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EXISTENCE RESULTS IN THE THEORY OF HYBRID

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

S. MELLIANI, K. HILAL, AND M. HANNABOU

Abstract. We study in this paper, the existence results for initial value prob-
lems for hybrid fractional integro-differential equations. By using fixed point

theorems for the sum of three operators are used for proving the main re-

sults.An example is also given to demonstrate the applications of our main
results.

1. Introduction

Fractional differential equations arise in the mathematical modeling of systems
and processes occurring in many engineering and scientific disciplines such as physics,
chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology,
economics, control theory, signal and image processing, biophysics, blood flow phe-
nomena, etc. (see [1]-[4]). Compared with integer order models, the fractional order
models describe the underlying processes in a more effective manner by taking into
account their past history. This has led to a great interest and considerable atten-
tion in the ubject of fractional order differential equations.
For some recent developments on the topic, (see [13]-[16]), and the references
therein. Hybrid fractional differential equations have also been studied by sev-
eral researchers.
This class of equations involves the fractional derivative of an unknown function
hybrid with the nonlinearity depending on it. Some recent results on hybrid differ-
ential equations can be found in a series of papers [17]-[24].
Hybrid fractional differential equations have also been studied by several researchers.
This class of equations involves the fractional derivative of an unknown function
hybrid with the nonlinearity depending on it. In [27], Surang. Sitho, Sotiris .K.
Ntouyas, and Jessada. Tariboon, discussed the following existence results for hybrid
fractional integro-differential equationsD

α

(
x(t)−

∑m
i=1 I

βihi(t,x(t))

f(t,x(t))

)
= g(t, x(t)) t ∈ J = [0, T ], 0 < α ≤ 1

x(0) = 0
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where Dα denotes the Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1,
Iφ is the Riemann-Liouville fractional integral of order φ > 0, φ ∈ {β1, β2, . . . , βm},
f ∈ C(J × R,R \ {0}), g ∈ C(J × R,R), with hi ∈ C(J × R,R) and hi(0, 0) = 0,
i = 1, 2, . . . ,m.
In [5], K .Hilal and A. Kajouni considered boundary value problems for hybrid
differential equations with fractional order (BVPHDEF of short) involving Caputo
differential operators of order 0 < α < 1,

Dα
(

x(t)
f(t,x(t))

)
= g(t, x(t)) a.e. t ∈ J = [0, T ]

a x(0)
f(0,x(0)) + b x(T )

f(T,x(T )) = c

where f ∈ C(J × R,R\{0}) , g ∈ C(J × R,R) and a, b, c are real constants with
a+ b 6= 0 .
Dhage and Lakshmikantham [23], discussed the following first order hybrid differ-
ential equation


d
dt

[
x(t)

f(t,x(t))

]
= g(t, x(t)) t ∈ J = [0, T ]

x(t0) = x0 ∈ R

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence,
uniqueness results and some fundamental differential inequalities for hybrid differ-
ential equations initiating the study of theory of such systems and proved utilizing
the theory of inequalities, its existence of extremal solutions and a comparison re-
sults.
Zhao, Sun, Han and Li [28], are discussed the following fractional hybrid differential
equations involving Riemann-Liouville differential operators

Dq

[
x(t)

f(t,x(t))

]
= g(t, x(t)) t ∈ J = [0, T ]

x(0) = 0

where f ∈ C(J × R,R\{0}) and g ∈ C(J × R,R). They established the existence
theorem for fractional hybrid differential equation, some fundamental differential
inequalities are also established and the existence of extremal solutions.
Benchohra and al.[26], we study the following boundary value problems for differ-
ential equations with fractional order{

cDαy(t) = f(t, y(t)), for each t ∈ J = [0, T ], 0 < α < 1

ay(0) + by(T ) = c

where cDα is the Caputo fractional derivative, f : [0, T ] × R → R, is a continuous
function, a, b, c are real constants with a+ b 6= 0.
Motivated by some recent studies on hybrid fractional integro-differential equations
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see [5],[27], we consider the following value problem :

Dα

(
x(t)−Iβh(t,x(t),Iα1x(t),...,Iαnx(t))

f(t,x(t),Iα1x(t),...,Iαnx(t))

)
= g(t, x(t), Iβ1x(t), . . . , Iβkx(t))

t ∈ J = [0, T ], 1 < α ≤ 2
x(0)

f(0,x(0),0, 0 . . . , 0︸ ︷︷ ︸
n

)
= x0,

x(T )
f(T,x(T ),Iα1x(T ),...,Iαnx(T ))

= xT ,

(1.1)

Where α1, . . . , αn > 0 , β1, . . . , βn > 0, x ∈ R, Dα denotes Caputo fractional derivative of order

α. Iβ is the Riemann-Liouville fractional integral of order β > 0 . f : J × Rn −→ R \ {0} ,
h : J × Rn −→ R is continuous with h(0, x(0), 0, 0 . . . , 0︸ ︷︷ ︸

n

) = 0, and g ∈ C(J × Rk,R) is a function

via some properties.

The problem 1.1 considered here is general in the sense that it includes the following three well-
known classes of initial value problems of fractional differential equations.

Case I: Let f(t, x(t), Iα1x(t), . . . , Iαnx(t)) = 1 and h(t, x(t), Iα1x(t), . . . , Iαnx(t)) = 0, for all

t ∈ J and x ∈ R. Then the problem 1.1 reduces to standard initial value problem of fractional
differential equation,{

Dα(x(t)) = g(t, x(t), Iβ1x(t), . . . , Iβkx(t)) t ∈ J = [0, T ], 1 < α ≤ 2

x(0) = x0, x(T ) = xT ,

Case II: If h(t, x(t), Iα1x(t), . . . , Iαnx(t)) = 0 for all t ∈ J and x ∈ R in 1.1. We obtain the
following quadratic fractional differential equation,
Dα
(

x(t)
f(t,x(t),Iα1x(t),...,Iαnx(t))

)
= g(t, x(t), Iβ1x(t), . . . , Iβkx(t)) t ∈ J = [0, T ], 1 < α ≤ 2

x(0)

f(0,x(0),0, 0 . . . , 0︸ ︷︷ ︸
n

)
= x0,

x(T )
f(T,x(T ),Iα1x(T ),...,Iαnx(T ))

= xT ,

Case III: If f(t, x(t), Iα1x(t), . . . , Iαnx(t)) = 1 for all t ∈ J and x ∈ R in 1.1.We obtain the
following interesting fractional differential equation,
Dα
(
x(t)− Iβh(t, x(t), Iα1x(t), . . . , Iαnx(t))

)
= g(t, x(t), Iβ1x(t), . . . , Iβkx(t)) t ∈ J = [0, T ],

1 < α ≤ 2

x(0) = x0, x(T ) = xT ,

Therefore, the main result of this paper also includes the existence the results for the solutions of

above mentioned initial value problems of fractional differential equations as special cases.
An existence result is obtained for the initial value problem 1.1. by using a hybrid fixed point

theorem for three operators in a Banach algebra due to Dhage [25].
As a second problem we discuss in Section 4 an initial value problem for hybrid fractional sequential
integro-differential equations,

Dα
(
Dωx(t)−Iβh(t,x(t),Iα1x(t),...,Iαnx(t))

f(t,x(t),Iα1x(t),...,Iαnx(t))

)
= g(t, x(t), Iβ1x(t), . . . , Iβkx(t))

t ∈ J = [0, T ], 0 < α < 1

x(0) = x0, Dωx(0) = 0,

(1.2)

where 0 < α, ω ≤ 1, 1 < α + ω ≤ 2, functions f ∈ C(J × Rn,R \ {0}), h ∈ C(J × Rn,R) whith
h(0, x(0), 0, 0 . . . , 0︸ ︷︷ ︸

n

) = 0 and g ∈ C(J × Rk,R). Iβ is the Riemann-Liouville fractional integral of

order β .

Dα, Dω are denotes Caputo fractional derivative of order α, β respectively.
By using a useful generalization of Krasnoselskii’s fixed point theorem due to Dhage , we prove

an existence result for the initial value problem 1.2.

This paper is arranged as follows. In Section 2, we recall some concepts and some fractional
calculation law and establish preparation results. In Section 3, we study the existence of the

initial value problem 1.1, based on the Dhage fixed point theorem,while in Section 4 we deal with
the initial value problem 1.2. In Section 5, we give an example to demonstrate the application of

our main result.
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2. Preliminaries

Next, we review some basic concepts, notations, and technical results that are necessary in our

study.

By E = C(J,R) we denote the Banach space of all continuous functions from J = [0, T ] into R
with the norm

‖y‖ = sup{|y(t)|, t ∈ J}
and a multiplication in E by

(xy)(t) = x(t)y(t),∀t ∈ J
.

Clearly E is a Banach algebra with respect to above supremum norm and the multiplication in it.

and let C(J × Rk,R) denote the class of functions g : J × Rk −→ R such that

(i) the map s −→ g(s, x1, x2, . . . , xk) is mesurable for all x1, x2, . . . , xk ∈ R .
(ii) (x1, x2, . . . , xk) −→ g(s, x1, x2, . . . , xk) is continuous map for almost all s ∈ J .

The class C(J × Rk,R) is called the Carathéodory class of functions on J × Rk.

Also, a Carathéodory function g : J × Rk −→ R is called L1-Carathéodory whenever for each

ρ > 0 there exists φρ ∈ L1(J,R+) such that

‖g(s, x1, x2, . . . , xk)‖ = sup{|v| : v ∈ g(s, x1, x2, . . . , xk)} ≤ φρ(s)

for all |x1|, |x2|, . . . , |xk| ≤ ρ and for almost all s ∈ J .

By L1(J,R) denote the space of Lebesgue integrable real-valued functions on J equipped with the
norm ‖.‖L1 defined by

‖x‖L1 =
∫ T
0 |x(s)|ds

Definition 2.1. [1] The fractional integral of the function h ∈ L1([a, b],R+) of order α ∈ R+ is

defined by

Iαa h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds

where Γ is the gamma function.

Definition 2.2. [1] For a function h given on the interval [a, b] , the Riemann-Liouville

fractional-order derivative of h, is defined by

(cDα
a+
h)(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1

Γ(α)
(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. [1] For a function h given on the interval [a, b] , the Caputo fractional-order

derivative of h, is defined by

(cDα
a+
h)(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1

Γ(α)
h(n)(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.

Lemma 2.4. [1] Let α > 0 and x ∈ C(0, T ) ∩ L(0, T ). Then the fractional differential equation

Dαx(t) = 0

has a unique solution
x(t) = k1t

α−1 + k2t
α−2 + . . .+ knt

α−n,

where ki ∈ R, i = 1, 2, . . . , n, and n− 1 < α < n.

Lemma 2.5. [1] Let α > 0. Then for x ∈ C(0, T ) ∩ L(0, T ) we have

IαDαx(t) = x(t) + c0 + c1t+ . . .+ cn−1t
n−1,

fore some ci ∈ R, i = 1, 2, . . . , n− 1. Where n = [α] + 1.

Lemma 2.6. [1] For α, β > 0 and f as a suitable function, we have

(i) IαIβf(t) = Iα+βf(t)
(ii) IαIβf(t) = IβIαf(t)

(iii) Iα(f(t) + g(t)) = Iαf(t) + Iαg(t)
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3. Fractional hybrid differential equation

In this section we prove the existence of a solution the initial value problem 1.1 by a fixed
point theorem in the Banach algebra due to Dhage [25].

Lemma 3.1. Let S be a nonempty, closed convex and bounded subset of a Banach algebra E

and let A,C : E −→ E and B : S −→ E be three operators satisfying:

(a1) A and C are Lipschitzian with Lipschitz constants δ and ρ, respectively,

(b1) B is compact and continuous,
(c1) x = AxBy + Cx =⇒ x ∈ S for all y ∈ S,

(d1) δM + ρ < 1, where M = ‖B(S)‖.
Then the operator equation x = AxBx+ Cx has a solution.

For brevity let us take,

d =
Iβh(T, x(T ), Iα1x(T ), . . . , Iαnx(T ))

f(T, x(T ), Iα1x(T ), . . . , Iαnx(T ))

Lemma 3.2. Suppose that 1 < α ≤ 2 .

Then, for any k ∈ L1(J,R) , the function x ∈ C(J,R) is a solution of the


Dα

(
x(t)−Iβh(t,x(t),Iα1x(t),...,Iαnx(t))

f(t,x(t),Iα1x(t),...,Iαnx(t))

)
= k(t) t ∈ J = [0, T ]

x(0)

f(0,x(0),0, 0 . . . , 0︸ ︷︷ ︸
n

)
= x0,

x(T )
f(T,x(T ),IαT x(t),...,Iαnx(T ))

= xT ,
(3.1)

if and only if x satisfies the hybrid integral equation

x(t) =
(
f(t, x(t), Iα1x(t), . . . , Iαnx(t))

)( 1

Γ(α)

∫ t

0
(t− s)α−1k(s)ds(3.2)

+ (1−
t

T
)x0 +

t

T
xT −

t

TΓ(α)

∫ T

0
(T − s)α−1k(s)ds−

td

T

)
+

∫ t

0

(t− s)β−1

Γ(β)
h(s, x(s), Iβ1x(s), . . . , Iαnx(s))ds, t ∈ [0, T ]

Proof. Assume that x is a solution of the problem 3.2. By definition,
x(t)

f(t,x(t),Iα1x(t),...,Iαnx(t))
is

continuous. Applying the Caputo fractional operator of the order α, we obtain the first equation

in 3.1. Again, substituting t = 0 and t = T in 3.2 we have

x(0)

f(0, x(0), 0, 0 . . . , 0︸ ︷︷ ︸
n

)
= x0,

x(T )

f(T, x(T ), Iα1x(t), . . . , Iαnx(T ))
= xT ,

Conversely, Dα

(
x(t)−Iβh(t,x(t),Iα1x(t),...,Iαnx(t))

f(t,x(t),Iα1x(t),...,Iαnx(t))

)
= k(t)

so we get

x(t)− Iβh(t, x(t), Iα1x(t), . . . , Iαnx(t))

f(t, x(t), Iα1x(t), . . . , Iαnx(t))
= Iαk(t)− c0 − c1t

x(t)

f(t, x(t), Iα1x(t), . . . , Iαnx(t))
= Iαk(t)− c0 − c1t+

Iβh(t, x(t), Iα1x(t), . . . , Iαnx(t))

f(t, x(t), Iα1x(t), . . . , Iαnx(t))

Substituting t = 0 we have

c0 = −
x(0)

f(0, x(0), 0, 0 . . . , 0︸ ︷︷ ︸
n

)
= −x0
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And substituting t = T we have

x(T )

f(T, x(T ), Iα1x(T ), . . . , Iαnx(T ))
= Iαk(T ) + x0 − c1T + d

Then

c1 =
1

T
(x0 + Iαk(T )− xT + d)

In consequence, we have

x(t) =
(
f(t, x(t), Iα1x(t), . . . , Iαnx(t))

)( 1

Γ(α)

∫ t

0
(t− s)α−1k(s)ds+ (1−

t

T
)x0 +

t

T
xT

−
t

TΓ(α)

∫ T

0
(T − s)α−1k(s)ds−

td

T

)
+

∫ t

0

(t− s)β−1

Γ(β)
h(s, x(s), Iβ1x(s), . . . , Iαnx(s))ds, t ∈ [0, T ]

�

In the forthcoming analysis, we need the following assumptions. Assume that :

(H1) The functions f : J × Rn+1 −→ ×R \ {0}, h : J × Rn+1 −→ R , g : J × Rk+1 −→ R
are be a Carathéodory function, h(0, x(0), 0, 0 . . . , 0︸ ︷︷ ︸

n

)) = 0 and there exist two positive

functions

p,m : J −→ (0,∞) with bound ‖p‖ and ‖m‖ respectively, such that

|f(t, y1, y2, . . . , yn+1)− f(t, x1, x2, . . . , xn+1)| ≤ p(t)
n+1∑
i=1

|yi − xi|

and

|h(t, y1, y2, . . . , yn+1)− h(t, x1, x2, . . . , xn+1)| ≤ m(t)

n+1∑
i=1

|yi − xi|

for t ∈ J and (x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1) ∈ Rn+1.

(H2) There exists a function h ∈ L1(J,R) such that .

|g(t, x1, x2, . . . , xk)| ≤ h(t) a.e (t, x1, x2, . . . , xk) ∈ J × Rk

(H3) There exists a real number r > 0 such that

r ≥
F0

(
2‖h‖

L1T
α

Γ(α+1)
+ |x0|+ |xT |+ |d|

)
+ k0T

β

Γ(β+1)

1−
(

1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)[
‖p‖
(

2‖h‖
L1Tα

Γ(α+1)
+ |x0|+ |xT |+ |d|

)
− ‖m‖ Tβ

Γ(β+1)

]
where F0 = sup

t∈J
|f(t, x(0), 0, 0 . . . , 0︸ ︷︷ ︸

n

)| and K0 = sup
t∈J
|h(t, x(0), 0, 0 . . . , 0︸ ︷︷ ︸

n

)|

Theorem 3.3. Assume that the conditions (H1)− (H3) hold. Then the initial value problem 1.1

has at least one solution on J provided that(
1+ Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)[
‖p‖
(

2‖h‖
L1T

α

Γ(α+1)
+ |x0|+ |x1|+ |d|

)
+
‖m‖Tβ
Γ(β+1)

]
< 1.

Proof. Set E = C(J,R) and define a subset S of E as

S = {x ∈ E : ‖x‖ ≤ r},

where r satisfies inequality 3.
Clearly S is closed, convex, and bounded subset of the Banach space E. By Lemma 3.2, problem

1.1 is equivalent to the integral equation 3.2. Now we define three operators,
A : E −→ E by

Ax(t) = f(t, x(t), Iα1x(t), . . . , Iαnx(t)), t ∈ J,
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B : S −→ E by

Bx(t) =

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds+ (1−

t

T
)x0 +

t

T
xT

−
t

TΓ(α)

∫ T

0
(T − s)α−1g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds−

t

T
d
]
, t ∈ J,

and C : E −→ E by

Cx(t) =

∫ t

0

(t− s)β−1

Γ(β)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds, t ∈ J

We shall show that the operators A, B, and C satisfy all the conditions of Lemma 3.1. The proof
is constructed in several claims.

Claim 1. We will show that A and C are lipschitzian on E, that is, the assumption (a1) of Lemma

3.1 holds.
Let x, y ∈ E. Then by (H1), for t ∈ J we have

|Ax(t)−Ay(t)| = |f(t, x(t), Iα1x(t), . . . , Iαnx(t))− f(t, y(t), Iα1y(t), . . . , Iαny(t))|

≤ sup
t∈J

(|p||x(t)− y(t)|)
(

1 +
Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
≤ ‖p‖

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
‖x− y‖

for all t ∈ J .

Taking the supremum over the interval J , we obtain

‖Ax−Ay‖ ≤ ‖p‖
(

1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)
‖x− y‖ for all x, y ∈ E. So A is a Lipschitz on

E with Lipschitz constant ‖p‖
(

1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)
.

Analogously, for any x, y ∈ E, we have

|Cx(t)− Cy(t)| =
∣∣∣ ∫ t

0

(t− s)β−1

Γ(β)
[h(s, x(s), Iα1x(s), . . . , Iαnx(s))− h(s, y(s), Iα1y(s), . . . , Iαny(s))]ds

∣∣∣
≤ sup

t∈J
(|m||x(t)− y(t)|)

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)∫ t

0

(t− s)β−1

Γ(β)
ds

≤ ‖m‖
(

1 +
Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

) Tβ

Γ(β + 1)
‖x− y‖

for all t ∈ J .
Taking the supremum over the interval J , we obtain

‖Cx− Cy‖ ≤ ‖m‖
(

1 +
Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

) Tβ

Γ(β + 1)
‖x− y‖

So, C is a Lipschitzian on E with Lipschitz constant ‖m‖
(

1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)
Tβ

Γ(β+1)
.

Claim 2. The operator B is completely continuous on S, that is, the assumption (b1) of Lemma
3.1 holds.
We first show that the operator B is continuous on E.

Let {xn} be a sequence in S converging to a point x ∈ S. Then by the Lebesgue dominated
convergence theorem, for all t ∈ J , we obtain

lim
n→∞

∫ t

0

(t− s)α−1

Γ(α)
g(t, xn(s), Iβ1xn(s), . . . , Iβkxn(s))ds

=

∫ t

0

(t− s)α−1

Γ(α)
lim
n→∞

g(s, xn(s), Iβ1xn(s), . . . , Iβkxn(s))ds

=

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds
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and

lim
n→∞

[
(1 −

t

T
)x0 +

t

T
xT −

t

TΓ(α)

∫ T

0
(T − s)α−1g(s, xn(s), Iβ1xn(s), . . . , Iβkxn(s))ds−

t

T
d
]

= lim
n→∞

[
(1−

t

T
)x0 +

t

T
xT

]
−

t

TΓ(α)

∫ T

0
(T − s)α−1 lim

n→∞
g(t, xn(t), Iβ1xn(s), . . . , Iβkxn(s))ds

−
t

T
d

= (1−
t

T
)x0 +

t

T
xT −

t

TΓ(α)

∫ T

0
(T − s)α−1g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds−

t

T
d

In consequence, we have

lim
n→∞

Bxn = Bx

This shows that B is continuous on S.

It is sufficient to show that the set B(S) is a uniformly bounded in S. For any x ∈ S, we have

|Bx(t)| =
∣∣∣ ∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds+ (1−

t

T
)x0 +

t

T
xT

−
t

TΓ(α)

∫ T

0
(T − s)α−1g(t, x(t), Iβ1x(t), . . . , Iβkx(t))ds−

t

T
d
∣∣∣

≤
(

2‖h‖L1
Tα

Γ(α+ 1)

)
+ |x0|+ |x1|+ |d| = K1

for all t ∈ J . Taking supremum over the interval J , the above inequality becomes, ‖Bx‖ ≤ K1 for

all x ∈ S. This shows that B(S) is uniformly bounded on S.
Next we show that B(S) is an equicontinuous set in E. We take, τ1, τ2 ∈ J with τ1 < τ2 and and

x ∈ S.

Then we have

|Bx(τ2)− Bx(τ1)| =
∣∣∣ ∫ τ2

0

(τ2 − s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds

−
∫ τ1

0

(τ1 − s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds+

[
(1−

τ2

T
)− (1−

τ1

T
)
]
x0

+ (
τ1

T
−
τ2

T
)
(∫ T

0

(T − s)α−1

Γ(α)
g(t, x(t), Iβ1x(t), . . . , Iβkx(t))ds− xT + d

)∣∣∣
≤

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1|
Γ(α)

|g(t, x(t), Iβ1x(t), . . . , Iβkx(t))|ds

+

∫ τ2

τ1

(τ2 − s)α−1

Γ(α)
|g(t, x(t), Iβ1x(t), . . . , Iβkx(t))|ds+ (

τ1 − τ2
T

)x0

+
( τ1 − τ2

T

)(
xT +

∫ T

0

(T − s)α−1

Γ(α)
|g(t, x(t), Iβ1x(t), . . . , Iβkx(t))|ds+ d

)
≤

∫ τ1

0

|(τ2 − s)α−1 − (τ1 − s)α−1|
Γ(α)

‖h‖L1ds+

∫ τ2

τ1

(τ2 − s)α−1

Γ(α)
‖h‖L1ds

+ (
τ1 − τ2
T

)x0 +
( τ1 − τ2

T

)(
xT +

∫ T

0

(T − s)α−1

Γ(α)
‖h‖L1ds+ d

)
Thus, we have that |Bx(τ2)− Bx(τ1)| −→ 0 as τ2 −→ τ1
which is independent of x ∈ S.

which is independent of x ∈ S.Thus, B(S) is equicontinuous. So B is relatively compact on S.
Hence, by the Arzelá-Ascoli theorem, B is compact on S.

Claim 3. The hypothesis (c1) of Lemma 3.1 is satisfied.
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Let x ∈ E and y ∈ S be arbitrary elements such that x = AxBy + Cx. Then we have

|x(t)| ≤ |Ax(t)||By(t)|+ |Cx(t)|

≤ |f(t, x(t), Iα1x(t), . . . , Iαnx(t))|
[ ∫ t

0

(t− s)α−1

Γ(α)

∣∣∣g(s, y(s), Iβ1y(s), . . . , Iβky(s))
∣∣∣ds

+ (1−
t

T
)x0 +

t

T
xT +

t

TΓ(α)

∫ T

0
(T − s)α−1

∣∣∣g(s, y(s), Iβ1y(s), . . . , Iβky(s))
∣∣∣ds

+
t|d|
T

]
+

∫ t

0

(t− s)β−1

Γ(β)

∣∣∣h(t, x(t), Iα1x(t), . . . , Iαnx(t))
∣∣∣ds

≤ (|f(t, x(t), Iα1x(t), . . . , Iαnx(t))− f(t, 0, . . . , 0)|+ |f(t, 0, . . . , 0)|)
[ ∫ t

0

(t− s)α−1

Γ(α)
|h(s)|ds

+ (1−
t

T
)x0 +

t

T
xT +

t

TΓ(α)

∫ T

0
(T − s)α−1|h(s)|ds+ |

t

T
||d|
]

+

∫ t

0

(t− s)β−1

Γ(β)
(|h(t, x(t), Iα1x(t), . . . , Iαnx(t))− h(s, 0, . . . , 0) + |h(s, 0, . . . , 0)|)

∣∣∣
≤

[
r‖p‖

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
+ F0

](2‖h‖L1Tα

Γ(α+ 1)
+ |x0|+ |xT |

+ |d|
)

+
r‖m‖Tβ

Γ(β + 1)

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
+

Tβ

Γ(β + 1)
k0

Taking supremum for t ∈ J , we obtain

‖x‖ ≤
[
r‖p‖

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
+ F0

](2‖h‖L1Tα

Γ(α+ 1)
+ |x0|+ |xT |

+ |d|
)

+
r‖m‖Tβ

Γ(β + 1)

(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
+

Tβ

Γ(β + 1)
k0

that is, x ∈ S.
Claim 4. Finally we show that δM + ρ < 1, that is, (d1) of Lemma 3.1 holds.

Since

M = ‖B(S)‖ = sup
x∈S
{sup
t∈J
|Bx(t)|}

≤
2‖h‖L1Tα

Γ(α+ 1)
+ |x0|+ |xT |+ |d|

and by theorem 3.3 we have(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)(
‖p‖M +

‖m‖Tβ

Γ(β + 1)

)
< 1

with δ =
(

1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)
‖p‖ and ρ =

‖m‖Tβ
Γ(β+1)

(
1 + Tα1

Γ(α1+1)
+ . . .+ Tαn

Γ(αn+1)

)
.

Thus all the conditions of Lemma 3.1 are satisfied and hence the operator equation x = AxBx+Cx
has a solution in S. In consequence, problem 3.1 has a solution on J . This completes the proof. �

4. Hybrid fractional sequential integro-differential equations

In this section we consider the initial value problem 1.2. An existence result will be proved by
using the following fixed point theorem due to Dhage.

Lemma 4.1. Let M be a nonempty, closed, convex and bounded subset of the Banach space X
and let A : X −→ X and B : M −→ X be two operators such that

(i) A is a contraction,

(ii) B is completely continuous, and

(iii) x = Ax+By for all y ∈M =⇒ x ∈M .

Then the operator equation Ax+Bx = x has a solution.
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Lemma 4.2. Suppose that 0 < α,ω ≤ 1, 0 < α+ω ≤ 1, and the functions f ,g, and h satisfy the

problem 1.2. The function x ∈ C(J,R) is a solution of the problem 1.2 if and only if x satisfies

the hybrid integral equation,

x(t) =

∫ t

0

( (t− s)ω−1

Γ(ω)
f(s, x(s), Iα1x(s), . . . , Iαnx(s))

∫ s
0

(s− τ)α−1

Γ(α)
g(τ, x(τ), Iβ1x(τ), . . . , Iβkx(τ)))dτ

)
ds

+

∫ t

0

(t− s)β+ω−1

Γ(β + ω)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds+ x0, t ∈ [0, T ](4.1)

Proof. Assume that x is a solution of the problem 3.2. By definition,
x(t)

f(t,x(t),Iα1x(t),...,Iαnx(t))
is

continuous. Applying the Caputo fractional operator of the order α, we obtain the first equation
in 4.1 .

Again, substituting t = 0 in 4.1 we have

x(0) = x0, Dωx(0) = 0
Conversely,

by lemma 2.5 we have

Dωx(t)− Iβh(t, x(t), Iα1x(t), . . . , Iαnx(t))

f(t, x(t), Iα1x(t), . . . , Iαnx(t))
= Iαg(t, x(t), Iβ1x(t), . . . , Iβkx(t)))− c0

By condition Dβx(0) = 0, implies that c0 = 0

Applying the semigroup property, i.e., IωIβh = Iω+βh proposition 2.6, we obtain the,

x(t) = Iω
[
f(t, x(t), Iα1x(t), . . . , Iαnx(t))Iαg(t, x(t), Iβ1x(t), . . . , Iβkx(t))

]
+ Iω+βh(t, x(t), Iα1x(t), . . . , Iαnx(t))− c1

By condition x(0) = x0, implies that c1 = −x0

Then,

x(t) = Iω
[
f(t, x(t), Iα1x(t), . . . , Iαnx(t))Iαg(t, x(t), Iβ1x(t), . . . , Iβkx(t))

]
+ Iω+βh(t, x(t), Iα1x(t), . . . , Iαnx(t)) + x0

Consequently,

x(t) =

∫ t

0

[ (t− s)ω−1

Γ(ω)
f(s, x(s), Iα1x(s), . . . , Iαnx(s))

∫ s

0

(s− τ)α−1

Γ(α)
g(τ, x(τ), Iβ1x(τ), . . . , Iβkx(τ)))dτ

]
ds

+

∫ t

0

(t− s)β+ω−1

Γ(β + ω)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds+ x0 , t ∈ [0, T ]

�

In the forthcoming analysis, we need the following assumptions. Assume that :

(A1) The functions f : J × Rn+1 −→ R \ {0} and g : J × Rk+1 −→ R, are continuous and
there exist two positive functions φ, χ with bound ‖φ‖ and ‖χ‖, respectively, such that

|f(t, y1, y2, . . . , yn+1)− f(t, x1, x2, . . . , xn+1)| ≤ φ(t)

n+1∑
i=1

|yi − xi|

for t ∈ J and (x1, x2, . . . , xn+1), (y1, y2, . . . , yn+1) ∈ Rn+1.
and

|g(t, y1, y2, . . . , yk+1)− g(t, x1, x2, . . . , xk+1)| ≤ χ(t)

k+1∑
i=1

|yi − xi|

for t ∈ J and (x1, x2, . . . , xk+1), (y1, y2, . . . , yk+1) ∈ Rk+1.

(A2) |f(t, x1, x2, . . . , xn+1)| ≤ µ(t), ∀(t, x1, x2, . . . , xn+1) ∈ J × Rn+1, µ ∈ C(J,R+),
|g(t, x1, x2, . . . , xk+1)| ≤ ν(t), ∀(t, x1, x2, . . . , xk+1) ∈ J × Rk+1, ν ∈ C(J,R+) and

|h(t, x1, x2, . . . , xn+1)| ≤ θ(t),∀(t, x1, x2, . . . , xn+1) ∈ J × Rn+1, θ ∈ C(J,R+).
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Theorem 4.3. Assume that the conditions (A1)− (A2) hold. Then the initial value problem 1.2

has at least one solution on J provided that

Tα+ω

Γ(α+ 1)Γ(ω + 1)

{(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
‖ν‖‖φ‖+ ‖µ‖‖χ‖

(
1 +

Tβ1

Γ(β1 + 1)
+ . . .+

Tβk

Γ(βk + 1)

)}
< 1

Proof. Setting sup
t∈J
|µ(t)| = ‖µ‖, sup

t∈J
|ν(t)| = ‖ν‖, sup

t∈J
|θ(t)| = ‖θ‖, and choosing

R ≥
Tω+β

Γ(ω + β + 1)
‖θ‖+

Tα+β

Γ(α+ β + 1)
‖µ‖‖ ν‖+ |x0|

We consider BR = {x ∈ C(J,R) : ‖x‖ ≤ R}. We define the operators A : E −→ E as in 3,
D : BR −→ E by

Dx(t) =

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), Iβ1x(s), . . . , Iβkx(s))ds, t ∈ J

and

Qx(t) =

∫ t

0

(t− s)β+ω−1

Γ(β + ω)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds, t ∈ J

and

T x(t) =

∫ t

0

(t− s)ω−1

Γ(ω)
Ax(t)Dx(s)ds+ x0, t ∈ J

For any y ∈ BR, we have

|x(t)| = |Qx(t) + T y(t)|

≤
∫ t

0

(t− s)ω+β−1

Γ(ω + β)
|h(s, x(s), Iα1x(s), . . . , Iαnx(s))|ds+

∫ t

0

(t− s)ω−1

Γ(ω)
|Ay(s)||Dy(s)|ds+ |x0|

≤
∫ t

0

(t− s)ω+β−1

Γ(ω + β)
|θ(s)|ds+

∫ t

0

(t− s)ω−1

Γ(ω)
|µ(t)|

∫ t

0

(t− s)α−1

Γ(α)
|ν(s)|ds+ |x0|

≤
Tω+β

Γ(ω + β + 1)
‖θ‖+

Tα+β

Γ(α+ β + 1)
‖µ‖‖ ν‖+ |x0|

Taking supremum for t ∈ J , we obtain ‖x‖ ≤ R, which means that x ∈ BR. So, the condition
(iii) of Lemma 4.1 holds.

Next we will show that Q satisfy the condition (ii) of Lemma 4.1. The operator Q is obviously
continuous. Also, Q is uniformly bounded on BR as

‖Qx‖ ≤
Tω+β

Γ(ω + β + 1)
‖θ‖

Let τ1, τ2 ∈ J with τ1 < τ2 and (x1, x2, . . . , xn+1) ∈ Bn+1
R . We define

sup
(t,x1,x2,...,xn+1)∈J×Bn+1

R

|h(t, x1, x2, . . . , xn+1)| = h̄ <∞.

Then we have

|Qx(τ2)−Qx(τ1)| =
∣∣∣ ∫ τ2

0

(τ2 − s)ω+β−1

Γ(ω + β)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds

−
∫ τ1

0

(τ1 − s)ω+β−1

Γ(ω + β)
h(s, x(s), Iα1x(s), . . . , Iαnx(s))ds

∣∣∣
≤

h̄

Γ(ω + β)

∣∣∣ ∫ τ1

0
[(τ2 − s)ω+β−1 − (τ1 − s)ω+β−1]ds+

∫ τ2

τ1

(τ2 − s)ω+β−1ds
∣∣∣

≤
h̄

Γ(ω + β + 1)
|τω+β

2 − τω+β
1 |

Thus, we have that |Qx(τ2)−Qx(τ1)| −→ 0 as τ2 −→ τ1
which is independent of x ∈ S.Thus, Q is equicontinuous. So Q is relatively compact on BR.
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Hence, by the Arzelá-Ascoli theorem, Q is compact on BR.

Now we show that T is a contraction mapping. Let x, y ∈ BR, then for t ∈ J we have

|T x(t)− T y(t)|

=
∣∣∣ ∫ t

0

(t− s)ω−1

Γ(ω)
[Ax(s)Dx(s)ds−Ay(s)Dy(s)]ds

∣∣∣
=

∣∣∣ ∫ t

0

(t− s)ω−1

Γ(ω)
[Ax(s)Dx(s)−Ay(s)Dx(s) +Ay(s)Dx(s)−Ay(s)Dy(s)]ds

∣∣∣
≤

∫ t

0

(t− s)ω−1

Γ(ω)

{
|Dx(s)||Ax(s)−Ay(s)|+ |Ay(s)||Dx(s)−Dy(s)]

}
ds

≤
∫ t

0

(t− s)ω−1

Γ(ω)

{(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

) Tα

Γ(α+ 1)
‖ν‖‖φ‖‖x− y‖

+ ‖µ‖‖χ‖
(

1 +
Tβ1

Γ(β1 + 1)
+ . . .+

Tαk

Γ(βk + 1)

) Tα

Γ(α+ 1)
‖x− y‖

}
ds

≤
Tα

Γ(α+ 1)

Tω

Γ(ω + 1)

{(
1 +

Tα1

Γ(α1 + 1)
+ . . .+

Tαn

Γ(αn + 1)

)
‖ν‖‖φ‖

+ ‖µ‖‖χ‖
(

1 +
Tβ1

Γ(β1 + 1)
+ . . .+

Tαk

Γ(βk + 1)

)}
‖x− y‖

So, by theorem 4.3, T is a contraction mapping, and thus the condition (i) of Lemma 4.3 is

satisfied.

Thus all the assumptions of Lemma 4.1 are satisfied. Therefore, the conclusion of Lemma 4.1
implies that problem 1.2 has at least one solution on J . �

Example
In this section we give an example to illustrate the usefulness of our main results. Let us consider

the following fractional boundary value problem:
D

1
2

(
x(t)−I

1
2

[
2te−3t

15(3+t)

(
sin x(t)+

x(t)+9I
√

2|x(t)|
I
√

2|x(t)|+5

)]
(t+1)2

100

(
sin x(t)+

|I
√

2x(t)|
1+|I

√
2x(t)|

+3

) )
= t2 sinx(t) + cos(I

1
4 x(t)) + 1

t ∈ J = [0, 1]
x(0)

f(0,x(0),0)
= π

2
,

x(1)
f(1,x(1),Iα1x(1))

= 0,

(4.2)

Put α = 1
2

, α1 =
√

2,β = 1
2

,β1 = 1
4

,T = 1, n = k = 1,f(t, y, x) =
(t+1)2

100

(
sin y(t) +

|x|
1+|x| + 3

)
,

g(t, y, x) = t2 sinx(t) + cos(I
1
4 x(t)) + 1, h(t, y, x) = 2te−3t

15(3+t)
(sin y(t) +

x2(t)+9|x(t)|
|x(t)|+5

) , m(t) =

2t
15(3+t)

and p(t) =
(t+1)2

100
for t ∈ [0, 1]. Note that, ‖g(t, y, x)‖ ≤ t2 + 2, and

|f(t, x, y)− f(t, x′, y′)| ≤
(t+ 1)2

100
(|x− x′|+ |y − y′|)

and

|h(t, x, y)− h(t, x′, y′)| ≤
( 2t

15(3 + t)

)
(|x− x′|+ |y − y′|)

We have(
1 +

Tα1

Γ(α1 + 1)

)(2‖p‖‖h‖L1Tα

Γ(α+ 1)
+ |x0|+ |x1|+ |d|+ ‖m‖

Tβ

Γ(β + 1)

)
' 0.18957628293 < 1

.

By using the theorem 3.3, the problem 4.2 has a solution.
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