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Abstract

In this article, we prove the existence and uniqueness of solutions for the Navier problem

Alw(z)(|AufP " Au+ [AulI™?Au)]
— div|[w(@)( \VulP~*Vu + \Vu|q72Vu)]

P
(P) = f(z) — div(G(x)), in Q,
u(z) =Au=0, in 01,
. N f p/ G ql N
where € is a bounded open set of RY (N >2), =€ LP (Q,w) and — € [L? (Q,w)]" .
w w
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1. Introduction and Preliminaries
The main purpose of this paper (see Theorem is to establish the existence and uniqueness of solutions
for the Navier problem
(P) Lu(z) = f(z) — div(G(x)), in €,
u(z) = Au(xz) =0, in 09,
where
Lu(z) = Alw(@)(|AulP?Au+|Au/T?Au)]
— div]w(z)( IVulP~2Vu + |Vu|q72Vu)],

Email address: accava@gmail.com (Albo Carlos Cavalheiro)

Received June 04, 2018, Accepted August 08, 2018, Online August 09, 2018.



Albo Carlos Cavalheiro, Results in Nonlinear Anal. 1 (2018), 74-87 75

Q CRY is a bounded open set, 5 e’ (Q,w), g € [L(Q,w)]V, w is a weight function (i.e., a locally inte-
grable function on R such that 0 < w(z) < 0o a.e. a;e]RN), A is the Laplacian operator, 1 < g < p < oo,
1/p+1/p’=1land 1/qg+1/q' = 1.

For degenerate partial differential equations, i.e., equations with various types of singularities in the
coefficients, it is natural to look for solutions in weighted Sobolev spaces (see [1], [4], [5], [7], [8] and [11]).
The type of a weight depends on the equation type.

A class of weights, which is particularly well understood, is the class of A, weights that was introduced by
B.Muckenhoupt in the early 1970’s (see [§]). These classes have found many useful applications in harmonic
analysis (see [9] and [10]). Another reason for studying A,-weights is the fact that powers of the distance to
submanifolds of RV often belong to A, (see [3] and [I1]). There are, in fact, many interesting examples of
weights (see [7] for p-admissible weights).

In the non-degenerate case (i.e. with w(xz) = 1), for all f € LP(Q) the Poisson equation associated with
the Dirichlet problem

— Au = f(z), in Q
{ u(z) =0, in 99

is uniquely solvable in W?2P?(Q)N I/VO1 P(Q) (see [6]), and the nonlinear Dirichlet problem

— Apu = f(x), in Q
{ u(z) =0, in 0N

is uniquely solvable in I/VO1 P(Q) (see [2]), where Ayu = div(|VulP"?Vu) is the p-Laplacian operator. In the
degenerate case, the degenerated p-Laplacian has been studied in [3].

The paper is organized as follow. In Section 2 we present the definitions and basic results. In Section 3
we prove our main result about existence and uniqueness of solutions for problem (P).

2. Definitions and Basic Results
By a weight we shall mean a locally integrable function w on RY such that 0 < w(zx) < oo for a.e. z € RV,
Every weight w gives rise to a measure on the measurable subsets of RY through integration. This measure
will be denoted by p. Thus, u(E) = / w(z) dx for measurable sets £ C R,
E

Definition 2.1. Let 1 <p < oo. A weight w is said to be an A,-weight, if there is a positive constant C
such that, for every ball B Cc RV

p—1
(,;ﬂ/Bw(az)daQ (@/Bojl/(lm(z)dm> <C, if p>1,

1 1
— | w(x)dx | |esssup —— | <C, if p=1,
(727 [, torae) (e sum ) < i

where |.| denotes the N-dimensional Lebesgue measure in RY. The infimum over all such constants C' is
called the A, - constant of w and is denotaded by C,, .

If 1 < g<p, then A, C A, (see [5], [7] or [11] for more information about A,- weights). As an example
of an A,-weight, the function w(z) = |z|*, z€RY, is in A, if and only if —N < a < N(p — 1) (see [11],
Chapter IX, Corollary 4.4). If o € BMO(RY), then w(z) = e*#(®) € A, for some a > 0 (see [9]).

Remark 2.2. If we A4,, 1 < p < oo, then
(1) <. 10
1Bl) = " u(B)

for all measurable subsets E of B (see 15.5 strong doubling property in [7]). Therefore, u(E) = 0 if and only if
|E| = 0; so there is no need to specify the measure when using the ubiquitous expression almost everywhere
and almost every, both abbreviated a.e.. (I
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Definition 2.3. Let w be a weight. We shall denote by LP(Q,w) (1<p < oo) the Banach space of all
measurable functions f defined in ) for which

1/p
e = ([ V@pawar) " <o

We denote [LP(Q,w)]N = LP(Q,w) x...x LP(Q, w).

Remark 2.4. If wed,, 1 < p < oo, then since w V-1 g locally integrable, we have
LP(Q,w)C LL (Q) (see [11], Remark 1.2.4). It thus makes sense to talk about weak derivatives of func-

loc
tions in LP(Q,w).

Definition 2.5. Let Q@ CRY be a bounded open set, 1 < p < oo, k be a nonnegative integer and w € Ap.
We shall denote by W*P(Q,w), the weighted Sobolev spaces, the set of all functions u € LP(Q,w) with weak
derivatives D%u € LP(Q,w), 1 <|a|<k. The norm in the space W*P(Q, w) is defined by

ooy = ( [ fut@Puta o+ 3 [ |Dau<x>|pw<x>dx>1/p. (2.1)

1<|a] <k

We also define the space W(l;C P(Q,w) as the closure of C§°(Q) with respect to the norm (2.1). We have
that the spaces W*?(Q,w) and Wéﬂ’p(Q, w) are Banach spaces (see Proposition 2.1.2 in [I1]). The dual space
of Wol’p(Q,w) is the space [Wol’p(Q,w)]* = WP (Q,w),

WP (Qw) ={T = f — div(G) : G = (g1, .., gn) 5 % e L' (Q,w)}.

It is evident that a weight function w which satisfies 0 < C; <w(x) <y, for a.e. x €, gives nothing
new (the space W*P(Q,w) is then identical with the classical Sobolev space W*?(Q)). Consequently, we
shall be interested in all above such weight functions w which either vanish somewhere in QU902 or increase

to infinity (or both).
We need the following basics results.

Theorem 2.6. (The weighted Sobolev inequality) Let Q C RY be a bounded open set and let w be an Ap-weight,
1 < p < oo. Then there exists positive constants Cq and 0 such that for all fe C§°(Q) and 1<n<N/(N —
1)+9

1l zor (@,0) < Calll V1l o) (2.2)

where Cq may be taken to depend only on N, the A, - constant of w, p and the diameter of .
Proof. See [4], Theorem 1.3. O

Lemma 2.7. (a) Let 1 < p < oo, then exists a constant C, such that for all £&,n€RY
| 1EP726 = In["~*n] < Cp € =l (1€] + [nl)">.
(b) Let 1 < p < 0o. There exist two positive constants oy, and 3, such that for every £,n€RY (N >1)

ap([€]+1nNP21e = nl* < (1672 — [0, & —n) < Bp( €] + [n))P~21€ =,

where (.,.) denotes here the Buclidean scalar product in RY .

Proof. See Proposition 17.2 and Proposition 17.3 in [2]. O
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3. Main Results

We denote by X = W2P(Q,w)N Wol’p(Q, w) with the norm

1/p
lully = ( [vupad s [ mumdx) |
Q Q

In this section we prove the existence and uniqueness of weak solutions u € X to the Navier problem

Lu(z) = f(z) — div(G(x)), in Q,
(P) { u(z) =Au=0, in 01,

where € is a bounded open set of RY (N >2), geLpl(Q,w) and ge L7 (Q,w)]N, G = (g1, ..., 9n).

Definition 3.1. We say that u € X is a weak solution for problem (P) if
/Q |AulP2Au Apw da + /Q |Au|T 2 Au Apw dz
+/Q\Vu|p2<Vu,V<,0>wd:c+/Q|Vu|q2<Vu,V<,0>wd:c
- /Qfgodw + /Q (G, V) da, (3.1)

for all p€ X, with f/we LP'(Q,w) and G/we [L?'(Q,w)]Y, where (.,.) denotes here the Euclidean scalar
product in RV,

Remark 3.2. (i) Since 1 < ¢ < p < 00, there exists a constant Cj, , = [11(Q)]P~9/P4 such that
4l o0y < Cralltlzoa s where () = [ w(a)da.

Q
(ii) Since 1 < g <p < oo, then 1 < p’ < ¢’ < oo, and there exists a constant
Cpq = [N(Q)](q —P/4"P" such that HUHLP/(Q7UJ) <Cpygq HUHLQ'(QM)'
(iif) By (i), if G/w € [L?'(Q,w)]V, then G/w € [LP'(Q, w)]V.
Hence, T = f — div(G) € [Wy* (9, w)]*.

I G !
Theorem 3.3. Let weA,, 1 < g <p < oo, ge LP (Q,w) and ;G[Lq (Q,w)]N. Then the problem (P) has

a unique solution u € X and

!

g
Jullx < [ca)| ]

w

] 1/(p—1)

+ Cpaq
Lr' (Qw)

I

Le’ (Qw)
where Cq is the constant in Theorem [2.6 and Cy g is the constant in Remark (3.9 (i),

Proof. (1) Existence. By Theorem (with n = 1), we have that

fp/ 1/p’ 1/p
/fgod:v < </ = wdx) </|<,0]pwd:v>
Q Q|w Q
f
< Call= Vel | e )
Lr' (Q,w)
/
< ol el (3.2)
WllLe' (Qw)
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and by Remark [3.2(i)

)/(G,V@daz < /\(G,V@Idﬂc
Q Q
< [1clveld
Q
0 w
|G|
< ||= \Y%
= H 5 Lq/(ﬂ’w)||| ol HL‘Z(Q,w)
G
< D,q u |||v90| ||LP(Q,w)
L' (Qw)
. ol
< D,q ||<P”X
L7 (Qw)

Define the functional J : X — R by

1 1
J(p) = /!Awlpwdx+/!Awlqwdw
D Ja q Jo

1 1
+ - / IVolPwdx + - / ]Vg0|qwdx—/ fcpdac—/ (G, V) du.
P Ja q Jo Q Q
Using (3.2), (3.3), Remark [3.2(i) and Young’s inequality, we have that

1 1
J(p) > /|A<P|pwd:c+/m90|q“’d$
D Jo q.JQ

1 1
+ /]Vgo[pwda:+/]Vg0|qwda:
P Ja q Ja

_ Hf ’!Gl
WilLr (Qw) w

1 1
/ywypwdm+/yw|qwdx
P Ja q Jo

ol
el

[ v
& I CIP

1 1
/]Vgo|pwd:n+/|Vg0|qwdx
D Ja q Ja

CS/ f o
7 |w

1Yl
L9 (Qw)

oo — ]

A\

T2
LY (Quw)

v

1 ¢
=

q

1G1

w

1
N p _
: RN

LP (Qw) LY (Qw)

1
LG

f

w

/ / /
P p q
_Co

p/

Gl
w

7
Qe ¢ ¢ (Qw)

that is, J is bounded from below. Let {u,} be a minimizing sequence, that is, a sequence such that

J(u,, inf J(o).
(U)—>@HEIX (¢)
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Then for n large enough, we obtain

1 1
0>J(u,) = p/|Aun|pwdm+q/|Aun|qwdﬂc
Q Q

1 1
+ /|Vun|pwda:+/|Vun|qwdx
D Ja q Ja
— /fund:c—/(G,Vun>dx,
Q Q
and we have

1 1

/ |Aun|pwd:n+/ \Vun\pwdx

P Ja P Ja
1 1 1

S/ \Aun\pwd:v—i-/ ]Aunlqwdzﬁ—/ |V, |P wdx
b Ja q.Jq b Ja

1
+/ |Vup|?w dx
q.Jq

S/{qunda:jL/Q(G,un)da:.

Hence, by Theorem [2.6| (with n = 1) and Remark ??(i), we obtain

l|wn || :/ |Aun|pwdx+/ |Vun [P wdx
Q Q

§p</fundx+/Q(G,Vun>dx)

/ G
<»(|L Tloy G 19l e
v’ (Q w) L' (Qw)

(o] 1Tl + [ 1wl

WLy (9w) L9 (Qw)

G

<»(cal 0[] il

LY (Q,w) L7 (Qw)

Hence,
o 1-1)
umlx < [p(CQ S Lo, |l )] |
WllLe' (Qw) W L (Qw)

Therefore {u,} is bounded in X. Since X is reflexive, there exists a subsequence, still denoted by {u,}, and
a function u € X such that u,— u in X. Since,

Xago»—>/fgodx+/(G,V<p)da:
Q Q

and
X3¢ = 180l 1pqw) T I1ACN Law) T VOl o) + VO La@,w)s

are continuous then J is continuous. Moreover since 1 < ¢ < p < oo we have that J is convex and thus lower
semi-continuous for the weak convergence. It follows that

J(u) < liminf J(u,) = fJ
() < liminf J(u,) = inf J(¢),
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and thus v is a minimizer of J on X (see Theorem 25.C and Corollary 25.15 in [12]). For any ¢ € X the
function

A= /\A u+ Ap)Pwdr + — /A u+ o) wdx
/|V u+Ao)|Pwdr + = /|V u+ o) wdz
—/(u+w)fdrc—/<G,V(u+w)>dw
Q Q

has a minimum at A = 0. Hence,

=0, VpeX.
A=0

di (J(u + A gp))
We have J
15 (1702 0P ) =p 90+ AP 2(T0 ) 4 ATpP)

and
dd)\ <\ Au+ )\go)\pw> = p|Au+ AP 2 (Au+ M) Apw.

Then we obtain

0 = J A
A<“+@> S
1

_ [ ( /|Vu+)\g0)|p 2((Vu, Vo) + A [Vo|2) w dz

+ /Au+)\Ago|p2(Au+)\Acp)Acpwdm>
1
Lo [ 9 A0, V) + AP s
- q/|Au+AA¢|‘1—2(Au+AA¢)Ade>

Q

- /(pfdm—/(G,V@dx]
Q Q A=0

= /]Au\p_QAuAgowdx—i—/\VmpZ (Vu, Vo) wdzx
Q Q

+ /|Au|q_2AuA<pwdx+/ (V|72 (Vu, Vo) wdz
Q Q

- /Qfgodx—/Q<G,Vg0>dx.

Therefore

/]Au|p_2AuAg0wdx+/\Vu]p_2<Vchp)wdac

Q Q

+/ \Au|q_2AuAg0wd$+/ |Vu|?2 (Vu, V) wdz
Q Q

:/Qfgoda:+/Q<G,V<p>da:,

for all p € X, that is, u € X is a solution of problem (P).
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(II) Uniqueness. If u1,us € X are two weak solutions of problem (P), we have for all p € X,

/]Aullp_zAul Acpwdx—i—/ |Auy |92 Auy Apw dz

Q Q

+/ |V P2 (Vul,Vg0>wdx+/ |Vup|972 (Vuy, Vo) wdz
Q Q

:/Qf<pdm+/Q<G,th>dm,

and
/]AuQ]p_zAugAcpwdx—i-/ | Aug|?™? Aug Ap w d:
Q Q
+/ |V |P—2 (Vug,Vg0>wd;r—|—/ |Vug|972 (Vug, V) wdz
Q Q
=/f¢dw+/<G,V<p>dfv'
Q Q
Hence

/Q (!Au1|p_2Au1 — ]Au2|p_2AuQ> Apwdz

-l—/Q |Auy |92 Auy — |AU2|q2AU2> Apwdz

—f—/Q \Vup [P~2(Vug, V) — |Vua[P2(Vug, Vo) | wdz
+/Q \Vup |772(Vuy, V) — |Vug|72(Vug, Vo) | wdz = 0.

Taking ¢ = u; — ug, and using Lemma (b) there exist positive constants o, &, g, &g such that

0 = /Q \Aullp_QAul — |Aug ’p_QAUQ (Auy — Aug)wdz
+ /Q |Aup |92 Auy — [Aug|T 2 Aug | (Auy — Aug) w da
+ /Q |Vui|P~2(Vuy, Vuy — Vug) — |Vua[P~2(Vug, Vuy — Vo) | wdz
+ /Q |Vuy |7 2(Vuy, Vuy — Vug) — |Vua|T3(Vug, Vuy — Vus) | wdz
= /Q |Auy P2 Auy — [AugP 2 Aug | (Aug — Aug) wda
+ /Q |Au |72 Aug — [Aug|?? Auy | (Auy — Aug) wda
+ /Q (|Vu1[P72Vuy — [Vug|P~?Vug, Vuy — Vug) w dz
+ /Q (|Vur|72Vuy — |Vug|?2Vug, Vuy — Vug) wde
> ap/Q <|Au1| + |AU2>p_2AU1 — Aug*wdaz

[Vui| + |Vue| \Vuy — Vug|? wdz

o
Y
-

e}

)

|Vui| + [Vug| |Vuy — Vusg|? w de.

o
(]Au1| + |Auz|) |Auy — Aug)? wdz
(1t +19a)™

2
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Therefore Au; = Aug and Vu; = Vug a.e. and since up, ug € X, then u; = ug a.e. (by Remark .
(III) Estimate for ||u| x.
In particular, for ¢ = v € X in Definition we have

/]Au|pwdm+/ |Au|qwdx—|—/ |Vu]pwdac—|—/ |Vul? wdx
Q Q Q Q

= / fudz +/ (G,Vu) dx.
Q Q
Then, by Theorem and Remark [3.2)(i), we obtain

lull% = /\Au]pwdx—l—/ Vul? w de
Q Q

< /|Au]pwdx+/|Au|qwdm+/!Vu|pwd:n—|—/|Vu|qwd:U
Q Q Q Q

= /qudx+/9<c;,vu>dx

f H!GI
< ||= U o Tl Vu w
Hw Lpl(Q,w)H HLP(Q, ) w LQI(Q,w)H‘ ’HL‘I(Q: )
f G
< af? 19l + Coa| | 11Vl o
Lr' (Qw) L (Qw)
f G
< (! + Gy |16 el x.
WilLe! (Quw) L' (Qw)
Therefore,
f a 1/(p-1)
||U||X§ <CQ - + Cpyq ’ | :
WilLe' (Quw) W lLe’ (Qw)

O

Corollary 3.4. Under the assumptions of Theorem with 2<q < p < 00. If uy,us € X are solutions of

Luj(z) = f(x) — div(G(z)), in £,
(1) { ul(lsc) = Aui(z) =0, in 09,

and ~ _
(P) Lug(x) = f(x) — div(G(x)), in £,
2 ug(x) = Aug(z) =0, in 09,
then R ~ L p—1)
1 - - p-
lur = wallx < —70 =5 (CQ f-f ‘G, |G — G] ) ’
v/ W lLe (Qw) w L’ (Qw)

where 7y is a positive constant, Cqo and Cy, 4 are the same constants of Theorem .
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Proof. 1f u; and ug are solutions of (P1) and (P2) then for all p € X we have

/Q|Au1|p_2Au1 A(pwdaj+/§2|Au1\q_2Au1 Apwdz
—i—/ﬂ]Vu1|p_2<Vu1,V<p>wd:B+/Q|Vu1\q_2 (Vuy, Vo) wdx
—</Q|Au2p_2Au2Agowdm+/Q]Au2|q_2Au2 Apwdx
+/Q|Vu1|p2<Vu2,Vg0>wd$+/Q|Vu2|q2 (Vug, V) wdx)

- /(f_f)¢dm+/ (G — G, V) dz. (3.4)
Q Q

In particular, for ¢ = u; — ug, we obtain
(i) Since 2<¢ < p < 0o and by Lemma [2.7|(b), there exist two positive constants a; and «, such that

/ <|Au1|p2Au1 - |A2|p2AuQ> Auy — ug) wdx
Q
p—2
> ap/ <\Au1] + |Au2|> |Auy — Aug|* wdx
Q
> oy / |Auy — Au2|p_2\Au1 — AugPwdr = ap/ |A(uy — u2)|P wdx,
Q Q
and analogously
/ (\Aul\q_QAul — \Aquq_QAm) Aug — ug) wdx > aq/ |A(u1 — u2)|? wdz > 0.
Q Q
(ii) Since 2<¢ < p < oo and by Lemma [2.7|(b), there exit two positive constants &, and &, such that
/ <|Vu1|p2(Vu1,V(u1 —u2)) — |[Vug|P~?(Vug, V(uy — u2)>) wdz
Q
- / <\Vu1\p_2Vu1 — \Vug\p_QVuQ,V(ul — ug)) wdx
Q

>, /(|Vu1| Va2 Vg — Vo|® w da
Q

A\

dp/Q |Vuy — VuolP ™2 |Vuy — Vug|? wdz = dp/Q IV (uy — uo)|P wda,
and analogously,
/Q <|Vu1|q_2<Vu1, V(ur — u2)) — [Vua|' *(Vug, V(ug — uQ)>> wdz
> ay /Q |V (u1 — u2)|?wdz>0.
(iii) By Remark [3.2)i) we have
/Q(f—f) (u1 —U2)dw+/ (G =G,V (uy — ug)) da

~ Q ~
< (el =1 G-

+ Cpg

W e (Qw)

) s — sl

La' (Q,w)
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Hence, with v = min{a,, &,}, we obtain in (3.4)

= wally <a [ 1860 = w)l wds+, [ [V - w)lwds
Q Q

< (CQ f=7 , ) lur — uzl|x-
L1 (Q,w)

G -G
w
Therefore,
[eaxel

W

+Chyq
Lr' (Qw)

f-f

W

+ vaq
Lr' (Q,w)

1 1/(p—1)
s — wally < —oe (ca ) |
e 1 (O

Corollary 3.5. Assume 2<q < p < co. Let the assumptions of Theorem [3.3 be fulfilled, and let {f;} and
fm G| ‘

/ G —
{G )} be sequences of functions satisfying —— — * in LP" (Q,w) and H|m7
woow w

O

—0asm — oco. If
La' (Qw)

Um € X is a solution of the problem
(Py) Lup(z) = fm(x) — div(Gp(x)), in Q,
" Um (z) = Aup(z) =0, in 09,
then wm,m—w in X and w is a solution of problem (P).

Proof. By Corollary [3.4] we have

|t — UTHX

1 ) <CQ‘ fm_fr

< ’Gm — GT‘
- 71/(17—1 w

w

+ vaq
Lr' (Qw)

)1/(271)
La' (Q,w) .

Therefore {u,,} is a Cauchy sequence in X. Hence, there is u € X such that w,, —u in X. We have that u
is a solution of problem (P). In fact, since u,, is a solution of (P,,), for all ¢ € X we have

/Q]Au|p_2AuA<pwdx+/Q|Au|q_2AuA<pwdx
+/Q\Vu|p2<Vu,Vg0>wda:—|—/Q|Vu|q2<Vu,Vg0>wda:

:/Q <|Aup_2Au— Am\p_QAum> Apwdz

+/Q <|Au\q_2Au— |Aum\q_2Aum>Awwdm

+/Q <|Vu\p2<Vu, V) — ]Vum\p2<Vum,Vg0>> wdx

+ /Q <|Vu\q_2<Vu, V) — yvumyq—2<vum,w>> wdx
+/Q\Aum|p_2AumA<pwd1:+/Q|Aum|q_2AumAgowdx
+/Q\Vum|p2(Vum,Vg0>wdﬂs+/Q|Vum]q2<Vum,Vgo>wdx
:I1—|—Ig—|—Ig+I4—|—/Qfmg0da?+/Q(Gm,V<p>da:
:Il+12+13—|—I4+/Qfg0d:v—|—/Q<G,V<p>dx

+ /Q (fn — ) oo + /Q (G — G, V) dz, (3.5)
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where

<\Au]p ZAu— ]Aum]p_QAum> Apwdr,
<|Au|q 2Au — |Aum|q_2Aum)A<pwdz,
= <Vu|p *(Vu, Vo) — |Vum|p2<Vum,Vg0)> wdz,

I, = (\Vu]q 2(Vu, V) — \Vum]q_Q(Vum,Vgo)) wdr.

We have that:
(i) By Lemma [2.7(a) there exists C}, > 0 such that

L] < /HAup_QAu—Aum\p_ZAumHA@wdx
Q

< Cp/|Au—Aum\(|Aul—|—]Aum])p_Q\Acp]wd:U.
Q

1 1 1
Let r =p/(p — 2). Since — + — + — = 1, by the Generalized Holder inequality we obtain
p p T

| 11]

1/p 1/p 1/r
SCP (/ ‘Au—Aum’pwd.%) </ ’A(p‘pwd1‘> (/(‘Au’+‘AumD(iﬂ—2)rwd$>
Q

<Cyllu = umllx ol 1 Aul + [Aun[[ &) .
Now, since u,,— u in X, then exists a constant M > 0 such that ||u,,||y <M. Hence,
AU + |Aum|ll pu) < lullx + llumllx <2M. (3.6)

Therefore,
L] < Cp(2M)P72 lu—umllx ol x
= C1lu—umlxllelx-

Analogously, there exists a constant C5 such that
13| < Csllu — uml x [l¢ll x-
(ii) By Lemma [2.7|(a) there exists a positive constant Cj such that

|I] < /HAuq_QAu—]Aumq_QAumHAgo\wdx
Q

< C’q/Au—Aum|(|Au|+|Aum|)q_2|Agp|wdx.
Q

1 1 1
Let s=¢q/(¢g—2) (if 2 < ¢ < p < ). Since — + — + — = 1, by the Generalized Holder inequality we obtain
q 4q S

12|

1/‘1 l/q 1/8
<y </ ]Au—Aum|qwd:U> </ |Agp|qwdl‘> </(|Au|+|AUm|)(q_2)swdx>

= Oy | Au — Al o) 1A@H L 11 AU| + [ At [F570, .-
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Now, by Remark [3.2[i) and (3.6) we have

Bl < Cy Cpall St = At 01y Crall APl o 1y Cog? 1Al + [ At 1855,
< Cy O - unllxlipll (20
= Callu—umlx [[elx-

Analogously, there exists a positive constant Cy such that
(La] < Caflu = umllx [l x-

In case ¢ = 2, we have |I5|, 14| < C;Q lu —uml x el x-
Therefore, we have Iy, I, I3, I;— 0 when m— oco.

(iii) We also have
[n=D¢dat [ (Gn-G.Ve)da
Q Q

m— G —G
(cQ] fm = f G — G )nsobﬁo,
w La' (Qw)

when m— oco. Therefore, in (3.5), we obtain when m— oo that

+ Op’q
Lr' (Qw)

/]Au|p_2AuAg0wdx+/|Au|q_2AuAgowdx
Q Q

+/ \Vu|p2<Vu,V<,0>wd:c+/ |Vu|?2(Vu, V) wdz
Q Q

:/S)fgodw—k/Q(G,V@dx

i.e., u is a solution of problem (P). O

Example 3.6. Let Q = {(z,y) €R? : 22 +9° < 1}, w(z,y) = (2> +y*) /2 (we Ay, p =4 and ¢ = 3),

_ cos(zy) [ sin(z +y) sin(zy)
flz,y) = W and G(z,y) = <(x2 S (2t g2 ) By Theorem [3.3|, the problem

)
A [(1‘2 +y?) "2 (|Au)*Au + \Au!Au)}
—div [(a;2 + y2)*1/2(\Vu]2Vu + ]Vu\Vu)]

= f(z) — div(G(x)), in Q
[ u(z) =Au=0, in 00

has a unique solution u € W4(Q,w) N W01’4(Q, w).
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