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A SECURE VARIANT OF SCHNORR SIGNATURE USING THE

RSA ALGORITHM

L. ZAHHAFI AND O. KHADIR

Abstract. In this paper we propose a topic on cryptography. It is a digital

signature protocol. Indeed, we have improved the signature of Schnorr based
on the problem of the discrete logarithm to make it more secure. We integrated

the RSA algorithm into our scheme, which secures the signature process even

if the signer uses the same signature key.

1. Introduction

Since the creation of the Internet, communications between people and most of
their transactions have become automatic and take place via this network. However,
any information transferred via the Internet may be intercepted by a non-honest
entity. Hence, the security of this information needs to be strengthened. And this
is the role of cryptography that allows to encrypt all secret data to guarantee its
confidentiality.
Public key cryptography protects the process of message exchange between two par-
ties using secret and public keys. It must guarantee the confidentiality, integrity
and authentication.
Many topics are studied in cryptography. In particular digital signature is an impor-
tant research area. This concept guarantees the integrity of an electronic document
and authenticates its author.
To sign a message M , the signer begins with the creation of its private and public
keys respectively Kpr and Kpb. He then calculates the signature of its message by
an encryption function using its secret key Kpr. The verifier can check the signa-
ture validity using the decryption function and the public key of the signer Kpb.
As all cryptographic protocols, the digital signature is based on hard mathematical
problems. Among them, the discrete logarithm problem [3,11]. It allows to solve
modular exponentiation ax ≡ b [p] with p is a large prime, a a primitive root of the
finite multiplicative group Z/pZ and x is the unknown. Several digital signature
protocols are based on this kind of mathematical problems. We quote the signa-
ture of ElGamal [4] proposed in 1985, and its variant [5] which are among the most
known schemes.
Factorization of large numbers [1,2,7,11] is also a tool used in the digital signatures.
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Since we need to execute factorization to solve a modular polynomial equation like:
xk ≡ b [n] with: k is an integer, x the unknown and n is a large composite integer.
It presents the basic for several encryption systems used in the exchange of sensitive
informations. In 1978, Rabin [8] proposed a signature scheme using the equation:
x2 ≡ b [n] where n is large composite number. In the same year, Rivest, Shamir
and Adleman published a paper in which they proposed a new cryptosystem and a
strong digital signature scheme based on the factorization of large numbers.

In this article, we present a new digital signature scheme. We are inspired by
the work of Schnorr [10]. Indeed, We have improved this protocol to make it more
stronger by integrating the RSA algorithm.

The paper is organized as follows: We recall in section 2 the Schnorr signature.
In section 3, we presents the algorithm of RSA. Then, we show the steps of our
signature protocol in section 4. We end by a conclusion in section 5.

We denote by Z/nZ the finite ring of modular integers for every positive integer
n. We write x ≡ y [n] if n divides the difference x − y with: x, y and n are three
integers. || presents the concatenation operator.

2. Schnorr signature

The Schnorr signature [10] is a cryptographic algorithm proposed in 1990. It’s
based on the difficulty of solving a discrete logarithm problem.
To generate signature parameters, a trusted center chooses a large prime p, a prim-
itive root a of the finite multiplicative group Z/pZ and a one way hash function h.
It selects randomly x ∈ {1, 2, 3..., p− 1} and computes y ≡ ax [p]. The center gives
x to Alice as her private key and y as her public key.

2.1. Signature generation. To sign a message M , Alice follows the steps:

(1) She chooses a random k ∈ {1, 2, 3..., p− 1} and calculates: r ≡ ak [p].
(2) She computes b = h(r||M) where || is the concatenation operator.
(3) Finally, Alice generates: s = k − xb.

So, the signature is the pair: (s, b).

2.2. Signature verification. To verify Alice signature, the verifier Bob performs
the following operations:

(1) He calculates: rv ≡ asyb [p].
(2) Then, Bob computes bv = h(rv||M).

Bob checks if b = bv and accepts or rejects the Alice’s signature.
Indeed, to sign the message, we have: rv ≡ asyb ≡ ak−xbyb [p]. As y ≡ ax [p],
rv ≡ ak−xbaxb ≡ ak ≡ r [p]. Finally, bv = h(rv||M) = h(r||M) = b. The result was
then proven.

Example 2.1. Suppose that the trusted center generates the prime p = 4608587
and a = 2, a primitive root of the finite multiplicative group Z/pZ. It chooses
x = 105 as Alice’s secret key. So, y ≡ ax ≡ 1284681 [p] is her public key.
Alice selects k = 3876528. Then, she calculates: r ≡ ak ≡ 582965 [p]. Assume that
she wants to sign the message M , where: b = h(r||M) = 13211. So, Alice generates
s = k − xb = 2489373.The signature is the pair (2489373, 13211).
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Bob verifies Alice signature as follows:
He calculates: rv ≡ asyb ≡ 582965 [p]. Then, he computes bv = h(rv||M) = 13211.
While b = bv = 13211, Bob accepts this signature.

Remark 2.2. If Alice signs two messages M1 and M1 using the same signature key
k, then her private key x will be disclosed.
Indeed, to sign the messages M1 and M2, Alice calculates: s1 = k − xb1 and

s2 = k−xb2. By subtracting, we find: s1− s2 = k−xb1−k+xb2. So, x =
s1 − s2
b2 − b1

.

3. RSA algorithm (1977 )

RSA’s signature algorithm is the same as encryption. It is based on the problem
of factorization of large numbers.
To generate the RSA keys, a trusted center chooses two large primes p and q and
calculates their product n = pq. Then, it finds ϕ(n) and selects an integer e where
gcd(e, ϕ(n)) = 1. Now, the trusted center can calculate the value of d that verifies:

d ≡ 1

e
[ϕ(n)] as the private key of Alice.

To sign a message M Alice have to solve the fallowing equation: M ≡ Xe [n].
Using her private key d, Alice finds: X ≡Md [n]. So, the verifier Bob checks Alice
signature by replacing the value X in the above equation. Then, he accepts or
rejects her signature.

Example 3.1. Let’s take p = 1319 and q = 1747, n = pq = 2304293. Alice chooses

e = 7 prime with ϕ(n) = 2301228. She calculates her private key d ≡ 1

e
≡ 1

7
≡

328747 [2301228].
Suppose that Alice wants to sign the message M = 1234. So, she solves this
equation: 1234 ≡ X7 [2304293] using her secret key.
X ≡Md ≡ 1234328747 ≡ 152888 [2304293]
While M ≡ Xe ≡ 1528887 ≡ 1234 [2304293], Bob accepts Alice signature.

4. Our contribution

In this section, we present our new signature protocol. We describe the different
steps to sign a message M .

4.1. Description of the protocol. We will insert the RSA algorithm into the
signature presented in section 2. We start by generating the signature keys.
The trusted center generates the keys for both Schnorr and RSA signatures as
follows:

• P = 2pq + 1 where P, p and q are primes.
• A primitive root a of the finite multiplicative group Z/PZ.
• A one way hash function h.
• A Schnorr private key x ∈ {1, 2, 3..., P − 1}.
• The public key y ≡ ax [P ].
• A public RSA exponent e that verifies gcd(e, ϕ(P − 1)) = 1.

• The RSA secret key of Alice is: d ≡ 1

e
[ϕ(P − 1)].

Parameters P, a, y and e are Alice public key. Elements x and d are Alice secret
key. Observe that p and q must be destroyed for security reasons.
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4.2. Signature generation. To sign a message M , Alice follows the steps:

(1) She chooses a random k ∈ {1, 2, 3..., P − 1}. Then, she calculates: r ≡
ak [P ].

(2) She computes b′ = h(r||M) with || is the concatenation operator.
(3) Finally, She generates: s′ = k − xb′.

Now, Alice calculates s and b using the RSA private key d. She executes this two

modular equations: s ≡ s′
d

[P − 1] and b ≡ b′
d

[P − 1]. So, the signature is the pair
(s, b).

4.3. Signature verification. To verify Alice signature, Bob executes these oper-
ations using the pair (s, b) and Alice public keys:

(1) He calculates: rv ≡ as
e

yb
e

[P ].
(2) Then, he computes bv = h(rv||M).

Bob checks if bv ≡ be [P − 1]. He accepts Alice signature if and only if the modular
equation is valid.

Example 4.1. Suppose that the trusted center generates the primes p = 1319, q =
1747 and P = 4608587, a = 2, a primitive root of the finite multiplicative group
Z/PZ. Then, it chooses x = 105 as Alice Schnorr secret key. So, y ≡ ax ≡
1284681 [P ] is her public key. About the RSA keys, we fix e = 7 and d ≡ 1

e
≡

328747 [ϕ(P − 1)], with ϕ(P − 1) = ϕ(2pq) = (p− 1)(q − 1) = 2301228.
Alice selects k = 3876528. Then, she calculates: r ≡ ak ≡ 582965 [P ]. As-
sume that she wants to sign the message M where: b′ = h(r||M) = 13211.
So, Alice have to generate s′ = k − xb′ = 2489373. Then, she finds s ≡ s′d
≡ 2489373328747 ≡ 2856453 [P − 1] and b ≡ b′d ≡ 13211328747 ≡ 3937057 [P − 1].
The signature is the pair, (2856453, 3937057).
Bob verifies Alice signature as follows:

He calculates: rv ≡ as
e[P−1]

yb
e[P−1] ≡ 582965 [P ]. Then, he computes: bv =

h(rv||M) = 13211.
As bv ≡ be ≡ 3937057 [P − 1], Bob accepts this signature.

4.4. Security analysis. Before describing possible attacks we have the next fact:

Theorem 4.2. If an attacker can break our scheme, then he can also break Schnorr
protocol.

Proof. If the attacker can solve the equation h(as
e

yb
e ||M) = be [P − 1], where s

and b are the unknown variables, then he will be able to solve the Schnorr sig-
nature equation h(asyb||M) = b [P − 1]. The protocol that we proposed depends
simultaneously on discrete logarithm problem and factorization. But the Schnorr
scheme is based only on discrete logarithm problem. So, our method is stronger
then that of Schnorr. �

Assume that Oscar is an attacker.

• Attack 1: Using the public key y, Oscar will not be able to find the Schnorr
private key of Alice x. Indeed, he must solve the discrete logarithm problem:
y ≡ ax [P ].
• Attack 2: Using the public key e, Oscar will not be able to find the RSA

private key of Alice: d ≡ 1

e
[ϕ(P − 1)]. Indeed, he must factor the large

number P−1 = 2pq to calculate the Euler function: ϕ(P−1) = (p−1)(q−1).
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• Attack 3: As we have already seen above, if Alice signs two messages
M1 and M2, by Schnorr method, using the same signature key k, then
her private key x will be disclosed. So, the attacker Oscar will be able
to propose se and be instead of Alice that verify the signature equation:
r ≡ as

e

yb
e

[P ]. However, he can’t find the values of s and b since he does
not hold Alice RSA private key. So, even if Alice signs two messages using
the same signature key k the protocol will not be broken.

Remark 4.3. Breaking this signature is very difficult for attackers as there are no
algorithm to solve a modular polynomial equation or a discrete logarithm problem
in an acceptable time.

4.5. Complexity. In this paragraph, we discuss the complexity of our method.
So, let Texp, Tmult and Th the times necessary to calculate respectively an exponen-
tiation, a multiplication and a hash function. To generate her keys y and d, Alice
needs to execute one modular exponentiation and one modular multiplication. In
the signature step, she performs 3 modular exponentiations, one multiplication
and one hash function. To verify Alice signature, Bob calculates 6 modular ex-
ponentiations, one multiplication and one hash function. So, there are 9 modular
exponentiations, 3 multiplications and two hash function. In other words, the total
time Ttot required to execute all the signature operations is:

Ttot = 9Texp + 3Tmult + 2Th

We have: Texp = O((log n)3) and Tmult = O((log n)2), ( see [7] ). And we suppose
that: Th = O((log n)2). So, the final complexity of our signature scheme is as
follows:

Ttot = O((log n)2 + (log n)3)

Finally, we assume that the protocol works on a polylogarithmic time.

5. Conclusion

In this paper, we presented an amelioration of the Schnorr signature that makes
it more secure against different possible attacks. With our change, Schnorr protocol
becomes more efficient and secure. Our contribution allows Alice to sign several
messages with the same signature key.
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