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Abstract  Öz 

Caves are spaces that open into the earth and are often either 

completely dark or receive very little light. Photographs 

taken inside caves are usually subject to extremely low light 

conditions and image quality is negatively affected. In this 

study, state-of-the-art Retinex-based image enhancement 

methods are used to enhance the quality of images taken in 

the cave. Enhanced images are evaluated both 

quantitatively and qualitatively. A cave image dataset 

consisting of 82 low-light images is used for quantitative 

analysis. The enhanced results from all methods are 

visually compared using three sample images from the 

dataset for qualitative analysis. Eleven different image 

quality assessment methods are applied for quantitative 

analysis. The results of the study show that Retinex-based 

methods are successful in the enhancement of low-light 

cave images. While BIMEF is recommended for 

applications requiring general image enhancement and 

structural consistency, MSRETINEX and LIME can be 

preferred in applications requiring high dynamic range and 

detail preservation. In cases where noise reduction and 

objective quality assessment metrics are at the forefront, 

SRIE provides advantages. 

 Mağaralar dünyanın içine açılan, çoğunlukla ya tamamen 

ışıksız ya da çok az ışık alan mekanlardır. Mağaraların 

içinde çekilen fotoğraflar genellikle çok düşük ışık 

koşullarına maruz kalır ve görsel kaliteleri olumsuz 

etkilenir. Bu çalışmada, mağarada çekilen görüntülerin 

kalitesini iyileştirmek için güncel Retinex tabanlı görüntü 

iyileştirme yöntemleri kullanılmıştır. İyileştirilen 

görüntüler hem nicel hem de nitel olarak 

değerlendirilmiştir. Nicel analiz için 82 adet düşük ışık 

görüntüsünden oluşan bir mağara görüntü veri seti 

kullanılmıştır. Nitel analiz için tüm yöntemlerin iyileştirme 

sonuçları, veri setinden seçilen üç örnek görüntü ile görsel 

olarak karşılaştırılmıştır. On bir farklı görüntü kalitesi 

değerlendirme yöntemi nicel analiz için uygulanmıştır. 

Çalışmanın sonuçları, Retinex tabanlı yöntemlerin düşük 

ışıklı mağara görüntülerini iyileştirmede başarılı olduğunu 

göstermektedir. Genel görüntü iyileştirme ve yapısal 

tutarlılık gerektiren uygulamalar için BIMEF önerilirken, 

yüksek dinamik aralık ve detay korunması gereken 

uygulamalarda MSRETINEX ve LIME tercih edilebilir. 

Gürültü azaltma ve nesnel kalite değerlendirme 

metriklerinin ön planda olduğu durumlarda SRIE avantaj 

sağlamaktadır. 

Keywords: Retinex, cave, Image enhancement, 

Performance, Compare 

 Anahtar Kelimeler: Retineks, mağara, Görüntü 

iyileştirme, Performans, Kıyaslama 

1 Introduction 

Caves are in-earth cavities formed by natural geological 

processes or people and are of a suitable size for at least for 

one human cover [1]. These cavities are a great focus of 

interest for researchers due to their natural formations and 

historical importance. However, working in a cave 

environment is extremely difficult. Caves are generally 

narrow, irregular in structure, and make movement difficult 

due to the physical dangers they contain. In addition, natural 

light is either completely absent or extremely limited in 

caves. Because of this, photographs taken inside the cave are 

subject to extremely low light conditions and the quality of 

the images decrease. 

Digital image enhancement methods can be used to 

enhance low-quality images. For example, it is possible to 

enhance low-light images with the help of popular photo 

editing software such as Photoshop. However, such 

computer applications require a high level of technical 

knowledge and advanced user experience.  

One of the important methods developed for enhancing 

low-light images is the Retinex method [2]. Retinex aims to 

enhance the visibility of details in poorly illuminated regions 

more visible by evaluating the lighting and reflection 

components in an image separately, like human visual 

perception. Today, many different sub-methods based on 

Retinex theory have been developed and are used effectively 

to enhance image quality, especially in low-light scenes [3]. 

https://orcid.org/0000-0002-8172-3192
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In this study, state-of-art Retinex-based image 

enhancement methods are applied to low-light photographs 

taken in caves and the enhanced images are evaluated in 

detail with qualitative and quantitative analyses. Seven 

Retinex-based image enhancement methods are used to 

enhance images taken inside caves. To obtain reliable 

results, a data set consisting of 82 low-light images is used. 

Enhanced images are examined with quantitative and 

qualitative analysis. Three sample images are selected from 

the data set for qualitative analysis, and all methods were 

compared visually. For quantitative analysis, eleven 

different visual quality analysis methods are used. 

2 Material and method 

2.1 Cave image dataset 

In this study, a unique image dataset containing a total of 

82 photographs taken by the authors inside the caves is used. 

All images were taken in very low light conditions. All 

photos were scaled to 1600x1200 resolution, are in JPG 

format, and have an RGB color scheme. The authors have 

published the image dataset used in this study openly at the 

link on the data availability section of the article. 

 

 

Figure 1. Classification of the cave image dataset. 

 

The classification of the photographs in the data set 

according to the function of the caves in which they were 

taken is shown in Figure 1. 

2.2 Retinex based image enhancement methods 

The Retinex theory was developed by Edwin Land to 

simulate how the Human Visual System perceives color and 

luminance. From its early calculations, this theory has 

developed over time to a form that links individual neurons 

in the cerebral cortex, lateral geniculate nucleus, and primate 

retina to center/surround spatial opposition processes [4]. 

Retinex theory explains that by creating maps of lightness in 

different wavelength bands, color sensations that are 

strongly correlated with reflectance arise independently of 

the illuminating [2]. Following Land’s work, Hurlbert has 

thoroughly studied this new form of Retinex and other 

lightness theories, defining a common mathematical 

explanation. However, this explanation has the limitation 

that it cannot fully account for scene-specific reflections. In 

“monochromatic” scenes, where there is a dominant color in 

the scene, the “gray world” hypothesis assumed by 

Retinex—the average reflectance in the three spectral bands 

being equal—loses its validity. This causes Retinex to 

achieve an unrealistic, forced gray balance in such scenes. 

Hurlbert approached the aperture problem from an artificial 

neural network perspective, seeking a learning-based 

solution, and showed that the resulting solution again has the 

form of a center/surround spatial contrast. This finding 

suggests that center/surround mechanisms may be a 

universal solution for relative reflectance estimation under 

variable illumination conditions. However, the Human 

Visual System evaluates not only physical reflectance but 

also context-dependent relative reflectance, since surfaces in 

shadow do not retain their perceived brightness when 

directly illuminated [5], [6]. Moore et al. have addressed the 

Retinex problem as a natural application area on analogy 

Very Large-Scale Integration (VLSI) resistive networks. 

Their results have shown that color representation is directly 

dependent on the scene content. The common theoretical 

approach in all these studies has been to perform spatial 

operations separately in each spectral band and to prevent 

any interaction between spectral and spatial operations. This 

method provides strong global color constancy throughout 

the scene [7]. According to the Retinex theory, when 

considered from a human perspective, an image 𝐼(𝑥, 𝑦) can 

be separated into the illumination component 𝐿(𝑥, 𝑦) and the 

reflectance component 𝑅(𝑥, 𝑦) [8]. 

 

𝐼(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)𝐿(𝑥, 𝑦) (1) 

 

While the 𝐿(𝑥, 𝑦) value in Equation (1) is the 

illumination value, the 𝑅(𝑥, 𝑦) value is the reflection value 

that depends on the characteristics of the object or objects in 

the image [9]. Figure 2 shows an illustration representing 

how Retinex theory works in principle. It is known that the 

Retinex algorithm can be carried out on technical computer 

programs such as MATLAB. 

 

 

Figure 2. Principal Illustration of Retinex Theory 
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2.2.1 Multi-exposure fusion framework method inspired by 

the human visual system (BIMEF) 

BIMEF is a method that aims to enhance images obtained 

in low-light conditions by taking inspiration from the 

principles of the Human Visual System. This framework 

consists of four basic components. The first component, 

Multi-Exposure Sampler, determines the number of 

synthetic images required for image fusion and the exposure 

ratio of each. The second component, Multi-Exposure 

Generator, generates multiple exposure images using a 

camera response model using the defined exposure ratios. 

The third component, Multi-Exposure Evaluator, calculates 

the weight maps to be used during image fusion based on 

illumination estimation techniques. In the final stage, the 

Multi-Exposure Combiner component combines the 

synthetic images created with the input image according to 

the weight maps and produces the final enhanced image that 

minimizes contrast and luminance distortions. This method 

significantly reduces the problems of over or under 

enhancement of contrast, which are frequently encountered 

in existing methods, by providing correct exposure 

especially in low-light regions [10], [11]. 

2.2.2 Light enhancement of low-light video content 

(DONG) 

Low-Light Video Enhancement method known as 

DONG, proposes an unsupervised Retinex-based 

decomposition strategy and scene-level continuity constraint 

to ensure spatiotemporal consistency in low-light videos. 

Furthermore, consistent illumination and reflection features 

are achieved across different frames by using a dual-

structure enhancement network and inter-frame interaction 

mechanism. Extensive experiments show that the proposed 

method surpasses existing methods and offers a new level of 

state-of-the-art performance [12]. 

Although the DONG method was developed for videos; 

for a single image, the method is applied by decomposing the 

low-light input into illumination and reflection components 

based on the Retinex model. Unlike video, where temporal 

consistency is required, only spatial constraints are imposed 

to ensure smooth yet edge-preserving illumination 

estimation. The illumination map is then enhanced through 

nonlinear adjustment to brighten dark regions, while the 

reflection component is preserved to maintain the original 

textures and colors. Finally, enhanced illumination and 

reflection are recombined, producing a visually enhanced 

low-light image. In essence, a photo can be regarded as a 

time-independent single frame of a video, so apart from the 

absence of temporal consistency, the technique remains 

technically the same. 

2.2.3 Illumination map estimation-based method (LIME) 

LIME is a simple but effective method to enhance 

visibility in low-light images. In the method, the illumination 

of each pixel is estimated by the maximum value in the RGB 

channels, and this initial map is refined using structural 

priors [13]. 

2.2.4 Fusion based low light enhancement method (MF) 

MF method performs the fusion of information obtained 

from different exposures, illumination levels or processed 

variations to enhance the quality of low-light images. Unlike 

traditional methods, instead of directly changing the global 

illumination level, Feature-based Lighting (FBL) techniques 

selectively combine the data with the highest information 

content in local regions. In this way, both detail preservation 

is ensured and enhanced images that are perceived as more 

natural visually are obtained [14]. 

2.2.5 Multi scale retinex with color restoration (MSR) 

MSR is an image processing method that aims to enhance 

both the detail and color accuracy in an image by imitating 

human visual perception. To enhance local contrast and 

adjust the light-dark balance, MSR normalizes the effects of 

illumination using Gaussian filters of varying sizes. Even in 

low light, this produces images that are more balanced, 

realistic, and detailed [15]. 

2.2.6 Naturalness preservation priority method (NPE) 

The NPE method was developed as a technique to 

enhance details while preserving the natural appearance of 

images. This method enhances visual quality by adding 

appropriate brightness in low-light areas while keeping the 

illumination component of the image intact, thus providing 

enhancement without disrupting the natural appearance [16]. 

2.2.7 Weighted variational model for reflection and 

illumination estimation (SRIE) 

SRIE is developed to estimate the reflectance and 

illumination components in an image. Instead of the 

traditional logarithmic transformation, this model preserves 

the reflectance components with more detail by using a 

weighted variational approach that provides a better priori 

representation. It also provides some degree of suppression 

on the noise and is resolved by an alternative minimization 

scheme. These features make the SRIE model more effective 

and superior compared to traditional variational models [17]. 

2.3 Image quality assessment metrics 

2.3.1 Average gradient (AVG GRD) 

Average Gradient is an important measure of image 

quality and visibility that is directly related to visual 

perception. According to Weber-Fechner's law, human 

sensitivity to brightness is limited, particularly in low-light 

situations [18]. Average gradient is calculated as follows: 

 

𝐴𝐺 =
1

(𝐻 − 1)(𝑊 − 1)
∑ ∑

|𝐺(𝑥, 𝑦)|

√2
𝑦𝑥

 (2) 

 

The image's size is denoted by 𝐻 𝑥 𝑊 in this equation, 

and its gradient vector is denoted by 𝐺(𝑥, 𝑦) in Equation (2). 

A more successful image in terms of light enhancement is 

indicated by a greater average gradient value [19]. 

2.3.2 Information entropy (INF ENT) 

Information Entropy is a measure of randomness or 

uncertainty in a signal or image. It quantifies how much 
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information is conveyed: the higher the transmitted 

information, the better the image quality. The reduction in 

uncertainty after imaging reflects how much useful 

information the image provides. This concept, based on 

Shannon's entropy [20], is a simple and unified assessment 

of image noise and blur. The entropy for the input is 

represented by 𝐻(𝑥) and that for the output by 𝐻(𝑦), 

assuming that x and y are two random variables that 

correspond to an input variable and an output variable, 

respectively. The joint entropy, 𝐻(𝑥, 𝑦), in this instance is 

defined as follows: 

 

𝐻(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻𝑋(𝑦) = 𝐻(𝑦) + 𝐻𝑦(𝑥) (3) 

 

where conditional entropies are represented by 𝐻𝑋(𝑦) 

and 𝐻𝑦(𝑥). They are, respectively, the input's entropy when 

the output is known and the output's entropy when the input 

is known. We can calculate 𝑇(𝑥; 𝑦), in this case as follows 

[21]: 

 

           𝑇(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻𝑦(𝑥) = 𝐻(𝑦) − 𝐻𝑥(𝑦)

= 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦) 
(4) 

 

2.3.3 Variance 

Variance is used as a statistical method to evaluate the 

quality measurements. It is used to show whether the 

hypothesized component such as the image class factor or 

the image compression type factor can explain the variation 

in the data. Finding the image quality measurements that 

most reliably and discriminately determine the artifacts of 

noise, blur, and compression are the result of variance. The 

one-way variance equation is written as follows [22]: 

 

𝐹 =
𝑀𝑆𝑏

𝑀𝑆𝑤

=
𝑆𝑆𝑏/(𝑘 − 1)

𝑆𝑆𝑤/(𝑁 − 𝑘)
 (5) 

 

Here, the F value is a statistical test value that shows the 

ratio of the variance between groups to the variance within 

groups. 𝑆𝑆𝑏 is the sum of squares between groups, 𝑆𝑆𝑤 is the 

sum of squares within groups, MS is Mean Square, 𝑘 is the 

number of groups and 𝑁 is the total number of samples. 

2.3.4 Visual Information Fidelity (VIF) 

VIF is information theory-based metric for evaluating 

image quality. The reference image serves as the signal from 

the statistical source that is modelled to represent natural 

settings. A channel model is used to represent Human Visual 

System (HVS). Degraded images (e.g. compressed or 

blurred) follow a degradation channel before passing through 

the Human Visual System. In these two scenarios, VIF 

computes the mutual information between the Human Visual 

System input and output and compares them to determine the 

image quality. This situation is illustrated in the Figure 3 

[23]. 

 

 

Figure 3. The mutual information ratio between C and E 

and C and F compares the amounts of detectable 

information from the reference and distorted signals.  

 

𝑉𝐼𝐹 =
∑ 𝐼(𝐶𝑗; 𝐹𝑗)𝑀

𝑗=1

∑ 𝐼(𝐶𝑗; 𝐸𝑗)𝑀
𝑗=1

 (6) 

 
In the Equation (6) 𝐶𝑗 𝑖𝑠 reference sub band (wavelet 

subspace), 𝐸𝑗 is information extracted from the reference sub 

band by Human Visual System, 𝐹𝑗 is corresponding sub band 

in the distorted image and 𝐼(𝐶𝑗; 𝐹𝑗) is mutual information. 

2.3.5 Gradient Magnitude Similarity Deviation (GMSD) 

GMSD is an effective image quality assessment metric 

that evaluates the quality difference between the reference 

and the degraded image via the Gradient Magnitude 

Similarity (GMS). After calculating the gradient magnitude 

similarity for each pixel, GMSD estimates the overall image 

quality by taking the standard deviation of this similarity 

map. This method provides both high accuracy and is 

computationally fast, making it suitable for applications that 

process large volumes of visual data. The image quality 

assessment metric that applies mean pooling to the GMS 

map is called Gradient Magnitude Similarity Mean (GMSM) 

[24]. 

 

𝐺𝑀𝑆𝑀 =
1

𝑁
∑ 𝐺𝑀𝑆(𝑖)

𝑁

𝑖=1
 (7) 

 

In Equation (7), 𝐺𝑀𝑆(𝑖) is Gradient Magnitude 

Similarity at ith pixel and N is the total number of pixels. 

GMSD equation is written as follows:  

 

𝐺𝑀𝑆𝐷 = √
1

𝑁
∑ (𝐺𝑀𝑆(𝑖) − 𝐺𝑀𝑆𝑀)2

𝑁

𝑖=1
 (8) 

 

2.3.6 Image Mean Squared Error (IMMSE) 

The IMMSE metric calculates the Mean Squared Error 

(MSE) between two numeric arrays (usually images) of the 

same size and data type, X and Y. The resulting MSE value 

quantifies the similarity between the two images; a lower 

MSE value indicates that the images are more similar. 

IMMSE is used particularly in image processing 

applications, for example to evaluate the effectiveness of 

compression, denoising or filtering operations [25]. 

2.3.7 Structural Similarity Index (SSIM) 

SSIM is a perception-based image quality assessment 

metric developed by Wang et al. in 2004. This method 

evaluates image distortion not directly by pixel differences 

but by structural information change. Since the Human 
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Visual System is highly sensitive to structural information, 

SSIM measures the perceptual similarity between two 

images by considering brightness, contrast, and structure 

components. Structural information contains more 

information about visual objects that are composed of 

strongly connected or spatially close pixels. Luminance 

masking refers to a situation where distortions are less 

obvious at image edges, while contrast masking refers to a 

situation where distortions are less visible in textures. SSIM 

estimates the perceived image quality by measuring the 

similarity between the original and recovered images [26]. 

For two images x and y, SSIM is defined as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾 (9) 

 
In Equation (9), l represents luminance, c represents 

contrast, s represents structure, and α, β, and γ represent 

positive constants. 

2.3.8 Multi-Scale Structural Similarity Index (MULTISIM) 

MULTISIM is a perception-based image quality 

assessment metric. It is an upgraded version of the Structural 

Similarity Index (SSIM) model that assesses image 

distortion as a change in structural data. Like SSIM, it 

considers the effects of brightness and contrast masking. 

MS-SSIM assesses the multi-scale similarity of the original 

and degraded images by examining brightness, contrast, and 

structural changes at various image sizes. Thus, it provides a 

more accurate quality assessment that is closer to human 

visual perception [27]. MS-SSIM is expressed as: 

 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦)

= [𝑙𝑀(𝑥, 𝑦)]𝛼𝑀. ∏[𝑐𝑗(𝑥, 𝑦)]
𝛽𝑗

𝑀

𝑗=1

[𝑠𝑗(𝑥, 𝑦)]𝛾𝑗 
(10) 

 
Here 𝑙𝑀(𝑥, 𝑦) is luminance similarity at lowest 

resolution, 𝑐𝑗(𝑥, 𝑦) is contrast similarity at jth scale, 𝑠𝑗(𝑥, 𝑦) 

is structural similarity at the jth scale, 𝛼𝑀, 𝛽𝑗, 𝛾𝑗 are 

weighting coefficients of each component and M is the 

number of scales. 

2.3.9 Peak Signal-to-Noise Ratio (PSNR) 

PSNR is a metric used to calculate the ratio of the 

maximum possible signal power compared to the distortion 

noise that affects the quality of an image. This ratio between 

two images is expressed in decibels. PSNR is calculated on 

a logarithmic scale because signals have a very wide 

dynamic range. Dynamic range represents the difference 

between the largest and smallest possible values of the 

signal, and this range may vary depending on the image 

quality. PSNR is the most widely used quality measurement 

technique to evaluate the reconstruction quality, especially 

for lossy image compression codecs. Here, the signal is 

considered as the original data, and the noise is considered 

as the error caused by compression or distortion. PSNR 

provides an approximate estimate of the reconstruction 

quality after compression, close to human perception [28]. 

PSNR is as follows: 

 

𝑃𝑆𝑁𝑅 = 10 log10(𝑝𝑒𝑎𝑘𝑣𝑎𝑙2)/𝑀𝑆𝐸 (11) 

 

In Equation (11) "peakval" represents the highest pixel 

value in the image data. 

2.3.10 The Natural Image Quality Evaluator (NIQE) 

NIQE is a reference-free metric for evaluating image 

quality. It makes it possible to measure an image's perceived 

quality without comparing it to the original. NIQE estimates 

image quality by focusing on the analysis of structural 

features based on the Human Visual System. This method 

uses statistical features to determine whether an image 

conforms to its natural structure [29]. 

2.3.11 Perception-Based Image Quality Evaluator (PIQE) 

PIQE is a reference-free image quality assessment 

metric. It evaluates the quality of an image by analysing 

perceptual features based on the Human Visual System. This 

method detects distortions based on inherent structural 

features in images and calculates a quality score for each 

image. It relies on the local features of each block in the 

image to assess the quality. It performs local block-based 

assessment and divides the image into small parts and 

measures the quality [30]. 

3 Results and discussion 

3.1 Quantitative analysis 

The dataset of 82 cave images has been enhanced using 

Retinex-based algorithms, with parameters that are listed in 

Table 1. 

 

Table 1. Methods and selected parameters 

Method Parameter and value 

BIMEF 
Illumination map coefficient (λ)=1 

Enhancement degree (µ)=0,5 

DONG 
Number of frame (T)= 1 

Batch size= 4 

LIME Refinement parameter (λ) = 0,8 

MF Weight: Laplacian contrast + chromaticity 

MSR Gaussian scales: σ = {15, 80, 250} 

NPE 
Difference parameter (ℇ)= 12 

Brightness = 0,7 

SRIE 
Weighted variational regularization (α) = 0,02–0,2 

Noise suppression parameter (β) = 0,001–0,01 

 

Enhanced images are tested with quality assessment 

metrics and the results are shown with average values which 

are shown in Table 2. 

In this study, the available “original” image is already 

degraded by soot, meaning that it cannot serve as a true 

ground-truth reference. Consequently, full-reference metrics 

GMSD, IMMSE, MULTISIM, PSNR, SSIM and VIF do not 

provide an absolute measure of perceptual quality but rather 

quantify the degree of similarity to the degraded input. A 
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higher PSNR or SSIM score in this context indicates that the 

enhancement has preserved the characteristics of the sooty 

image, whereas a lower score suggests stronger deviations 

from the degraded reference. This interpretation creates a 

paradox: enhancements that increase the visibility of details 

and enhance perceptual quality may appear as “losses” with 

respect to the original degraded image. Therefore, PSNR and 

SSIM should be understood not as direct indicators of 

restoration success, but as auxiliary measures that reflect 

how much the enhanced image diverges from the input. 

According to the quantitative analysis results in Table 2 

for all images, the performances of different image 

enhancement methods in various metrics are comparatively 

presented. The BIMEF method has achieved the best results 

in PIQE, GMSD, MULTISIM and SSIM metrics, 

demonstrating significant superiority over other methods. 

This shows that BIMEF is an effective method in enhancing 

image quality, reducing structural distortions and preserving 

multi-scale similarity. The LIME method has shown the 

highest performance in AVG GRD, INF ENT and 

VARIANCE metrics, and has been especially successful in 

dynamic range and detail preservation metrics such as 

average gradient, information entropy and variance in the 

image. These results show that LIME is a strong option in 

terms of contrast and local detail enhancement. The SRIE 

method stands out in NIQE, IMMSE and PSNR metrics. This 

performance demonstrates that SRIE is effective in areas 

such as natural image quality estimation, error minimization, 

and signal-to-noise ratio optimization. Especially the high 

values in PSNR support that the method is successful in 

noise suppression and image restoration. 

The first and second column of Table 2 presents the 

NIQE and PIQE scores of Retinex-based image 

enhancement methods in comparison. Lower scores in both 

NIQE and PIQE represent higher perceived visual quality. 

Among the applied enhancement methods, SRIE 

outperformed with a NIQE score of 2.75 and BIMEF 

outperformed all other methods with a PIQE score of 24.698 

and provided the lowest quality loss among the enhanced 

images. SRIE method is a very close second to BIMEF with 

a value of 24.702. In Figure 4 and 5, the radar graphic 

representation of the methods according to their NIQE and 

PIQE scores is presented and the clear performance 

superiority of BIMEF is also visually indicated. 

In the third column of Table 2, Average Gradient scores 

are presented comparatively. Average Gradient 

quantitatively measures the level of detail and sharpness of 

an image, with higher values indicating better detail 

preservation and increased visual acuity. According to the 

results, the LIME method obtained the highest value among 

all methods with Average Gradient score of 55.93, thus 

showing the most successful enhancement performance in 

terms of detail preservation and sharpness. LIME is followed 

by MS-RETINEX (50.59) and DONG (46.67) methods, 

respectively. In Figure 6, Average Gradient scores are 

presented on the radar graph, and the superior detail 

preservation performance of LIME method is also visually 

indicated. 

 

 

Figure 4. NIQE Analysis Results 

 

 

Figure 5. PIQE Analysis Results 

 

 

Figure 6. Average Gradient Analysis Results 

 

The Information Entropy values used in the study are 

shown in the fourth column of Table 2. Information Entropy 

measures the amount and variety of information in an image; 

therefore, high entropy values generally indicate images that 

contain more detail and richer texture information. 

According to the evaluation results, the LIME method 

provided the highest information entropy with an entropy 

value of 7.46 and performed better than other methods in this 
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respect. This result shows that the LIME method can both 

preserve details better and reduce loss of information in low-

light images. This shows that the enhancement methods not 

only increase the illumination but also enrich the information 

in the image content. LIME proved to be an effective method 

in increasing visual quality in low-light conditions by 

providing the best results in terms of information content. In 

Figure 7, Information Entropy scores are presented on the 

radar graph. 

The Variance values presented in the fifth column of 

Table 2 represent a measure of the distribution of pixel 

values for the outputs of each image enhancement method. 

Higher Variance values generally represent more distinct 

details and better visual perception quality. According to the 

results obtained, the LIME method achieved the highest 

variance score with a value of 4 087.20 and provided the 

highest contrast and detail diversity compared to the other 

methods. This shows that the LIME method more effectively 

reveals the details in the image. LIME significantly 

contributed to the enhanced image quality in terms of both 

information content and visual contrast. In Figure 8, 

Variance scores are presented on the radar graph. 

The GMSD metric is used to measure the structural 

fidelity between the enhanced and reference images. Lower 

GMSD values indicate higher structural similarity and less 

distortion. As presented in the sixth column of Table 2, the 

BIMEF method showed superior performance in preserving 

gradient-based structural information under low-light 

enhancement conditions, achieving the lowest GMSD score 

of 0,08. In Figure 9, GMSD scores are presented on the radar 

graph. 

 

 

Figure 7. Information Entropy Analysis Results 

 

The IMMSE evaluates the pixel-wise error between the 

enhanced and reference images, where lower values indicate 

better reconstruction accuracy. As shown in the seventh 

column of Table 2, the SRIE method outperformed all other 

methods by achieving the lowest IMMSE score of 1 838.25. 

This result confirms the ability of SRIE to minimize 

reconstruction errors during low-light image enhancement. 

In Figure 10, IMMSE scores are presented on the radar 

graph. 

 

 

Figure 8. Variance Analysis Results 

 

 

 

Figure 9. GMSD Analysis Results 

 

The MULTISIM measures the perceptual similarity 

between the enhanced and reference images on multiple 

scales. Higher MULTISIM values indicate better structural 

preservation and perceptual quality. As shown in the eighth 

column of Table 2, the BIMEF method produced a better 

result than the other methods by obtaining a score of 0.91. 

This result highlights the effectiveness of BIMEF in 

preserving structural fidelity and visual quality during low-

light image enhancement. In Figure 11, MULTISIM scores 

are presented on the radar graph. 

PSNR is a widely used analysis method to evaluate the 

quality of enhanced images. Higher PSNR values indicate 

better image fidelity and lower distortion level. As shown in 

the ninth column of Table 2, the SRIE method achieved the 

highest PSNR score of 15.91. This result shows the success 

of the SRIE method in preserving image quality and 

minimizing noise distortion in the low-illumination image 

enhancement process. In Figure 12, PSNR scores are 

presented on the radar graph. 
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Table 2. Quantitative Analysis Results. 

  
NIQE PIQE 

AVG GRD(↑) INF ENT(↑) 
VARIANCE GMSD IMMSE 

MULTISIM (↑) 
PSNR SSIM VIF 

(↓) (↓) (↑) (↓) (↓) (↑) (↑) (↑) 

BIMEF 3.18 24.70 28.29 7.22 2 473.70 0.08 2 020.23 0.91 15.34 0.66 1.80 

DONG 3.40 32.19 46.67 7.19 2 618.10 0.19 5 869.80 0.70 10.89 0.44 2.87 

LIME 3.46 35.12 55.93 7.46 4 087.20 0.21 10 508.29 0.64 8.04 0.37 6.62 

MF 3.48 29.77 35.51 7.34 2 786.91 0.11 3 125.16 0.84 13.60 0.56 2.47 

MS RETINEX 3.22 29.45 50.59 7.34 2 383.39 0.24 14 361.82 0.66 6.83 0.36 6.83 

NPE 3.20 27.93 36.07 7.15 2 410.70 0.15 3 146.63 0.81 13.99 0.55 3.01 

SRIE 2.75 24.70 31.35 7.27 2 604.54 0.09 1 838.25 0.87 15.91 0.63 2.23 

ORG 2.92 17.50 19.18 6.81 2 296.83 0.00 0.00 1.00 65.535.00 1.00 1.00 

ORG: Original source image to be enhanced. Bold and italic numbers show the best performance per criteria. 

 

 

Figure 10. IMMSE Analysis Results 

 

 

Figure 11. Multi-SIM Analysis Results 

 

SSIM measures the structural similarity between the 

enhanced image and the reference image. Higher SSIM 

values indicate better structural preservation and higher 

perceptual quality. As shown in the tenth column of Table 2, 

the BIMEF method exhibited the best performance among 

other enhancement methods with an SSIM score of 0.66. 

This result shows that BIMEF effectively preserves 

structural integrity while enhancing low-illumination 

images. In Figure 13, SSIM scores are presented on the radar 

graph. 

 

Figure 12. PSNR Analysis Results 

 

 

Figure 13. SSIM Analysis Results 

 

The VIF metric measures the visual information 

preservation between the enhanced image and the reference 

image. Higher VIF values indicate more effective 

preservation of perceptual information. According to the 

results presented in the eleventh column of Table 2, the MS 

Retinex method achieved the highest VIF score of 6.83, 

showing the most successful performance among other 

enhancement methods. This result reveals that the MS 

Retinex method exhibits superior effectiveness in preserving 

perceptual information integrity in low-illumination images. 

In Figure 14, VIF scores are presented on the radar graph. 
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Figure 14. VIF Analysis Results 

 

3.2 Qualitative analysis 

Two different enhancement results are presented for 

detailed qualitative evaluation with two images selected 

from a dataset of 82 images. Figure 15 shows the apse of a 

rock-carved church. Details not visible in the original image 

(15.a) due to low light have become visible in the enhanced 

image (15.b).  

 

(a) 

 

(b) 

Figure 15. Image No. 56 a) Original image b) MultiScale 

Retinex Output 

Figure 16 shows a caver working in a cave in front of a 

lock stone. In the enhanced image, details of the lock stone 

behind the caver are clearer. Furthermore, the hole in the 

middle of the lock stone became visible at the enhanced 

image. 

 

 

(a) 

 

(b) 

Figure 16. Image No. 81 a) Original image b) NPE 

Output 

 

For sample individual analysis of images, we have 

selected three samples out of 82 images. Figure 17 shows all 

output results as enhanced images of the three selected 

images in the image dataset, enhanced by Retinex-based 

methods. According to the results of the quality analysis of 

the images in Figure 17 with subjective analysis, the BIMEF 

method provides the most satisfactory results in terms of 

detail preservation, color accuracy and lighting balance 

among the low-light image enhancement methods. LIME, 

which is especially superior in terms of the clarity of scene 

details and natural color reproduction, stands out in terms of 

visual quality. Similarly, the MSRETINEX method offers a 

high-quality visualization with natural color distribution and 

contrast balance. LIME, on the other hand, exhibits a 

successful performance with its low noise and balanced 

lighting features. In contrast, the DONG and SRIE methods 

cause loss of detail due to excessive brightness or low 

contrast and produce weaker results in terms of visual 
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perception. In general, the BIMEF algorithm emerges as the 

most successful enhancement approach in terms of both 

visual quality and structural integrity. 

Table 3 shows the objective analysis results of the three 

sample images in Figure 17. The numerical evaluation 

metrics in Table 3 reveal the all-performance metrics of eight 

different low-illumination image enhancement methods. The 

BIMEF method emerges especially in structural and 

perceptual quality metrics. It is seen that this method 

provides superiority with PSNR (highest in two images) and 

SSIM (highest in all images) values. Among the average 

results in Table 2 for the PSNR value, the best result was 

obtained by SRIE. This indicates that different methods can 

show different levels of success in processing individual 

images separately. In addition, GMSD (lowest in all scenes) 

and MULTISIM (highest in all scenes) results show that 

BIMEF can preserve scenes in general without distorting 

local details. By obtaining IMMSE with BIMEF at the 

lowest value twice, the error rate is minimized. In NIQE, 

BIMEF twice and SRIE, once with the lowest value, 

provided successful results in natural image perception. In 

terms of PIQE metrics, the fact that MF, SRIE and BIMEF 

produce low values shows that these three algorithms are 

effective in reducing perceptual distortion. 

SRIE, PSNR and IMMSE metrics give the best results 

once each, and it shows competitive performance especially 

in structural accuracy. In addition, the low values in NIQE 

and PIQE metrics show that SRIE offers results compatible 

with the human visual system. MSRETINEX and LIME 

emerge especially in AVG GRD, VARIANCE and VIF 

metrics, which are detail and contrast measures. LIME gives 

the highest result in both variance and VIF values in two 

scenes, and it is seen that it preserves the level of detail well 

in these scenes. MF method gives the lowest value in PIQE 

in one scene and offers a successful example in terms of 

perceptual quality. However, its performance in other 

metrics remains lower. 

 

Table 3. Quantitative analysis results of sample images from data set (Image No: 56, 65, 81). 

Image 

AVG 

GRD(↑) 

INF 

ENT(↑) 

GMSD 

(↓) IMMSE (↓) 

MULTISI

M(↑) 

NIQE(

↓) 

PIQE 

(↓) 

PSNR(

↑) 

SSIM(

↑) 

VARIANC

E (↑) 

VIF 

(↑) 

Image No: 56 (BIMEF) 18.59 6.72 0.02 2 140.79 0.97 2.16 7.24 14.83 0.82 772.74 1.63 

Image No: 56 (DONG) 43.40 6.73 0.21 7 785.42 0.63 3.30 10.29 9.22 0.51 926.78 4.14 

Image No: 56 (LIME) 38.58 7.08 0.13 12 447.47 0.74 2.56 8.61 7.18 0.45 1 445.17 6.34 

Image No: 56 (MF) 26.08 6.79 0.06 3 804.07 0.91 2.51 7.22 12.33 0.67 897.25 2.71 

Image No: 56 (MS 

Retinex) 56.31 7.53 0.19 8 744.81 0.58 2.84 10.73 8.71 0.42 2 491.33 13.63 

Image No: 56 (NPE) 33.71 7.10 0.12 3 372.36 0.79 2.38 8.37 12.85 0.57 1 519.62 4.67 

Image No: 56 (SRIE) 23.38 6.84 0.06 2 856.47 0.91 2.23 9.20 13.57 0.72 948.80 2.66 

Image No: 65 (BIMEF) 21.49 7.18 0.06 2 301.39 0.95 4.73 32.27 14.51 0.73 1 518.58 1.88 

Image No: 65 (DONG) 42.71 7.08 0.20 8 012.41 0.72 4.29 52.05 9.09 0.45 1 817.97 3.00 

Image No: 65 (LIME) 46.69 7.50 0.19 13 107.44 0.70 5.06 54.62 6.96 0.38 3 067.23 5.88 

Image No: 65 (MF) 31.11 7.27 0.11 4 021.45 0.87 5.39 48.77 12.09 0.59 1 811.06 2.56 

Image No: 65 (MS 
Retinex) 37.56 6.92 0.21 12 935.80 0.79 4.53 41.62 7.01 0.46 1 660.37 4.75 

Image No: 65 (NPE) 31.37 7.06 0.14 4 401.85 0.85 4.74 45.54 11.69 0.57 1 511.63 2.65 

Image No: 65 (SRIE) 26.21 7.33 0.09 2 772.64 0.90 3.84 31.07 13.70 0.67 1 908.99 2.53 

Image No: 81 (BIMEF) 21.52 7.40 0.06 1 863.98 0.93 2.36 9.34 15.43 0.65 2 591.84 1.26 

Image No: 81 (DONG) 42.47 7.40 0.21 6 702.68 0.64 2.85 22.70 9.87 0.38 2 974.09 1.96 

Image No: 81 (LIME) 45.22 7.76 0.20 11 141.49 0.62 2.95 24.35 7.66 0.32 4 728.70 3.47 

Image No: 81 (MF) 29.27 7.61 0.11 3 748.66 0.84 2.60 19.96 12.39 0.52 3 302.75 1.57 

Image No: 81 (MS 

Retinex) 38.21 7.43 0.25 14 498.19 0.71 2.74 16.63 6.52 0.36 2 607.42 2.71 

Image No: 81 (NPE) 28.98 7.13 0.16 3 226.00 0.79 2.78 15.03 13.04 0.51 2 236.63 1.64 

Image No: 81 (SRIE) 25.24 7.55 0.09 1 687.24 0.87 2.14 10.44 15.86 0.64 2 841.63 1.75 
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Figure 17. Qualitative Analysis of Sample Images from 

Data Set (Image No: 56, 65, 81) 
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4 Conclusion 

Retinex-based image enhancement methods provide 

effective enhancement on low-light images. However, the 

performance of Retinex-based methods on dark cave images 

has not been specifically addressed to date. In this study, for 

the first time, dark cave images were enhanced with state-of-

the-art Retinex methods, and the obtained results were 

analyzed both quantitatively and qualitatively. According to 

the results, the BIMEF algorithm stands out in terms of 

overall success by consistently showing the highest 

performance in basic metrics such as SSIM, GMSD, 

MULTISIM, artifact measures (NIQE, PIQE) and PSNR. 

While MSRETINEX and LIME offer a strong image 

enhancement profile especially in metrics representing detail 

level and contrast, SRIE draws attention by providing 

structural accuracy and perceptual quality together in some 

images. While BIMEF stands out as the most balanced 

option in multi-dimensional quality needs, MSRETINEX 

and LIME can be preferred in applications where details are 

important. 

As a result, BIMEF is recommended for cave images 

requiring general image enhancement and structural 

consistency; LIME can be preferred in cave images requiring 

high dynamic range and detail preservation. SRIE provides 

advantages in cases where noise reduction and objective 

quality assessment metrics are at the forefront. These results 

show that the method selection should be made depending 

on the application goals and evaluation criteria. Retinex-

based image enhancement can also be used to enhance low-

light underwater images and sooty murals. 
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