JOURNAL OF UNIVERSAL MATHEMATICS Vol.1 No.2 pp.190-194 (2018) ISSN-2618-5660

NOTES ON IDEALS AND FILTERS IN BCC-ALGEBRAS

DANIEL A. ROMANO

ABSTRACT. In this article we introduce and analyze a new concept of BCC-filters in BCC-algebra. In addition, the relationship of this new concept with BCC-ideals has been analyzed also.

1. INTRODUCTION

Y. Komori (cf. [9, 10]) introduced a notion of BCC-algebras, and W. A. Dudek (cf. [2, 3]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [4], W. A. Dudek and X. H. Zhang introduced the concept of ideals in BCC-algebras and described connections between such ideals and congruences. Several authors dealt with these algebras (see for example [5, 6, 8]).

In this article we introduce and analyze the concept of BCC-filters in BCCalgebras. In addition, we identify the relationships between the BCC-filters and the BCC-ideals.

2. Preliminaries: BCC-algebras

The definition of BCC-algebra is taken from the articles [2, 3].

Definition 2.1. An algebra $(A, \cdot, 0)$ is called a *BCC-algebra* if it satisfies the following axioms:

 $\begin{aligned} &(1) \ (\forall x, y, z \in A)(((x \cdot y) \cdot (z \cdot y)) \cdot (x \cdot z) = 0), \\ &(2) \ (\forall x \in A)(0 \cdot x = 0), \\ &(3) \ (\forall x \in A)(x \cdot 0 = x), \\ &(4) \ (\forall x, y \in A)((x \cdot y = 0 \land y \cdot x = 0) \Longrightarrow x = y). \end{aligned}$

Definition 2.2.

$$(\forall x, y \in A) (x \leq y \iff x \cdot y = 0).$$

Natural BCC-order has ([3], Proposition 2) the following properties

- $(5) \ (\forall x, y \in A)(x \cdot y \le x),$
- (6) $(\forall x, y, z \in A)((x \cdot y) \cdot (z \cdot y) \leq x \cdot z),$
- $(7) \ (\forall x, y, z \in A)(x \le y \implies (x \cdot z \le y \cdot z \land z \cdot y \le z \cdot x)).$

Date: July 14, 2018, accepted.

 $^{2000\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25.$

Key words and phrases. BCC-algebra, BCC-ideal, BCC-filter.

3. BCC-IDEALS

Definition 3.1. ([4]) A non-empty subset J of a BCC-algebra A is called a *BCC-ideal*, if

(8) $0 \in J$,

(9) $(\forall x, y, z \in A)(((x \cdot y) \cdot z \in J \land y \in J) \Longrightarrow x \cdot z \in J).$

In the following theorem are given two statements of some fundamental characteristics of the BCC-ideals.

Theorem 3.1. If J is a BCC-ideal of a BCC-algebra A, then hold (10) $(\forall x, y \in A)((x \cdot y \in J \land y \in J) \Longrightarrow x \in J)$ and (11) $(\forall y, z \in A)(y \in J \Longrightarrow y \cdot z \in J)$.

Proof. If we put z = 0 in (9) we get (10).

Let $y, z \in A$ be arbitrary elements such that $y \in J$. Thus from $(y \cdot y) \cdot z = 0 \cdot z = 0 \in J$ and $y \in J$, by definition of BCC-ideal J, follows $y \cdot z \in J$.

The important feature of a BCC-ideal in a BCC-algebra is given by the following statement.

Corollary 3.1. Let J be BCC-ideal of a BCC-algebra A. Then (12) $(\forall x, y \in A)((x \leq y \land y \in J) \Longrightarrow x \in J).$

Proof. Let $x, y \in A$ be arbitrary elements such that $x \leq y$ and $y \in J$. Thus, $x \in J$ follows from $x \cdot y = 0 \in J$ and $y \in J$ by (10).

The statement in the next theorem was proved in analogy with the corresponding statement presented in the texts [4, 5].

Theorem 3.2. Let J be a BCC-ideal of a BCC-algebra A. The the relation \prec in A, defined by

$$(\forall x, y \in A)(x \prec y \iff x \cdot y \in J),$$

is a quasi-order in A and the following holds

$$(\forall x, y, z \in A)(x \prec y \Longrightarrow (x \cdot z \prec y \cdot z \land z \cdot y \prec z \cdot x)).$$

Proof. Let $x \in A$ be an arbitrary element. Then $x \cdot x = 0 \in J$. Thus $x \prec x$. Let $x, y, z \in A$ be arbitrary elements such that $x \prec y$ and $y \prec z$. Thus $x \cdot y \in J$ and $y \cdot z \in J$. If we put y = z and z = y in (1), we get

$$((x \cdot z) \cdot (y \cdot z)) \cdot (x \cdot y) = 0 \in J.$$

Since $x \cdot y \in J$ and $y \cdot z \in$ from the previous formula we get $x \cdot z \in J$ if we apply twice (10). Therefore, $x \prec Z$. So, the relation \prec is a quasi-order in set A.

Let $x, y, z \in A$ arbitrary elements such that $x \prec y$. Thus $x \cdot y \in J$. If we put y = z and z = y u (6), we get $(x \cdot z) \cdot (y \cdot z) \leq x \cdot y \in J$. Now, from this obtained formula, we have $(x \cdot z) \cdot (y \cdot z) \in J$ according to (12). Finally, we have $x \cdot z \prec y \cdot z$.

On the other hand, if we put x = z and z = x u (1), we get $((z \cdot y) \cdot (x \cdot y)) \cdot (z \cdot x) = 0 \in J$. From here we get $(z \cdot y) \cdot (z \cdot x) \in J$ according to (9) due $x \cdot y \in J$. So, we have $z \cdot y \prec z \cdot x$.

Therefore, \prec is a right compatible and left anti-compatible relation in A.

Corollary 3.2. Let J be a BCC-ideal in BCC-algebra A. The relation $' \sim '$ in A defined by $(\forall x, y \in A)(x \sim y \iff (x \prec y \land y \prec x))$ is a BCC-congruence in A.

Corollary 3.3. Any BCC-ideal in a BCC-algebra A is determined by some quasiorder relation in A.

Proof. Let J be a BCC-ideal in A. Then the relation defined by the ideal J as in Theorem 3.2, is a quasi-order relation in A.

Opposite, let \prec be a quasi-order relation in A. Then the relation $\sim = \prec \cap \prec^{-1}$ is a congruence in A. Then, by Lemma 3.2 in [4], the class $[0]_{\sim}$ of relation \sim generated by 0 is a BCC-ideal in A.

Corollary 3.4. The lattice \mathfrak{Q}_A of all quasi-order relations in a BCC-algebra A is isomorphic the lattice \mathfrak{J}_A of all BCC-ideals in A.

4. A New Concept of BCC-filters

In this short note, we intend to offer a new concept of BCC-filters F of BCCalgebras A that satisfies the following condition

$$(\forall x, y \in A)((x \leq y \land x \in F) \implies y \in F)$$

and has a standard attitude towards the BCC-ideal. This formula can be transformed in the following formula

$$(\forall x, y \in A)((x \cdot y = 0 \land x \in F) \Longrightarrow y \in F)$$

Looking at this last formula, a new concept of BCC-filters in the BCC-algebra is introduced by the following definition.

Definition 4.1. A subset F of a BCC-algebra A is called a *BCC-filter*, if

 $(13) \neg (0 \in F),$

 $(14) \ (\forall x, y, z \in A)((\neg((x \cdot y) \cdot z \in F) \land x \cdot z \in F) \Longrightarrow y \in F).$

The BCC-filter defined on this way has the following properties.

Theorem 4.1. Let A be BCC-algebra and F a BCC-filter of A. Then (15) $(\forall x, y \in A)((\neg (x \cdot y \in F) \land x \in F) \Longrightarrow y \in F),$ (16) $(\forall x, y \in A)(x \cdot y \in F \Longrightarrow y \in F).$

Proof. Putting z = 0 in (14) we obtain (15).

If we put y = x and z = y in (14), we have

$$(\neg((x \cdot x) \cdot y = 0 \cdot y = 0 \in F) \land x \cdot y \in F) \implies y \in F.$$

Therefore, (16) is proved.

Corollary 4.1. Let F be a BCC-filter of BCC-algebra A. Then (17) $(\forall x, y \in A)((x \le y \land x \in F) \Longrightarrow y \in F).$

Proof. Let $x, y \in A$ be arbitrary elements such that $x \leq y$ and $x \in F$. Thus $\neg(x \cdot y = 0 \in F)$ and $x \in F$. Then by (15) we have $y \in F$.

Remark 4.1. Let us recall that some authors a subset F of an BCK-algebra A satisfying condition (16) call 'a deductive system' of that algebra (For example see [7] or [1]). As can be seen, the filter in our sense is a deductive system in a BCC algebra in the sense of the articles [7, 1]. The difference between our concept of deductive system and the concept of a deductive system known in literature is the requirement (13) instead of the demand (8).

192

Theorem 4.2. If F is a BCC-filter of BCC-algebra A, then the set $J = A \setminus F$ is a BCC-ideal. Opposite, if J is a BCC-ideal of BCC-algebra A, then the set $F = A \setminus J$ is a BCC-filter of A.

Proof. It is clear that $0 \in J$. Let $x, y, z \in A$ be arbitrary elements such that $(x \cdot y) \cdot z \in J$ and $y \in J$. Then we have $\neg((x \cdot y) \cdot z \in F)$ and $\neg(y \in F)$. If we suppose that $x \cdot z \in F$ by (13) we will have $y \in F$. So, must to be $\neg(x \cdot z \in F)$.

Opposite, let J be a BCC-ideal of A. It is that $\neg (0 \in A \setminus J)$. Let $x, y, z \in A$ be arbitrary elements such that $\neg ((x \cdot y) \cdot z \in A \setminus J)$ and $x \cdot z \in A \setminus J$. Then $y \in A \setminus J$. Indeed. If it were y in J then $x \cdot z \in J$ follows from $(x \cdot y) \cdot z \in J$ and the $y \in J$ which is in a contradiction with the assumption $x \cdot z \in A \setminus J$. \Box

Theorem 4.3. The family \mathfrak{F}_A of all BCC-filters in BCC-algebra A forms a completely lattice.

Proof. Let $\{F_{i \in I}\}$ be a family of BCC-filters in BCC-algebra A. It is clear that $\neg (0 \in \bigcap_{i \in I} F_i)$ and $\neg (0 \in \bigcup_{i \in I} F_i)$.

(a) Let $x, y, z \in A$ arbitrary elements such that $\neg((x \cdot y) \cdot z \in \bigcup_{i \in I} F_i)$ and $x \cdot z \in \bigcup_{i \in I} F_i$. Thus $\neg((x \cdot y) \cdot z \in F_i)$ for all $i \in I$ and there exists an index $j \in I$ such that $x \cdot z \in F_j$. Then $y \in F_j \subseteq \bigcup_{i \in I} F_i$.

(b) Let \mathfrak{X} be the family of all BCC-filters which contained in the intersection $\bigcap_{i \in I} F_i$. The union $\bigcup \mathfrak{X}$ is the maximal BCC-filter contained in the intersection $\bigcap_{i \in I} F_i$.

(c) So, if we choose $\sqcap_{i \in I} F_i = \bigcup \mathfrak{X}$ and $\sqcup_{i \in I} F_i = \bigcup_{i \in I} F_i$, then $(\mathfrak{F}, \sqcap, \sqcup)$ is a completely lattice. \square

Corollary 4.2. The lattice \mathfrak{F}_A is isomorphic to the lattice \mathfrak{J}_A .

5. FUTURE INTENTIONS

Let \prec_J be a quasi-order relation in BCC-algebra A generated by a BCC-ideal J as in Theorem 3.2. Thus the relation \sim_J , defined as in Corollary 3.1, is a BCC-congruence in A. Let $[a]_{\sim_J}$ be a class of the BCC-congruence \sim_J generated by the element $a \in A$. It is clear the following

$$x \in [a]_{\sim_J} \iff x \sim_J a \iff (x \prec_J a \land a \prec_J x).$$

Let $L_{\prec_J}(a) = \{x \in A : ax \in J\}$ and $R_{\prec_J}(a) = \{y \in A : ya\}$ be denote the left and right class of the relation \prec_J generated by the element a. Then $[a]_{\sim_J} = L_{\prec_J}(a) \cap R_{\prec_J}(a)$ holds. So, in accordance with Theorem 4 in [5], we have

$$[0]_{\sim_J} = L_{\prec_J}(0) \cap R_{\prec_J}(0) = A \cap J = J.$$

On the other hand, for the filter $F = \bigcup_{a \in A \setminus \{0\}} [a]_{\sim}$ generated as in Theorem 4.2, we have

$$F = \bigcup_{a \in A \setminus \{0\}} [a]_{\prec_J} = \bigcup_{a \in A \setminus \{0\}} (L_{\prec_J}(a) \cap R_{\prec_J}(a))$$
$$= (\bigcup_{a \in A \setminus \{0\}} L_{\prec_J}(a)) \cap (\bigcup_{a \in A \setminus \{0\}} (R_{\prec_J}(a))).$$

So, since the filter are shown as intersection of two sets from two classes of subsets in a BCC algebra it is reasonable to describe the elements of these two families in the BCC-algebra supplied with some quasi-order relation.

Acknowledge. The author thanks W.A.Dudek for patiently reading the first version of this text.

D. A. ROMANO

References

- S. A. Celani. Deductive systems of BCK-algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 43(2004), 27-32.
- [2] W. A. Dudek. On BCC-algebras. Logique and Analyse, **129-130** (1990), 103–111.
- [3] W. A. Dudek. On proper BCC-algebras. Bull. Inst. Math. Academia Sinica, 20(1992), 137-150.
- [4] W. A. Dudek and X. H. Zhang. On ideals and congruences in BCC-algebras. Czechoslovak Math. J., 48(1)(1998), 21-29.
- [5] W. A. Dudek. A new characterization of ideals in BCC-algebras. Novi Sad J. Math., 29(1)(1999), 139–145.
- [6] W. A. Dudek and X. H. Zhang. Initial segemnts in BCC-algebras. Mathematica Moravica, 4(2000), 27–34.
- [7] R. Halaš. Annihilators in BCK-algebras. Czechoslovak Math. J., 53(4)(2003), 1001–1007.
- [8] B. Karamdin and S. A. Bhatti. Ideals and branches of BCC-algebras. East Asian Math. J., 23 (2007), 247–255.
- Y. Komori. The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ., 17(1983), 13–16.
- [10] Y. Komori. The class of BCC-algebras is not a variety. *Math. Japonica*, **29** (1984), 391–394.

INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE,,

6, KORDUNAŠKA STREET, 78000 BANJA LUKA, BOSNIA AND HERZEGOVINA *E-mail address*, author one: bato49@hotmail.com