NOTES ON IDEALS AND FILTERS IN BCC-ALGEBRAS

DANIEL A. ROMANO

Abstract

In this article we introduce and analyze a new concept of BCCfilters in BCC-algebra. In addition, the relationship of this new concept with BCC-ideals has been analyzed also.

1. Introduction

Y. Komori (cf. [9, 10]) introduced a notion of BCC-algebras, and W. A. Dudek (cf. [2, 3]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [4], W. A. Dudek and X. H. Zhang introduced the concept of ideals in BCC-algebras and described connections between such ideals and congruences. Several authors dealt with these algebras (see for example [5, 6, 8]).

In this article we introduce and analyze the concept of BCC-filters in BCCalgebras. In addition, we identify the relationships between the BCC-filters and the BCC-ideals.

2. Preliminaries: BCC-Algebras

The definition of BCC-algebra is taken from the articles [2, 3].
Definition 2.1. An algebra $(A, \cdot, 0)$ is called a $B C C$-algebra if it satisfies the following axioms:
(1) $(\forall x, y, z \in A)(((x \cdot y) \cdot(z \cdot y)) \cdot(x \cdot z)=0)$,
(2) $(\forall x \in A)(0 \cdot x=0)$,
(3) $(\forall x \in A)(x \cdot 0=x)$,
(4) $(\forall x, y \in A)((x \cdot y=0 \wedge y \cdot x=0) \Longrightarrow x=y)$.

Definition 2.2.

$$
(\forall x, y \in A)(x \leq y \Longleftrightarrow x \cdot y=0)
$$

Natural BCC-order has ([3], Proposition 2) the following properties
(5) $(\forall x, y \in A)(x \cdot y \leq x)$,
(6) $(\forall x, y, z \in A)((x \cdot y) \cdot(z \cdot y) \leq x \cdot z)$,
(7) $(\forall x, y, z \in A)(x \leq y \Longrightarrow(x \cdot z \leq y \cdot z \wedge z \cdot y \leq z \cdot x))$.

[^0]
3. BCC-IDEALS

Definition 3.1. ([4]) A non-empty subset J of a BCC-algebra A is called a $B C C$ ideal, if
(8) $0 \in J$,
(9) $(\forall x, y, z \in A)(((x \cdot y) \cdot z \in J \wedge y \in J) \Longrightarrow x \cdot z \in J)$.

In the following theorem are given two statements of some fundamental characteristics of the BCC-ideals.

Theorem 3.1. If J is a $B C C$-ideal of a BCC-algebra A, then hold
(10) $(\forall x, y \in A)((x \cdot y \in J \wedge y \in J) \Longrightarrow x \in J)$ and
(11) $(\forall y, z \in A)(y \in J \Longrightarrow y \cdot z \in J)$.

Proof. If we put $z=0$ in (9) we get (10).
Let $y, z \in A$ be arbitrary elements such that $y \in J$. Thus from $(y \cdot y) \cdot z=0 \cdot z=$ $0 \in J$ and $y \in J$, by definition of BCC-ideal J, follows $y \cdot z \in J$.

The important feature of a BCC-ideal in a BCC-algebra is given by the following statement.

Corollary 3.1. Let J be BCC-ideal of a BCC-algebra A. Then
(12) $(\forall x, y \in A)((x \leqslant y \wedge y \in J) \Longrightarrow x \in J)$.

Proof. Let $x, y \in A$ be arbitrary elements such that $x \leqslant y$ and $y \in J$. Thus, $x \in J$ follows from $x \cdot y=0 \in J$ and $y \in J$ by (10).

The statement in the next theorem was proved in analogy with the corresponding statement presented in the texts $[4,5]$.
Theorem 3.2. Let J be a BCC-ideal of a BCC-algebra A. The the relation \prec in A, defined by

$$
(\forall x, y \in A)(x \prec y \Longleftrightarrow x \cdot y \in J)
$$

is a quasi-order in A and the following holds

$$
(\forall x, y, z \in A)(x \prec y \Longrightarrow(x \cdot z \prec y \cdot z \wedge z \cdot y \prec z \cdot x))
$$

Proof. Let $x \in A$ be an arbitrary element. Then $x \cdot x=0 \in J$. Thus $x \prec x$. Let $x, y, z \in A$ be arbitrary elements such that $x \prec y$ and $y \prec z$. Thus $x \cdot y \in J$ and $y \cdot z \in J$. If we put $y=z$ and $z=y$ in (1), we get

$$
((x \cdot z) \cdot(y \cdot z)) \cdot(x \cdot y)=0 \in J
$$

Since $x \cdot y \in J$ and $y \cdot z \in$ from the previous formula we get $x \cdot z \in J$ if we apply twice (10). Therefore, $x \prec Z$. So, the relation \prec is a quasi-order in set A.

Let $x, y, z \in A$ arbitrary elements such that $x \prec y$. Thus $x \cdot y \in J$. If we put $y=z$ and $z=y \mathrm{u}(6)$, we get $(x \cdot z) \cdot(y \cdot z) \leqslant x \cdot y \in J$. Now, from this obtained formula, we have $(x \cdot z) \cdot(y \cdot z) \in J$ according to (12). Finally, we have $x \cdot z \prec y \cdot z$.

On the other hand, if we put $x=z$ and $z=x$ u (1), we get $((z \cdot y) \cdot(x \cdot y)) \cdot(z \cdot x)=$ $0 \in J$. From here we get $(z \cdot y) \cdot(z \cdot x) \in J$ according to (9) due $x \cdot y \in J$. So, we have $z \cdot y \prec z \cdot x$.

Therefore, \prec is a right compatible and left anti-compatible relation in A.
Corollary 3.2. Let J be a $B C C$-ideal in BCC-algebra A. The relation ${ }^{\prime} \sim{ }^{\prime}$ in A defined by $(\forall x, y \in A)(x \sim y \Longleftrightarrow(x \prec y \wedge y \prec x))$ is a $B C C$-congruence in A.

Corollary 3.3. Any BCC-ideal in a BCC-algebra A is determined by some quasiorder relation in A.

Proof. Let J be a BCC-ideal in A. Then the relation defined by the ideal J as in Theorem 3.2, is a quasi-order relation in A.

Opposite, let \prec be a quasi-order relation in A. Then the relation $\sim=\prec \cap \prec^{-1}$ is a congruence in A. Then, by Lemma 3.2 in [4], the class $[0]_{\sim}$ of relation \sim generated by 0 is a BCC-ideal in A.

Corollary 3.4. The lattice \mathfrak{Q}_{A} of all quasi-order relations in a BCC-algebra A is isomorphic the the lattice \mathfrak{J}_{A} of all BCC-ideals in A.

4. A New Concept of BCC-filters

In this short note, we intend to offer a new concept of BCC-filters F of BCCalgebras A that satisfies the following condition

$$
(\forall x, y \in A)((x \leqslant y \wedge x \in F) \Longrightarrow y \in F)
$$

and has a standard attitude towards the BCC-ideal. This formula can be transformed in the following formula

$$
(\forall x, y \in A)((x \cdot y=0 \wedge x \in F) \Longrightarrow y \in F)
$$

Looking at this last formula, a new concept of BCC-filters in the BCC-algebra is introduced by the following definition.

Definition 4.1. A subset F of a BCC-algebra A is called a $B C C$-filter, if
(13) $\neg(0 \in F)$,
(14) $(\forall x, y, z \in A)((\neg((x \cdot y) \cdot z \in F) \wedge x \cdot z \in F) \Longrightarrow y \in F)$.

The BCC-filter defined on this way has the following properties.
Theorem 4.1. Let A be BCC-algebra and F a BCC-filter of A. Then
(15) $(\forall x, y \in A)((\neg(x \cdot y \in F) \wedge x \in F) \Longrightarrow y \in F)$,
(16) $(\forall x, y \in A)(x \cdot y \in F \Longrightarrow y \in F)$.

Proof. Putting $z=0$ in (14) we obtain (15).
If we put $\mathrm{y}=\mathrm{x}$ and $\mathrm{z}=\mathrm{y}$ in (14), we have

$$
(\neg((x \cdot x) \cdot y=0 \cdot y=0 \in F) \wedge x \cdot y \in F) \Longrightarrow y \in F
$$

Therefore, (16) is proved.
Corollary 4.1. Let F be a BCC-filter of BCC-algebra A. Then
(17) $(\forall x, y \in A)((x \leq y \wedge x \in F) \Longrightarrow y \in F)$.

Proof. Let $x, y \in A$ be arbitrary elements such that $x \leq y$ and $x \in F$. Thus $\neg(x \cdot y=0 \in F)$ and $x \in F$. Then by (15) we have $y \in F$.

Remark 4.1. Let us recall that some authors a subset F of an BCK-algebra A satisfying condition (16) call 'a deductive system' of that algebra (For example see [7] or [1]). As can be seen, the filter in our sense is a deductive system in a BCC algebra in the sense of the articles $[7,1]$. The difference between our concept of deductive system and the concept of a deductive system known in literature is the requirement (13) instead of the demand (8).

Theorem 4.2. If F is a $B C C$-filter of $B C C$-algebra A, then the set $J=A \backslash F$ is a $B C C$-ideal. Opposite, if J is a BCC-ideal of BCC-algebra A, then the set $F=A \backslash J$ is a BCC-filter of A.

Proof. It is clear that $0 \in J$. Let $x, y, z \in A$ be arbitrary elements such that $(x \cdot y) \cdot z \in J$ and $y \in J$. Then we have $\neg((x \cdot y) \cdot z \in F)$ and $\neg(y \in F)$. If we suppose that $x \cdot z \in F$ by (13) we will have $y \in F$. So, must to be $\neg(x \cdot z \in F)$.

Opposite, let J be a BCC-ideal of A. It is that $\neg(0 \in A \backslash J)$. Let $x, y, z \in A$ be arbitrary elements such that $\neg((x \cdot y) \cdot z \in A \backslash J)$ and $x \cdot z \in A \backslash J$. Then $y \in A \backslash J$. Indeed. If it were y in J then $x \cdot z \in J$ follows from $(x \cdot y) \cdot z \in J$ and the $y \in J$ which is in a contradiction with the assumption $x \cdot z \in A \backslash J$.

Theorem 4.3. The family \mathfrak{F}_{A} of all BCC-filters in BCC-algebra A forms a completely lattice.

Proof. Let $\left\{F_{i \in I}\right\}$ be a family of BCC-filters in BCC-algebra A. It is clear that $\neg\left(0 \in \bigcap_{i \in I} F_{i}\right)$ and $\neg\left(0 \in \bigcup_{i \in I} F_{i}\right)$.
(a) Let $x, y, z \in A$ arbitrary elements such that $\neg\left((x \cdot y) \cdot z \in \bigcup_{i \in I} F_{i}\right)$ and $x \cdot z \in \bigcup_{i \in I} F_{i}$. Thus $\neg\left((x \cdot y) \cdot z \in F_{i}\right)$ for all $i \in I$ and there exists an index $j \in I$ such that $x \cdot z \in F_{j}$. Then $y \in F_{j} \subseteq \bigcup_{i \in I} F_{i}$.
(b) Let \mathfrak{X} be the family of all BCC-filters which contained in the intersection $\bigcap_{i \in I} F_{i}$. The union $\bigcup \mathfrak{X}$ is the maximal BCC-filter contained in the intersection $\bigcap_{i \in I} F_{i}$.
(c) So, if we choose $\Pi_{i \in I} F_{i}=\bigcup \mathfrak{X}$ and $\sqcup_{i \in I} F_{i}=\bigcup_{i \in I} F_{i}$, then $(\mathfrak{F}, \sqcap, \sqcup)$ is a completely lattice.

Corollary 4.2. The lattice \mathfrak{F}_{A} is isomorphic to the lattice \mathfrak{J}_{A}.

5. Future Intentions

Let \prec_{J} be a quasi-order relation in BCC-algebra A generated by a BCC-ideal J as in Theorem 3.2. Thus the relation \sim_{J}, defined as in Corollary 3.1, is a BCCcongruence in A. Let $[a]_{\sim_{J}}$ be a class of the BCC-congruence \sim_{J} generated by the element $a \in A$. It is clear the following

$$
x \in[a]_{\sim_{J}} \Longleftrightarrow x \sim_{J} a \Longleftrightarrow\left(x \prec_{J} a \wedge a \prec_{J} x\right) .
$$

Let $L_{\prec_{J}}(a)=\{x \in A: a x \in J\}$ and $R_{\prec_{J}}(a)=\{y \in A: y a\}$ be denote the left and right class of the relation \prec_{J} generated by the element a. Then $[a]_{\sim_{J}}=$ $L_{\prec_{J}}(a) \cap R_{\prec_{J}}(a)$ holds. So, in accordance with Theorem 4 in [5], we have

$$
[0]_{\sim_{J}}=L_{\prec_{J}}(0) \cap R_{\prec_{J}}(0)=A \cap J=J
$$

On the other hand, for the filter $F=\bigcup_{a \in A \backslash\{0\}}[a]_{\sim}$ generated as in Theorem 4.2, we have

$$
\begin{aligned}
F & =\cup_{a \in A \backslash\{0\}}[a]_{\sim_{J}}=\cup_{a \in A \backslash\{0\}}\left(L_{\prec_{J}}(a) \cap R_{\prec_{J}}(a)\right) \\
& =\left(\cup_{a \in A \backslash\{0\}} L_{\prec_{J}}(a)\right) \cap\left(\cup_{a \in A \backslash\{0\}}\left(R_{\prec_{J}}(a)\right)\right) .
\end{aligned}
$$

So, since the filter are shown as intersection of two sets from two classes of subsets in a BCC algebra it is reasonable to describe the elements of these two families in the BCC-algebra supplied with some quasi-order relation.

Acknowledge. The author thanks W.A.Dudek for patiently reading the first version of this text.

References

[1] S. A. Celani. Deductive systems of BCK-algebras. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica, 43(2004), 27-32.
[2] W. A. Dudek. On BCC-algebras. Logique and Analyse, 129-130 (1990), 103-111.
[3] W. A. Dudek. On proper BCC-algebras. Bull. Inst. Math. Academia Sinica, 20(1992), 137150.
[4] W. A. Dudek and X. H. Zhang. On ideals and congruences in BCC-algebras. Czechoslovak Math. J., 48(1)(1998), 21-29.
[5] W. A. Dudek. A new characterization of ideals in BCC-algebras. Novi Sad J. Math., 29(1)(1999), 139-145.
[6] W. A. Dudek and X. H. Zhang. Initial segemnts in BCC-algebras. Mathematica Moravica, 4(2000), 27-34.
[7] R. Halaš. Annihilators in BCK-algebras. Czechoslovak Math. J., 53(4)(2003), 1001-1007.
[8] B. Karamdin and S. A. Bhatti. Ideals and branches of BCC-algebras. East Asian Math. J., 23 (2007), 247-255.
[9] Y. Komori. The variety generated by BCC-algebras is finitely based. Reports Fac. Sci. Shizuoka Univ., 17(1983), 13-16.
[10] Y. Komori. The class of BCC-algebras is not a variety. Math. Japonica, 29 (1984), 391-394.
International Mathematical Virtual Institute,
6, Kordunaška street, 78000 Banja Luka, Bosnia and Herzegovina
E-mail address, author one: bato49@hotmail.com

[^0]: Date: July 14, 2018, accepted.
 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. BCC-algebra, BCC-ideal, BCC-filter.

