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Abstract− This study investigates the conformable differential geometry of some special
curves defined in the equi-affine space. The conformable derivative, a generalization of
fractional calculus, is a flexible operator controlled by a parameter α that enables the
modeling of nonlocal behavior in functions. This paper aims to offer a new perspective by
combining the modern concept of derivative with equi-affine differential geometry. First, this
paper introduces the conformable equi-affine arc length parameter and the corresponding
conformable Frenet frame in the equi-affine space. The main focus is on characterizing special
classes of curves, such as helices, slant helices, and rectifying curves, within the conformable
equi-affine frame. These results expand the geometric applications of conformable calculus
and provide a broader theoretical framework for curve analysis in equi-affine geometry. Finally,
the accuracy of the results is observed with an example, and the curvatures are plotted as a
function of α with the MATLAB R2022b.
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1. Introduction

Equi-affine (or equi-volume affine) space is a more general and complex branch of geometry derived by
combining Euclidean and affine geometry. This concept, while preserving the structure of affine space,
abandons rigid Euclidean measurements such as length and angle, focusing instead on transformations
that preserve only the measurement of volume or area. Its fundamental philosophy is to examine
how a shape can be transformed while preserving parallel lines (affine), while also investigating how
these transformations keep the oriented volumes (areas) of objects constant. Thanks to this volume-
preserving property, equi-affine geometry provides a powerful and elegant framework for many areas of
mathematics and theoretical physics, from analyzing surface curvature to visual rendering, and even
some models in relativistic physics. In recent years, many researchers [1–5] have conducted studies
in the equi-affine space (or plane). Aydın et al. [1] introduced the Frenet formulas and equi-affine
curvature and torsion in the equi-affine plane using fractional derivatives. In [3], researchers considered
the concepts of general helix and slant helix in the equi-affine space. In [4], Öğrenmiş provided some
characterizations for the arc length parameter, Frenet formulas, and curvatures for curves in the
equi-affine space using fractional derivatives.
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Curve theory, one of the primary subjects of study in differential geometry, is concerned with identifying
certain types of curves that describe a curve’s local and global behavior. The general helix, slant helix,
and rectifying curves are notable for their historical and mathematical significance. General helices
are curves whose tangent vector forms a constant angle with a fixed direction (perpendicular axis),
which is a natural generalization of helical motion in space. The notion of the slant helix broadens the
definition of the general helix by considering curves whose binormal vector forms a constant angle with
a fixed direction, providing a fresh viewpoint on classical structure. Rectifying curves, as their name
suggests, are straightenable curves. They exhibit important properties despite their principal normal
vectors lying in a plane passing through the origin, and therefore not exhibiting zero torsion.

Fractional calculus is a field of mathematics that extends the principles of integer derivatives and
integrals to any real or complex order. The origins of this field date back 300 years to the correspondence
between Leibniz and L’Hôpital. Traditionally, the Riemann-Liouville, Caputo, and Grunwald-Letnikov
definitions of fractional derivatives have been popular, with applications spanning from differential
equations and signal processing. However, various issues with these traditional techniques (such as
nonlocality and solitary kernel) have limited their practical application. Khalil et al. [6] introduced the
conformable derivative as a fresh and elegant solution to these difficulties. This operator, which is
famous for being local in its fundamental limit formulation, meeting classical differentiation criteria
(e.g., the product and quotient rules), and providing computational simplicity, has quickly acquired
prominence, notably in engineering and physics applications. This new operator quickly attracted
great interest and inspired numerous subsequent studies [7–11]. In [7], researchers provided the Frenet
operators for a conformable curve. Has et al. [9] obtained results for some special conformable curves
in Euclidean 3-space.

Section 2 of this study presents some basic notions and properties. Section 3 introduces the concepts
of conformable general helix and slant helix in the equi-affine space. Then, it proposes the conditions
necessary for a curve to be a conformable general helix and slant helix. Furthermore, this section
establishes the conditions necessary for a curve to be conformablely rectifying in the equi-affine space
R3. Afterward, it provides a general helix example to support the results. The final section discusses
the need for further research.

2. Preliminaries

Consider the affine space R3. Then,

det(x, y, z) = x1(y2z3 − y3z2) − x2(y1z3 − y3z1) + x3(y1z2 − y2z1)

where x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) ∈ R3. Consider the special linear group

SL(3,R) = {A ∈ GL(3,R) | det(A) = 1}

i.e., the subgroup of GL(3,R) consisting of all 3 × 3 real matrices with determinant one [12].

Let γ : I → R3 be a regular curve in R3. For equi-affine space curves, the non-degenerate condition

det
(
γ

′(t), γ
′′(t), γ

′′′(t)
)

̸= 0, for all t ∈ I, where γ
′(t) = dγ

dt
, γ

′′(t) = d2γ

dt2 , and γ
′′′(t) = d3γ

dt3 . The
equi-affine arc lenght of γ is as follows [12]:

s(t) =
∫ t

t0
det

(
γ

′(u), γ
′′(u), γ

′′′(u)
)

du

If γ is a regular curve with the parameter s in the equi-affine space, then the following condition is
satisfied [12]:
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det
(
γ

′(s), γ
′′(s), γ

′′′(s)
)

= 1

Definition 2.1. [3] In the equi-affine geometry, a non-degenerate curve in R3 is classified as a general
helix when a constant direction, defined by a nonzero vector u⃗ (the axis), is always contained within
the instantaneous plane determined by the curve’s equi-affine tangent t and binormal b vectors.

Theorem 2.2. [3] A curve γ is an equi-affine general helix in R3 if and only if its equi-affine curvatures
satisfy the following condition:

τ(s) =
∫ s

a
κ(u) du

where s is equi-affine arc lenght parameter.

Definition 2.3. [3] An equi-affine slant helix is a non-degenerate parameterized curve in R3 for which
a constant nonzero vector u⃗ (the axis) exists such that u⃗ = ξt + λn + µb where t, n, and b are the
equi-affine Frenet frame vectors and the scalar function µ(s) is non zero.

Theorem 2.4. [3] A parameterized curve in R3 is said to be an equi-affine slant helix if and only if
its equi-affine curvatures satisfy the following condition:

s τ(s) =
∫ s

a
uκ(u) du

where s denotes the equi-affine arc-length parameter.

Definition 2.5. [6] Let f : [0, ∞) → R be a function, t > 0, and 0 < α < 1. Then, the conformable
fractional derivative of order α of f at t is defined as follows:

Dαf(t) = lim
ε→0

f
(
t + εt1−α

)
− f(t)

ε

provided that the limit exists. If this limit exists, then f is said to be α-differentiable at t.

Theorem 2.6. [6] Suppose that f and g are α-differentiable at t > 0 and 0 < α < 1. Then, the
following properties are satisfied:

i. Dα(af + bg) = aDα(f) + bDα(g), for all a, b ∈ R

ii. Dα(tp) = ptp−α, for all p ∈ R

iii. Dα(c) = 0, for all constant functions f(t) = c

iv. Dα(fg) = fDα(g) + gDα(f)

v. Dα

(
f

g

)
= gDα(f) − fDα(g)

g2 , where g ̸= 0

vi. If f is α-differentiable, then Dα(f(t)) = t1−α df(t)
dt

Definition 2.7. [6] Let α > 0 and f : [0, ∞) → R be an α-differentiable function. Then,

Iα
0 f(s) = Iα

1 f(sα−1f) =
∫ s

a

f(x)
xα−1 dx

is referred to as the conformable integral.

Theorem 2.8. [6] Suppose that f : [a, ∞) → R is α-differentiable function. Then, for all s > 0,

DαIα
0 f(s) = f(s)
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Proposition 2.9. [4] Assume that γ is a regular conformable curve in the equi-affine space R3. Then,
the arc-lenght function is as follows:

s(t) =
∫ t

t0
u1−α det

(
γ′(u), γ

′′(u), γ
′′′(u)

)
du

Definition 2.10. [4] Let γ = γ(s) be a regular conformable curve in the equi-affine space, t =
Dα(γ)sα−1 be unit tangent vector, n = Dα(t)sα−1 be unit normal vector, b = Dα(n)sα−1 be unit
binormal vector, and the det

(
Dα(γ)sα−1, Dα(t)sα−1, Dα(n)sα−1)

= 1. Then, the set {t(s), n(s), b(s)}
is the conformable equi-affine Frenet frame of the curve γ. Thus, the Frenet formulas for the curve γ

are given by 
Dα(t(s))
Dα(n(s))
Dα(b(s))

 =


0 1 0
0 0 1

−κα(s) −τα(s) 0




t(s)
n(s)
b(s)

 (2.1)

where κα(s) = − det (Dα(t)(s), Dα(n)(s), Dα(b)(s)) and τα(s) = det (Dα(γ)(s), Dα(n)(s), Dα(b)(s))
are curvature and torsion of the curve γ, respectively.

Definition 2.11. [9] A unit-speed conformable curve γ : I ⊂ R → E3 in Euclidean 3-space is called
a conformable rectifying curve whenever its position vector lies entirely within the rectifying plane
associated with the conformable frame.

3. Some Special Conformable Curves in the Equi-Affine Space

In this section, we define conformable general helices and slant helices in the equi-affine space. Moreover,
we provide the relationship between the curvatures of the curve in the case of being an equi-affine
general helix, a slant helix, or a rectifying curve.

Definition 3.1. A conformable general helix in the equi-affine space is defined as a non-degenerate
curve α(s) in R3, parameterized by equi-affine arc length, for which a constant vector u⃗ ̸= 0⃗ (the axis)
exists that is always a linear combination of the equi-affine tangent t and binormal b vectors of the
Frenet frame.

Theorem 3.2. A conformable curve γ in R3 is an equi-affine general helix if and only if its conformable
equi-affine curvatures satisfy the following condition:

τα(s) =
∫ s

a

κα(t)
t1−α

dt

where s denotes the conformable equi-affine arc-length parameter.

Proof. Let γ be a conformable general helix in the equi-affine space R3. Then, there exists a vector
u ∈ R3 such that

u⃗ = ξ(s)t(s) + µ(s)b(s) (3.1)

Differentiating both side of (3.1),

Dα(u⃗) = Dα(ξ(s)t(s) + µ(s)b(s))

= Dα(ξ(s))t(s) + ξ(s)Dα(t(s)) + Dα(ξ(s))b(s) + µ(s)Dα(b(s))

= 0

Using (2.1), the last equation can be rewritten in the form

(Dα(ξ(s)) − καµ(s)) t(s) + (ξ(s) − ταµ(s)) n(s) + Dα(µ(s))b(s) = 0
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Thus,

Dα(ξ(s)) − καµ(s) = 0

ξ(s) − ταµ(s) = 0 (3.2)

and

Dα(µ(s)) = 0 (3.3)

Hence, µ(s) is constant. Since µ(s) = 0 leads to the contradiction u⃗ = 0⃗, µ(s) ̸= 0. Thereby, µ(s) = 1
can be taken by scaling the axis appropriately. From (3.2) and (3.3), Dα(ξ(s)) = κα(s) and ξ(s) = τα(s).
Therefore,

τα(s) =
∫ s

a

κα(t)
t1−α

dt

Conversely, let γ be a conformable curve in the equi-affine space R3. Suppose that

τα(s) =
∫ s

a

κα(t)
t1−α

dt

Then,

Dα(τα(s)t(s) + b(s)) = 0 (3.4)

From (3.4), γ is a conformable general helix in the equi-affine space R3.

Definition 3.3. A conformable equi-affine slant helix is a non-degenerate curve α(s) in R3, parameter-
ized by equi-affine arc length, for which a constant vector u⃗ ̸= 0⃗ (the axis) exists that can be expressed
in its Frenet frame as follows:

u⃗ = ξ(s)t(s) + λn(s) + µ(s)b(s)

where λ is a nonzero constant, and t, n, and b form the equi-affine Frenet frame.

Theorem 3.4. A non-degenerate curve in R3 is said to be a conformable equi-affine slant helix if and
only if its conformable equi-affine curvatures satisfy

sα τ(s) =
∫ s

a
t2α−1κα(t) dt

where s denotes the equi-affine arc-length parameter.

Proof. Let γ be a conformable equi-affine slant helix in R3. Then,

u⃗ = ξ(s)t(s) + λn(s) + µ(s)b(s) (3.5)

where ξ(s) and µ(s) are smooth functions and λ ̸= 0. Differentiating both sides of (3.5),

Dα(u⃗) = Dα(ξ(s)t(s) + λn(s) + µ(s)b(s)

= Dα(ξ(s))t(s) + ξ(s)Dα(t(s)) + λDα(n(s)) + Dα(µ(s))b(s) + µ(s)Dα(b(s))

By (2.1),

(Dα(ξ(s)) − καµ(s)) t(s) + (ξ(s) − µ(s)τα) n(s) + (λ + Dα(µ(s))) b(s) = 0

From the above equations, Dα(ξ(s)) − καµ(s) = 0, ξ(s) − µ(s)τα = 0, and

λ + Dα(µ(s)) = 0 (3.6)

If µ(s) = 0, then this is the contradiction because u⃗ = 0. If we take the conformable integral of (3.6),
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then µ(s) = −λ

α
sα + c, where c is a constant. From the above equations,

sατα(s) = −
∫ s

a
t2α−1κα(t) dt

Conversely, let γ be a conformable curve in the equi-affine space. Suppose that

sατα(s) = −
∫ s

a
t2α−1κα(t) dt

Then,

Dα

(
sα

α
τα(s)t(s) + n(s) + sα

α
b(s)

)
= 0

Therefore, γ is a conformable equi-affine slant helix.

Theorem 3.5. Let γ be a conformable equi-affine rectifying curve in R3. Then, the following is
satisfied:

τα(s) =
∫ s

a

κα(t)
t1−α

dt + c1sα

α
+ c2 (3.7)

where s is the conformable equi-affine arc lenght parameter of the curve γ. Conversely, if (3.7) is
satisfied, then γ is a conformable equi-affine rectifying curve.

Proof. Suppose that γ is a conformable rectifying curve. Then,

γ(s) = ξ(s)t(s) + µ(s)b(s) (3.8)

If we take the conformable derivative of both sides of (3.8), then

Dα(γ(s)) = Dα(ξ(s)t(s) + µ(s)b(s))

= Dα(ξ(s))t(s) + ξ(s)Dα(t(s)) + Dα(µ(s))b(s) + µ(s)Dα(b(s))

= t(s)

By (2.1),

(Dα(ξ(s)) − καµ(s)) t(s) + (ξ(s) − ταµ(s)) n(s) + Dα(µ(s))b(s) = t(s) (3.9)

From (3.9), Dα(ξ(s)) − καµ(s) = 1, ξ(s) − ταµ(s) = 0, and Dα(µ(s)) = 0. It follows from the last
equations that µ(s) is constant and

Dα(τα) = κα + 1
µ(s) (3.10)

If we represent 1
µ(s) = c1 and we take the conformable integral both sides of (3.10), then

τα(s) =
∫ s

a

κα(t)
t1−α

dt + c1sα

α
+ c2 (3.11)

where c1 and c2 are constant. Conversely, suppose that γ satisfies (3.11), then

Dα

(
γ(s) − τα

c1
t(s) − 1

c1
b(s)

)
= 0

where c1 ̸= 0. Therefore, γ is a conformable equi-affine rectifying curve.

Example 3.6. Let γ(s) = 1
α2

 2
3 −

√
3

(sα)
3 −

√
3

2 ,
2

3 +
√

3
(sα)

3 +
√

3
2 ,

(sα)3

3
√

3

 be a conformable

general helix in the equi-affine space R3. Then, the conformable equi-affine Frenet vectors are as
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follows:

t(s) =

α
−

1
2 s

α(1 −
√

3)
2 , α

−
1
2 s

α(1 +
√

3)
2 ,

2
√

3
9α2 s2α



n(s) =

α

1
2 s

α(1 −
√

3)
2 , α

1
2 s

α(−1 +
√

3)
2 ,

4
√

3
9α

sα


and

b(s) =

α

3
2 s

−α(3 +
√

3)
2 , α

3
2 s

α(3 −
√

3)
2 ,

4
√

3
9


where det (t(s), n(s), b(s)) = 1. Thus, κα(s) = α3

s3α
and τα(s) = − α2

2s2α
. Therefore,

u⃗ = τα(s)t(s) + b(s) =
(

0, 0,
1√
3

)
The graphs of conformable equi-affine curvature κα and torsion τα for different values of α are
demonstrated in Figures 1 and 2.

Figure 1. Conformable equi-affine curvatures κα for α = 0.1, α = 0.4, α = 0.7, and α = 1

Figure 2. Conformable equi-affine torsions τα for α = 0.1, α = 0.4, α = 0.7, and α = 1
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4. Conclusion

This study investigates the conformable differential geometry of special curves defined in the equi-affine
space. By combining the flexible nature of conformable derivatives with the invariance properties of
equi-affine geometry, we reveal the geometric structures that emerge from the intersection of these
two theories. The main focus of this study is on special curve families such as helical curves, slant
helices, and rectifying curves. The results of the study clearly demonstrate how the conformable
derivative parameter α plays a critical role in the fundamental differential geometric properties of these
curves (curvature, torsion, etc.). In future work, researchers can focus on extending this approach to
surface theory, investigating conformablely equi-affine minimal surfaces, or carefully and systematically
comparing similar geometries under different definitions of fractional derivatives.
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