk(un) — Tk (u), in the second term on the right hand
side of (3.44), we get

AKMWMWW”NMWMWMMMx
<|un|<

= |DZTJV[(U7L) pi72DiTM(un)Di(un - Th(un) + Tk(un) - Tk(’u)) dx
(< un| <MY 2| <2k}
>= |DZTM (un)|pl_2DlTM(un)w;c (wn)Dl (un — Ty (u))'X|un|>h dx
{k<|un|<M}
- | D" Ty (un) [P~ 2D Ty (g )t (i) D T (1) Xy | <0 AT
{k<lun|<M}
> —4.(2k) | DTy (un) [P~ | DTy (u)| d = 0.
{k<|u|<M}

Similarly to (3.46), we can prove that

(3.47) Wl (2k) /{ a1 TP DT (@) d = 210

By combining (3.44) — (3.47), we obtain

(3.48)
N

S| DT
{lun|<M}

i=1

N
>3 [ DT
=1

P2 D T () (wn ) D' w,, d

Pi=2 D'Ty(tn )y, (wn ) (D' T (un) — D*Ty(u)) da + 2(n).

Therefore, we have
(3.49)

N
> [ (0T
2:1N

< / 1D T ()
Z {lun|<M}

=1

N

- [ 10T
N 1=1
S;A DT ()

[un <M}

Pi=2 DTy (uy) — | DT (u)

Pim2 DT (w)). (D' Ty (un) — D"Tie (), (wn) dz

Pi=2 D Ty (wn ) (wn ) D'w,, da

Pi=2 DTy (u) (D T (wy) — DTy ()} (wn) da — e2(n)

Pi=2 D Ty () (wn ) D' w,, da

+15.(2k) /Q | DTy, (w) [P~ | DTy (upn) — DT (u)| dz — e2(n).

For the second term on the right-hand side of (3.49), since | D*T},(u) [P~ is bounded
in L7 (Q) and DTy (uy,) — DTy (u) in L (), then

(3.50)  v.(2k) /Q | DTy (w) [P~ | DTy (u,) — DTy (u)| dz = e3(n) as n — 0.
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Consequently, we deduce that
(3.51)
N

Z/Q (| DTy (un) [P "2 DTy (up) — |D*Tyo () [P "2 D" Ty (w)) (D" Ty (un) — D*Ti (1)), (wy,) da

< Z / | D T p ()P 2D Ty (un )00 (i) D'wy, da + £4(n).
i—1 7/ {lun|<M}

Secondly, we deal with the second term on the left-hand side of (3.43). In view of
(1.4) we have

|/ B (@, Uy, Vg )0g (w) d:z:|
N
l n ] i n pi -
S/{lun|<k} @)lpulw )|d9€+](k);/ﬂ|D T (wn)[P* thr(wn)| da

N
/{lunKk}l(ac)|1/1k(wn)|dasJrj(k)g;/Q (|DiTk(“n)|pi72|DiTk(Un))DiTk(un)|1/)k(wn)|dz

< /{ @) de

N
+5(k) Z/Q (ID" T (un)|P* 2 D" Ty, (un) — | D' Ty (w) [P > DT (w) )
o=l )
(D'Tk(un) — DTy ()|t (wn)| d

N
+j(k)Z/QIDiTk(U)I”i*zDiTk(U)(DiTk(un) = D'Tio(u)) 9w (wn)] dz

+j(k)Z/Q(|D1Tk(un)\Pf?DZTk(un))DlTk(u).

It yields
(3.52)

N
iy / (1D T ()P~ DTy (1) — | DT () [P~ DT (u))
(DT () — DT () 1 (wn) | da
2|l Vi) del - [ )l do

{lun\Skiv {lun|<k}

~i0) 3 [ DT DT 0 (D Tel) = DTl do
ZEl

5003 [ (D' Tuwn) P2 DT (0,)) DTl

Regarding the third term on the right-hand side of (3.52), due to (3.50), we obtain
(3.53)

N
| [ ID TP D T ) (DT () = DTyl )| o

N
< m(zk)Z/ |[D"Ty, (w)|P > D' Ty (u)| |D'Ti(un) — D'Ti(u)| -0 as n — oo.
=179
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Concerning the fourth term of the right-hand side of (3.52), knowing that | DT}, (u,,)
is bounded in L?i (€2), then there exists y € LPi () such that | DT} (u,, )
~ in LPi(Q) and, by applying

DT (u) |k (wn)| = DT (w)|bn(Tor (w = Tu(w))]  in LP(Q),

we deduce that

P2 DT (u,)
Pi=2 DTy, () —

/sz (|D2Tk(un) p”_QDiTk(un))DiTk(u)\wk(wn)| dx

- / YD Ty, (w) [t (Tor (u — Ty (u)))] = 0.
Q

For the second term of the right-hand side of (3.52), using the fact that ¥y (w,) —
Ui (Tor (u — Th(w))) weak-* in L>°(Q) as n — 400, then

(3.55) / (@) [ (wn)| da — @) [ (Tor (u = Th(w)))| dz =0
{lun| <k} {lul<k}

By combining (3.52) — (3.55) we conclude that

(3.54)

| / B (2, Uy Vg )0k (wi) dx| +e5(n)
{lun|<k}

N
(356) ik 3 /Q (ID* T (un) [P~ D" T (un) — |D* Ty (w) [P~ D Ty (w))
i=1

(DT, (u) — D*Ti(u)) [ (wy,)| d.
As a third estimate, we have
/ ‘un‘po_zunwk(wn) dx
{lun <k}
= /Q (1T (un) [P0 =2 T () — T () [P~ 2 Tho(u)) (T () — T (w)) exp(Awy, ) da
+/ [T (u) [P~ T (u) (Th (un) — T () exp(Awy ) dar
Q

- | T () [P~ T () (T () — T (w)) exp(Aewy, )daz
{lun| >k}

> /Q (1T (wn) PO~ T () — |Tio(w) [P0~ T (w)) (T (un) — Ti(w))dae
—eXP(A(2k)2)/Q|Tk(U)|”°_1\(Tk(un) = Ti,(u))|dx

—exp(\(2k)?) EPo N (T (uy) — Th(u))|da.
{Jun |2k}

Thanks to (3.42), the second and the last term on the right-hand side of the previous
inequality converges to 0 as n — oo. Thus, we obtain

/Q (1T (un) PO~ T () — | T (w) [P Ty (w) ) (T () — T (w))dax
U |PO 2 unthr (wy) dz + £6(n).
S/{lunlﬁk}| P2 (w) der + ()

For the fourth term of the left-hand side of (3.43). The Lebesgue dominated con-
vergence theorem give us

T ()"~ T (un) — [T (W) Ti(w) - im L(Q),

(3.57)
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and

n— oo

lim / T, ()|~ () ok (w) da|de
{|un‘Sk}

< k* lim [¢r (wn)| dx

7700 J{un|<k}

= ks/ 'l/}k(TQk(U — Th(u))) da: = 0,
{lu|<k}
it follows that

(3.58) lim T3 ()|~ T (1 )00k (W) diz = 0.

700 J{Jun|<k}

Concerning the first term on the right-hand side of (3.43), by virtue of the Hélder’s
type inequality and as above we have

(3.59)
|Tn(un)|p0_2Tn(u")
= n d
ex(n) / a ¥ I Vr(wy) dz
<Kl— . Yilwn)| —0 8 mooo
|2[Po(®) || =57 (@) LP=T ({Jun|<k})

also, due to the weak-* convergence of 9y (wy,) in L>(Q2) we have

(3.60) / frn Yi(wy) doe = / f e (Tog(u — Th(u))) de + es(n).
Q Q
once again the theorem of Lebesgue allows us

(3.61) lim Toe(wn)l / [ (Tor(u = Tr ()] -
(lul>k}

n—oo £os Loz
{‘Um‘>k} ‘SC s—potl |x s—potl

Concerning the last term on the right-hand side of (3.43), we have for n large enough

[ bl Dl do
{lun | <M}
= /Q i (T ()0 (Tok (u — Th () D Tog (u — Th(u)) d + £9(n)

By using W;(¢) = fot $i ()Y} (s — Th(s))ds, we have W; € C'(IR) and W;(0) = 0. By
applying the Green formula, we have

A Gi(Tar (w) U (Tok (u — Ty (u))) D Tog (v — Ty (u)) da
= / bi(w)by, (v — Th,(u)) D'u da

h<|u|<2k+h}
= / Gi(Tot1 (W) Y3,(Tonn (1) — Ty (w) D' Top o, dze
{lul<2k+h}
Jiren i (Th(u)) V3, (Th (w) — Tn (w)) DT, dz
= [ DTty de = [ DWTi(w) do
= / Wi(Togsn(u)).n; doe — / Wi(Th(w)).n; de = 0.
o0 o
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Consequently, we get

(3.62) / Gin (U)W} (W) Diw,, da = €10(n).
{lun|<M}

Consequently, taking into account (3.43), (3.51) and (3.56) — (3.62), we obtain
(3.63)

IR
DTy (uyn) — D'Ty(u)) da

+/ (1T (wn ) [P ™2 T () — | T3 () P> T () (T (un) — Tio(w)) da
Q

Pi=2 DTy (uy,) — | DT (u)

Pim2 DTy (u))

N
<> / | D Tag (1) [P~ 2D Ty () (w ) D, dat
i=1 71

[un | <M}

{lun|<k}

+ ‘uﬂ‘p[)iQunwk(wn) dx + 810('{1)

{lun|<k}
< [ 1Tty ar oy [ Tl T

dx + 611(71,)
{lu|>h} |

therefore
(3.64)

N
Z/Q (ID" T (uy)
T (D'Th(un) — DiTy(w) da

+/ (1T (un) P2 Ty () — T (w) [P 2T (w)) (T (un) — Ti(u)) dac
[Vn (To (u — Th(u))|

PQs
s—po+1

Pi=2 DT (uy) — | D Th (u)

Pim2 DTy (u))

Q
< Z/Qf e (Ton(u — Ty () da + 2Cs dz + e11(n)

{Jul>h} |z

N —1 1
Since M < s, we have Pos < N then ———— € LY(Q).
N —po s—po+1 |z|7=roF1
Finally , we conclude by letting h and n goes to infinity in (3.64)
(3.65)

Pi=2 DTy (uy,) — | DT (u)

P2 DTy (w) ) (D' T (uy) — DT (u)) da

N
Jm 3 [ (9T

1=

+ / (1T () PP T () = [T () [P0 2T (wn)) (T () — T () dx) =0.
Q
In view of Lemma 3.4, we conclude that

(3.66) Ti(un) — Ti(u)  strongly in Wol’ﬁ(ﬂ),
‘ Diu, — D'u a.e. in  Q fori=1,...,N.

Step 5 : The equi-integrability of the nonlinear functions. Thanks to
(3.66), we get

(3.67) B (@, U, Vuy) — h(x,u, Vu) ae. in €,
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and we have also

(3.68) Ty (un)|* T () = |ul*tu  ae. in 9
Po—2 Po—2
(3.69) T () [P0 () ™2
ol + 1 ER

In order to prove the uniform equi-integrability of these functions, we take T} (u,, —
Ti(up)) as a test function in (3.7), and since 71 (uy, — Tk (uy,)) have the same sign
as u, we can obtain

Z/ Z4un|’” dx + / B (@ Uy, V) Ty (g, — Tr(uy)) da
k<\un\<k+1} {lun|>k}

T (un) |*[T1 (wn, — Tie ()| da
{lun|>k}
|Tn(un)|p071
<up —_
{up|zk} 2P0+ 3
N .
+ Z/ ®in(un)D'uy, d.
i=1

{k<|u,|<k+1}

1T (tn — T ()] i + / fol da

{lun|>k}

Note that
/ B (2, Uy V) Th (U, — Ti(uy)) dx
{lun|>k}

> o (211, Vi YT (111 — T (10 et = / o (2, 1, V)| da
{|un|>k+1} {lun|>k+1}

Let’s consider ¥, ,, = fot ®in(s)ds, we have ¥,, € C*(IR) and ¥, ,,(0) = 0. By virtue
of Green formula, we obtain

f{k<|un |<k+1} ¢1 n(un)Dlun dz
/ Gin (Ths1(un)) D" Tk+1(un ) dx — / ¢in(Tk(uy)) D" Tk(un) dx

/Dz o (T (1) dx—/ DI, (Th(un)) d = 0

Thanks to Young’s inequality, we have
T, (un po—1
pf o B, - D)) s
(lun2ky 2P+ 5

1
<3 (T, (1) T (s — T ()] iz + o /
{lun|>k} {lun|>k} |$

it follows that

T (un — T (un))|

sPQ
S—po+1

dx,

! T, (1) [P0~
/ ‘h"(x’u”7 vun)| d':l: + 5 / |Tn(un)|s dl‘ + 'Ll,/ % d.’E
{lun|>k+1} 3 {un|>kt1} (unl>kt1}  |zPo + 2

T n T n
{lun|>k} |1/'|‘S_’)0+1 {lun|>k}

Hence, for any 6 > 0, there exists k(d) > 0 such that

(3.70)
|Tn (un)|po_1

5
{lunl2k(9)} {Jun|>k(5)} (un>k)} 2P+ 5 2
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Now, let E be a measurable subset of {2, we have

(3.71)
Tn n po—1
/ \hn(w,umvun)ldaw/ T do + [ Bl 0
E E E |x|P0 + 2
= V(2 Tis) (1), V(o) (1) | e + Tk (s) (un)|® dz
En{lun|<k(5)} T S En{|un|<k(5)}
o—
+/ M dac—i—/ | P (2, U, V)| dz
Erfunl<k@) |2+ {lun | 2K(8)
T n) [P0
+/ T (un)|* da +/ %
{|Un|2k(6)} {‘Un\Zk((S)} |I|P0 —+ E
On other hand, we have
N
J o Tig 1), Vs ()t < (Z<x>+j<|k<a>>2|pi|m
En{|un|<k(6)} B {un|<k(5)} 2

Then, thanks to (3.66), there exists §(d) > 0 such that : for any E C Q with
meas(E) < 5()
(3.72)

[P (2, The(5) (Un ), Vo) (un)| dz + / [Th(5)(un)|® dx
C BO{Jun|<k(5)}
T (5) (un )P

+ e
Enflunl<k@)} |2+ 5

En{|un|<k(d)}

N | >

Finally, by combining (3.70), (3.71) and (3.72), one easily has
(3.73)

T/n» n po 1
/ |hn (2, Up, Vug) |d$+/ T (un)|® dx—|—/ | = |ZO_'|_ dx <§ with meas(F) < 8(d),

T (un) [P~ 2T,
We deduce that (A, (2, un, Vin))n, (| Tn () 5@ 1T, (w,)), and (| n(tn)| n(un))

jwfpo +
are equi-integrable, and in view of (3.67) — (3.72) and Vitali’s theorem, the following
convergences are established

(3.74) B (@, Uy Vi) — h(2,u, Vu) in LY(S),
(3.75) T (un)|* 1 T (un) = [ul*tu in LY(Q),
and

(3.76) L] ST BN Ul T 7Y

ol + 3 R
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Step 6 : Passage to the limit. By taking Ty (u, — ) as a test function in (3.7),
with ¢ € Wi P(Q) N L>®(Q), and choosing M = k + ||¢|s0, we obtain
(3.77)
N
Z/ | Dy P2 Dy D' T (4, — @) da + / hon (2, U, Vun )T (uw — @) da
— Ja Q

t/ﬁWM“TWJMw—@M+/M$“%mMVWMx

Q

()P0 2T,
ECES!

N
+ /Q foTk(un — ) de + ; /Q gbi,n(un)DiTk(u — ) dx.

On the one hand, as soon as |u,| > M we get |u, — ¢| > |un| — [|¢|loo > k, then
{lun — @| <k} C {Jun| < M}, it follows that

[
=AWHMM

=A(IDiTM(un)lpi_zDiTM(un)— | D[P 2 DY) (D' Tar (un) — D'0)X{ju,— gl do

+/ |D'p
Q

According to Fatou’s Lemma, we obtain
(3.78)

lﬂgZ/W
N .
zZ/w%m
=170
N
+ lim inf /|Di<p
N .
=170
N .
= Z/ ai(z,u, Vu)D'T(u — ¢) dx.
=170

=p )Tk(un*W) dx

Pi=2 D'y DT (w, — ) da

p’_QDlTM(un)(DZTM(un) — Di@)Xﬂun*tﬁ\Sk} dx

Pim2 Do) (D Tas (tn) — D' ©)X{jur—p|<k} da.

Pi=2 D'y, DT (uy, — ) da

)P 72D Ta (u) — [ D'

P2 DY) (D' Tar (1) — D'@)X{ju_ )<k} da

Pim2 DY) (D*Tas (u) — D' ©) X {ju—p|<k} d

Pim2 DTy (u) (D' Tar (w) — D*©) X {ju—p| <k} d

On the other hand, we have Ty (u, —¢) = Tk (u—¢) weak—x in L°°(2) and thanks
o0 (3.74) — (3.76), we deduce that

(3.79) / b (2, U, V)T (u — ) de — / h(z,u, Vu)Tj(u — @) dz,
Q Q
(3.80) / | T () |° 7 T () T (1, — @) dr — / lu|* " uTy (u — ) dz,
Q
‘T (un)[P°~ 2T (un) Ju[Po2u
(3.81) T (un — ) do —> T (u — ) dz,

|z[Po + £ o |zfPe
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and
(3.82) [ $aTitun = )iz — [ T p)a.
Q Q

Moreover, since Ty (u, — @) — Tx(u— @) in Wolﬁ(ﬂ) and @ n(un) = ¢i(Tasr(uy)) in
{Jun — ¢| < k} for n > M, we obtain

(3.83) /Qq’)im(un)DiTk(u — ) dx — /Q (bi(u)DiTk(u — ) dx
and
(3.84) /Q \un|p°*1unTk(un —p)dx — /Q |u|p°*1uTk(u — ) dx.

Putting all the terms together, the proof of Theorem 3.2 is now complete.
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