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Abstract 

This paper explores a novel application of the Laplace transform in cryptographic schemes by employing a linear 

combination of Bessel functions and exponential functions. By leveraging the transform’s properties, we develop an 

encryption-decryption framework that is computationally efficient and highly secure against certain types of 

cryptographic attacks. The exponential decay observed in Laplace-transformed domains and the complex behaviour of 

Bessel functions are powerful tools for data encoding and concealment. Analytical and numerical results validate the 

method’s effectiveness, showcasing its potential for modern cryptographic systems. Cryptography has long been a 

cornerstone of secure communication, with its methods evolving in tandem with technological advancements. While 
traditional schemes rely on number theory or algebraic structures, this paper explores an alternative approach that 

combines Laplace transforms with special functions. Specifically, we focus on employing Bessel functions in conjunction 

with exponential functions to construct an encryption algorithm. The Laplace transform’s unique properties, such as 

linearity, time-shifting, and frequency domain representation, offer a fertile ground for developing innovative 

cryptographic methods. Then the algorithm described in this study generates a dynamic cipher by processing plaintext 

using polynomial, exponential, and factorial-based operations. The four fundamental steps comprising the computational 

process are text preprocessing, dynamic coefficient calculation, encryption packaging, and reverse analysis. The 

computational cost of each step varies depending on the number of characters processed. The symbol for this character 

quantity is 𝑛. The cryptographic analysis of the problem is discussed in detail. 
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Öz 

Bu makale, Bessel fonksiyonları ve üstel fonksiyonların doğrusal bir kombinasyonunu kullanarak kriptografik şemalarda 

Laplace dönüşümünün yeni bir uygulamasını araştırmaktadır. Dönüşümün özelliklerinden yararlanarak, hesaplama 

açısından verimli ve belirli kriptografik saldırı türlerine karşı son derece güvenli bir şifreleme-şifre çözme çerçevesi 

geliştiriyoruz. Laplace dönüşümü uygulanmış alanlarda gözlemlenen üstel bozulma ve Bessel fonksiyonlarının karmaşık 

davranışı, veri kodlama ve gizleme için güçlü araçlardır. Analitik ve sayısal sonuçlar yöntemin etkinliğini doğrulamakta 

ve modern kriptografik sistemler için potansiyelini ortaya koymaktadır. Kriptografi her zaman güvenli iletişimin temel 

taşlarından biri olmuştur ve yöntemleri teknolojik ilerlemelerle birlikte gelişmiştir. Geleneksel şemalar sayı teorisine 

veya cebirsel yapılara dayanırken, bu makale özel fonksiyonlarla birleştirilmiş Laplace dönüşümlerini kullanan alternatif 
bir yaklaşımı araştırmaktadır. Spesifik olarak, bir şifreleme algoritması oluşturmak için üstel fonksiyonlarla birlikte 

Bessel fonksiyonlarını kullanmaya odaklanıyoruz. Laplace dönüşümünün doğrusallık, zaman kaydırma ve frekans alanı 

gösterimi gibi benzersiz özellikleri, yenilikçi kriptografik yöntemler geliştirmek için verimli bir zemin sunmaktadır. Daha 

sonra bu çalışmada açıklanan algoritma, polinom, üstel ve faktöriyel tabanlı işlemler kullanarak düz metni işleyerek 

dinamik bir şifre üretir. Hesaplama sürecini oluşturan dört temel adım, metin ön işleme, dinamik katsayı hesaplama, 

şifreleme paketleme ve tersine analizdir. Her adımın hesaplama maliyeti, işlenen karakter sayısına bağlı olarak değişir. 

Bu karakter miktarının sembolü n'dir. Problemin kriptografik analizi ayrıntılı olarak tartışılmıştır. 
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https://dergipark.org.tr/tr/pub/gumusfenbil
https://orcid.org/0000-0003-3606-878X
https://orcid.org/0000-0003-1234-0101
https://orcid.org/0009-0009-7930-5694


Demir et al., 2025 • Volume 15 • Issue 4 • Page 1244-1256 

1245 

1. Introduction 

 
Cryptography, as a discipline, has evolved significantly from classical substitution ciphers to modern 

asymmetric encryption schemes, driven by the increasing demand for secure digital communication. One of 

the most promising developments in contemporary cryptographic research is the application of integral 
transforms—mathematical operators that convert functions into alternative representations—to enhance 

encryption and decryption processes. These transforms, including the Sumudu transform (Bodkhe & Panchal, 

2014), Laplace transform (Briones, 2018; Undegaonkar, 2019), and Elzaki transform (Raut & Hiwarekar, 

2023), introduce unique algebraic structures that can improve cryptographic security by introducing 
nonlinearity, diffusion, and confusion into encryption algorithms (Hiwarekar, 2014; Rekha, 2024). 

 

The theoretical foundations of these approaches are based on well-established principles of integral and 
operational transforms, according to reputable sources such as Integral Transforms and Their Applications 

(Debnath & Bhatta, 2016) and The Transforms and Applications Handbook (Poularikas & Grigoryan, 2020). 

These works show how transformations like the Fourier transform (Bracewell, 2000) and Bessel functions 

(Watson, 1944) have been used historically in domains including signal processing, differential equations, and 
harmonic analysis that conceptually relate to cryptography coding. For example, the role of the Fourier 

transform in frequency domain research has affected modern cryptography, and Laplace-based encryption 

techniques have benefited from its ability to handle differential operators and initial value problems (Briones, 
2018). Beyond classical transforms, recent advances in cryptography have included hybrid strategies that blend 

mathematical transforms with biologically inspired methods, including DNA-based encryption (Yılmazer et 

al., 2023). These techniques provide a multi-layered security framework by taking advantage of the enormous 
combinatorial potential of DNA sequences as well as the computational effectiveness of integral transforms. 

Furthermore, mathematical optimizations, such as those obtained via transform-based approaches, continue to 

be advantageous for contemporary symmetric-key algorithms (Stallings, 2016) and public-key cryptosystems 

(Rivest et al., 1978). 
 

However, the adoption of transform-based cryptography is not without challenges. Cryptanalytic 

vulnerabilities have been identified in certain Laplace-transform-based schemes (Gençoğlu, 2017a), 
highlighting the need for rigorous security analysis before deployment. Furthermore, computational efficiency 

remains a critical consideration, as some transforms may introduce significant overhead in real-time encryption 

applications (Undegaonkar, 2019). Recent work by Demir and Acar (2025) proposes that, unlike conventional 
approaches, this innovative method combines classical and modern cryptographic principles to enhance 

security, flexibility, and efficiency.  

 

Even with these developments, cryptanalysis, the science of cracking encryption schemes, remains a crucial 
standard for assessing the potency of any suggested cryptographic technique. Research by Li and Lo (2011), 

Ge et al. (2010), and Safkhani et al. (2014) has highlighted the weaknesses of hash-based and permutation-

only cryptosystems, highlighting the necessity of cryptographic schemes that are resistant to both structural 
and statistical attacks. Furthermore, as highlighted by Sakallı and Aslan (2014) and Bogdanov et al. (2014), 

the development of complexity models in cryptanalysis and their computational validation emphasizes the 

significance of thorough mathematical analysis in the creation of reliable encryption algorithms. 

 
This growing body of literature demonstrates that integral transformations provide fertile ground for 

cryptographic innovation. Their mathematical structures offer advantages in terms of both algorithmic design 

and security analysis. This study aims to investigate, compare, and evaluate the use of the Laplace transform 
and Bessel functions in cryptographic schemes, focusing on their theoretical foundations, application 

feasibility, and resistance to modern cryptanalysis techniques. 

 
The intersection of mathematical transformations and cryptography has emerged as a promising avenue for 

enhancing data security and efficiency in modern communication systems. Among these transformations, the 

Laplace transform has gained attention for its potential to provide novel cryptographic frameworks that 

leverage its powerful properties of converting differential operations into algebraic forms. Studies such as 
Ruwan et al. (2024) and Jayanthi and Srinivas (2019) highlight how Laplace-based methods can be used to 

develop encryption algorithms capable of securing digital information through continuous mathematical 

modeling rather than discrete key structures. 
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Further, researchers have explored the specific applications of Laplace transforms in image and text 

encryption, expanding the utility of this mathematical tool beyond traditional data forms. For example, 
Gençoğlu (2019) demonstrates the adaptability of Laplace-based cryptography in handling non-Latin character 

systems, while Briones (2019) introduces a differential approach that enhances encryption complexity. Despite 

these advances, cryptanalysis studies such as Gençoğlu (2017b) and Gençoğlu (2017c) reveal that 
vulnerabilities persist within some Laplace-based systems, emphasizing the need for deeper theoretical 

validation and improved algorithmic robustness. The exploration of related mathematical methods—such as 

the Aftab and Rehman (2024) and Sharba et al. (2023) suggests that hybrid models combining multiple 

transformations could yield more secure and efficient encryption schemes. 
 

Overall, the body of research demonstrates a growing interest in mathematically driven encryption models. 

Laplace transform-based cryptography, in particular, presents a compelling framework for developing secure, 
continuous-domain encryption systems 

 

The concepts of time and memory management are fundamental determinants of algorithmic performance in 

computational science. Time complexity refers to the asymptotic dependence of an algorithm’s execution time 
on the input size, while memory complexity refers to the amount of storage used during execution. These two 

metrics define the balance between efficiency and resource usage, particularly in computationally intensive 

applications. For example, in time-symmetric block time-stepping algorithms developed for multi-body 
integration, an increase in the number of iterations directly affects time and memory consumption Kaplan and 

Saygın (2010). Similarly, in time-memory trade-off attacks on the A5/1 encryption system, despite the total 

solution space being 264, practical applicability has been achieved by optimally distributing time and memory 
resources Erguler et al. (2004). In time-based side-channel attacks on the AES algorithm, it has been 

demonstrated that cache access patterns are a decisive factor in security detection Sönmez et al. (2020). The 

threshold values p used in random level generation in the Skip List data structure directly affect the average 

time complexity of search and insertion operations Aksu et at. (2013). In studies on memory management 
algorithms, the selection of FIFO, LRU, and CLOCK methods determines the time delay and memory usage 

performance of systems Çavuşoğlu and Zengin (2014). Furthermore, in comparisons of symmetric and 

asymmetric encryption algorithms, processing time, memory usage, and CPU load have been defined as 
fundamental criteria for cryptographic efficiency Kaya and Türkoğlu (2023). In this sense, it has been observed 

that time and memory complexity analysis is used in cryptography, encryption systems, attacks, and algorithm 

design. Across the literature, time and memory management is at the centre not only of algorithmic efficiency 

but also of multidisciplinary fields such as information security, optimisation, and energy conservation. 
 

Cryptanalysis is a field of study that aims to obtain information about the secret key or original text by 

analysing encrypted data Coşkun and Ülker (2013). It is one of the two fundamental components of cryptology 
and tests the robustness of the security mechanisms produced by cryptography Coşkun and Ülker (2013). Its 

primary objective is to uncover weaknesses in encryption algorithms and develop methods to break the system 

through these vulnerabilities. Cryptanalysis plays a significant role in assessing the reliability of cybersecurity 
and information protection systems, optimising algorithms, and verifying new cryptographic methods 

(Verdult, 2001; Al-Sabaawi, 2021). 

 

The primary methods used in cryptanalysis include brute force, statistical and probabilistic analyses, 
differential and linear attacks, time-memory trade-off methods, and side-channel attacks (Verdult, 2001; 

Garipcan & Erdem, 2024). These methods directly test the complexity of the algorithm, the size of the key 

space, and the reliability of the randomness used. Particularly in systems that use generators with low or 
predictable randomness levels, partial estimation of the key may be possible through statistical tests Garipcan 

and Erdem (2024). In modern cryptographic understanding, however, according to Kerckhoff’s axiom, even 

if the algorithm is known to everyone, only keeping the key secret is considered sufficient for security, which 
makes cryptanalysis a field based on more sophisticated mathematical and statistical methods (Al-Sabaawi, 

2021; Garipcan & Erdem, 2024). 

 

This work performed a cryptographic transformation by applying the Laplace transform on a function that was 
constructed as a linear mixture of exponential and zero-order Bessel functions. In addition, the character 

frequency histogram showing the statistical analysis of the encrypted text created shows a roughly equal 

distribution between byte values. This equality indicates low statistical predictability, which has been shown 
to be a desirable feature for secure encryption algorithms.  
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Furthermore, by applying polynomial, exponential, and factorial-based operations to an alphabetic plaintext, 

the algorithm described in the study’s last section creates a dynamic cipher. Text pre-processing, dynamic 
coefficient computation, encryption packaging, and decryption are the four primary steps of the computational 

process. The computational costs for each step vary depending on how many characters are processed. The 

letter 𝑛 stands for this number of characters. The study also includes a practical example to demonstrate the 

broader implications of cryptography in Section 3. 
 

2.  Preliminaries 

 

In this section, important definitions and properties of the encryption and decryption algorithms used as the 

study’s foundation are explained in detail. 

 

2.1 Laplace Transform: The Laplace transform of a function 𝑓(𝑡) is defined as: 

 

ℒ(𝑓(𝑡)) = 𝐹(𝑠) = ∫ 𝑓(𝑡)
∞

0

𝑒−𝑠𝑡𝑑𝑡 (1) 

 

is called the Laplace transformation of 𝑓(𝑡). Here, s can be either a real variable or a complex quantity. This 
transform facilitates operations in the frequency domain, offering computational advantages (Seely, 2000).  

 

Additionally, the inverse Laplace transform of a function  ℒ(𝑓(𝑡)) is defined as: 
 

ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) 

 
Let us give two examples here: 

𝑒𝛽𝑡 = ℒ−1 {
1

𝑠−𝛽
},              

𝑡𝑛−1

𝑛−1
= ℒ−1 {

1

𝑠𝑛  } ,    𝑛 = 1,2,3.. 

 

2.2 Bessel Functions: Bessel functions, first systematically studied by Friedrich Bessel in the 19th century, 

are solutions to Bessel’s differential equation: 
 

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ (𝑥2 − 𝑝2)𝑦 = 0 (2) 

 

where p is the order of the function. These functions (e.g.,𝐽𝑝(𝑥),  𝑌𝑝(𝑥)) appear in problems with cylindrical 

symmetry, wave propagation, and harmonic analysis (Watson, 1944). Their orthogonality, asymptotic 

properties, and integral representations make them useful in both applied mathematics and engineering. 

 

Bessel functions, 𝐽𝑝(𝑥) are solutions to Bessel’s differential equation and are widely used in physical and 

engineering problems. Their oscillatory nature makes them suitable for data encoding (Weber & Arfken, 2003). 
 

For integer index p = n, the Bessel function 

 

𝐽𝑛(𝑥) = ∑
(−1)𝑠

𝑠! (𝑠 + 𝑛)!
(
𝑥

2
)2𝑠+𝑛

∞

𝑠=0

 (3) 

that converges absolutely for all x (Weber & Arfken, 2003). 

 

While Bessel functions are foundational in physics and signal processing (Bracewell, 2000), their direct 
application to cryptography has been limited but innovative. Unlike the Fourier or Laplace transforms, which 

are widely used in encryption, Bessel functions offer nonlinear and non-local properties that could enhance 

cryptographic complexity. 

 
Let’s present the Laplace transforms for Bessel functions, exponential functions and polynomial functions. 

If we take the Laplace transformation of the 𝐽𝑛(𝛽𝑥) then we get  ℒ{𝐽𝑛(𝛽𝑥)} =
(√𝑠2+𝛽2−𝑠)

𝑛

𝛽𝑛  √𝑠2+𝛽2
 . 
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In ℒ{𝐽𝑛(𝛽𝑥)} =
(√𝑠2+𝛽2−𝑠)

𝑛

𝛽𝑛  √𝑠2+𝛽2
 , let’s take 𝑛 = 0 and 𝛽 =  2, we get ℒ{𝐽0(2𝑥)} =

(√𝑠2+22−𝑠)
0

20  √𝑠2+2
=

1

  √𝑠2+4
  . 

 

Let’s apply the Laplace transformation to the function 𝑒𝛽𝑡 . Then we obtain  ℒ{𝑒𝛽𝑡} =
1

𝑠−𝛽
. 

 

Also ℒ {
𝑡𝑛−1

𝑛−1
} =

1

𝑠𝑛  ,    𝑛 = 1,2,3.. 

 

3. Analysis of methods 

 

In this section, encryption, decryption, and cryptanalysis methods are explained with an example appropriate 

to the problem. Here, the linear combination of the exponential function and the Bessel function is considered. 

The Laplace transform is frequently used in such issues.  However, the ciphertext we will take for encryption 
becomes more difficult to decrypt due to the linear combination of the exponential and Bessel functions. The 

encryption type has been selected as symmetric. The selection of constants in this section is arbitrary. These 

are challenging factors for decryption. 
 

3.1. Method of encryption 

 

In this section, let's take the function as   

 

𝑓(𝑡) = 𝛼𝐵. (𝑒𝛽𝑡 + 𝐽𝑛(𝛽𝑡)),   𝛽 > 0,  𝛼 > 0                                                                                                (4) 

 

where 𝛼,  𝛽 and 𝐵 are constant numbers. The following algorithm for the 𝑓 function will be used to carry out 

encryption. By considering equation (4): 
 

Step 1. Consider each letter in the message in plain text to be a number. We change each letter to a number so 

that 𝐴 = 0, 𝐵 =  1, . . . , 𝑋 =  23, 𝑌 =  24, 𝑍 =  25. 
 

Step 2. Based on conversion, the provided plaintext P is changed to numbers and represented as 𝐵𝑖𝑘, where 

subindex  𝑖 =  0,1,2. .. represents the position of the letter and subindex 𝑘 =  0,1,2, . .. represents the number 

of iterations. The given plaintext be “SAMSUN”, where 𝑚 =  6. Based on Step 1, the plaintext becomes 𝑆 =
18,  𝐴 = 0, 𝑀 = 12, 𝑆 = 18, 𝑈 = 20, 𝑁 = 13 and it is denoted as 𝐵𝑖,0 = {18, 0,12, 18,20, 13}.  

 

Let’s take arbitrary constants 𝛼 = 5, 𝛽 = 2 and 𝑛 = 0. These constants have been arbitrarily chosen to make 

the encryption even more unbreakable. 

 

Therefore, the function 𝑓 becomes in terms of  𝐵𝑖,𝑘 as  

 

𝑓(𝑡) = 5𝐵𝑖𝑘(𝑒2𝑡 + 𝐽0(2𝑡)) , where  𝑖 = 0,1,2,3,4,5  and 𝑘 = 0,1,2,3,4,5  .                                                       (5) 

 

In equation (5), the 𝐵𝑖𝑘 coefficients are taken as plaintext values in the first calculation. Thus, the initial values 

are 𝐵0,0 = 18,   𝐵1,0 = 0,   𝐵2,0  = 12,   𝐵3,0 = 18,     𝐵4,0 = 20,    𝐵5,0 = 13,    𝐵𝑖,0 = 0,      ∀𝑖 ≥ 6 

One can derive equation (4) by substituting the exponential and Bessel functions’ series expansions into 𝑓. 
Then  

 

𝑓(𝑡) = 5. (∑
(2𝑡)𝑖

(𝑖)!

∞
𝑖=0 𝐵𝑖,0 + ∑

(−1)𝑖

22𝑖(𝑖!)2
(2𝑡)2𝑖𝐵𝑖,0

∞
𝑖=0 )  , 𝐵𝑖,0 = 0,      ∀𝑖 ≥ 6                                                                       (6) 

 

𝑓(𝑡) = 5 (
(2𝑡)0

(0)!
𝐵0,0 +

(−1)0

22.0(0!)2
(2𝑡)2.0𝐵0,0 +

(2𝑡)1

(1)!
𝐵1,0 +

(−1)1

22.1(1!)2
(2𝑡)2.1𝐵1,0 +

(2𝑡)2

(2!)
𝐵2,0 +

(−1)2

22.2(2!)2
(2𝑡)2.2𝐵2,0

+
(2𝑡)3

(3)!
𝐵3,0 +

(−1)3

22.3(3!)2
(2𝑡)2.3𝐵3,0 +

(2𝑡)4

(4)!
𝐵4,0 +

(−1)4

22.4(4!)2
(2𝑡)2.4𝐵4,0 +

(2𝑡)5

(5)!
𝐵5,0

+
(−1)5

22.5(5!)2
(2𝑡)2.5𝐵5,0) 
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𝑓(𝑡) = 10𝐵0,0 + 10𝑡𝐵1,0 + 5(2𝐵2,0 − 𝐵1,0)𝑡2 +
20

3
𝑡3𝐵3,0 + 5 (

6𝐵2,0+16𝐵4,0

24
) 𝑡4 + 5

32

5!
𝑡5𝐵5,0 −

5

36
𝐵3,0𝑡6 +

                
5

4!
𝐵4,0𝑡8 −

5

(5!)2 𝐵5,0𝑡10                                                                                                                                                                                       (7) 

 

If we take the Laplace transform of equation (7), we obtain  
 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = 5 (
2

𝑠
𝐵0,0 + 2𝐵1,0

1

𝑠2 + (2𝐵2,0 − 𝐵1,0)
2

𝑠3 +
4.6

3𝑠4 𝐵3,0 + (
6𝐵2,0+16𝐵4,0

24
)

4!

𝑠5 +
32

𝑠6 𝐵5,0 +

               
6!

36𝑠7 𝐵3,0 +
8!

4!𝑠9 𝐵4,0  −
10!

(5!)2𝑠11 𝐵5,0)                                                                                                             (8)     

 

𝑓(𝑡) = 5 (2.18 + 0. 𝑡 + 24𝑡2 + 24𝑡3 +
49

3
𝑡4 +

52

15
𝑡5 −

1

2
𝑡6 +

20

576
𝑡8 −

13

14400
𝑡10). 

 

Step 3: If you write  𝐵𝑖𝑘 the values in equation (8) and perform the necessary mathematical operations, then 

we get the following equation (9) is obtained. 

 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = 5 (
2.18

𝑠
+ 0 + 24

2

𝑠3 + 24
6

𝑠4 +
49

3
.

24

𝑠5 +
52

15

120

𝑠6 −
1

2

720

𝑠7 +
20

576

40320

𝑠9 −
13

14400

3628800

𝑠11
)             (9) 

 

Step 4: We consider 𝑇𝑖,1 = (𝐺𝑖,1 + 𝛿)𝑚𝑜𝑑26 and 𝐿𝑖,1 =
𝐺𝑖,1 +𝛿−𝑇𝑖,1

26
, where  𝛿 is any constant that is added to 

improve the encryption process’s dependability. We choose  𝛿 = 11. In these calculations the variable 𝐺𝑖,1 are 

the coefficients of equation (9) ,  𝑇𝑖,1 are mod account values of  𝐸𝑖,1 and  𝐿𝑖,1  are defined as a keys to use the 

decryption process. 

 

The variables determined in step 4 are detailed in the table below. 
 

Table 1: 𝐺𝑖,1, 𝐸𝑖,1, 𝑇𝑖,1, 𝐿𝑖,1 values 

 

i 𝑮𝒊,𝟏 𝑮𝒊,𝟏 + 𝜹 = 𝑬𝒊,𝟏 𝑬𝒊,𝟏mod26 = 𝑻𝒊,𝟏 𝑳𝒊,𝟏 =
𝑮𝒊,𝟏 + 𝜹 − 𝑻𝒊,𝟏

𝟐𝟔
 

0 180 180+11=191 9 7 

1 0 0+11=11 11 0 

2 240 240+11=251 17 9 

3 720 720+11=731 3 28 

4 1960 1960+11=1971 21 75 

5 2080 2080+11=2091 11 80 

6 -1800 -1800+11=-1789 5 -69 

7 7000 7000+11=7011 17 269 

8 -16380 -16380+11=-16369 11 -630 

 

The values of 𝑇0,1 = 9, 𝑇1,1 = 11, 𝑇2,1 = 17, 𝑇3,1 = 3, 𝑇4,1 = 21, 𝑇5,1 = 11, 𝑇6,1 = 5 , 𝑇7,1 = 17 , 𝑇8,1 = 11 

be the encrypted message. Then the ciphertext is found as JLRDVLFRL and the keys are found 7, 0, 9, 28, 75, 

80, -69, 269, -630. Here, the fact that different letters appear in the ciphertext corresponding to the two S letters 

in the plaintext further strengthens the encryption. 
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(a) (b) 

Figure 1. (a) Frequency distribution of characters in encrypted text (Byte-Frequency). (b)  Frequency spectrum 

obtained with Laplace Transform 
 

Figure 1 shows that the statistical analysis of the resulting ciphertext, as illustrated in the frequency histogram 

of characters, reveals an approximately uniform distribution across byte values. This uniformity indicates a 
low degree of statistical predictability, a desirable property for secure encryption schemes. This demonstrates 

the suitability of the selected function for encryption. 

 

3.2. Method of decryption 

 
In this section, decryption was performed using the key obtained in the previous section and the reverse 
algorithm. 

 

Step 1: Let ciphertext JLRDVLFRL and convert it into its corresponding code: 𝑇𝑖,1 =
{9, 11, 17, 3, 21, 11, 5, 17, 11}  The given keys  𝐿𝑖,1   for  𝑖 =  0, 1, 2, 3,· · ·, as 7, 0, 9, 28, 75, 80, -69, 269, -

630. 
 

Step 2: Let 𝐺𝑖,1 = 26𝐿𝑖,1 + 𝑇𝑖,1 − 𝛿. We obtain  𝐺𝑖,1 values are 180, 0, 240, 720, 1960, 2080, -1800, 7000, -

16380. 

 

Step 3:  Let us take the inverse Laplace transform of equation (8) and use 𝑓(𝑡)  =  𝐿⁻¹{𝐹(𝑠)} to obtain the 

factorial coefficients of the power of 𝑡. Next, to determine the values of 𝐵𝑖,0, let us use the values of 𝐺𝑖,1 . We 

then obtain the values 𝐵0,0 =  18, 𝐵1,0  =  0,   𝐵2,0 =  12,   𝐵3,0  =  18,   𝐵4,0  =  20, and 𝐵5,0  =  13. 

 

Here, message 18 0 12 18 20 13 is equivalent to ‘SAMSUN’. 
 

Table 2. Encryption results for different 𝛼, 𝛽, 𝑛 and 𝛿 parameter configurations 

 

Plaintext Ciphertext 
𝜶 

(Alpha) 
𝜷 (Beta) 

𝒏 (Bessel 

Order) 

𝜹 (Delta 

Shift) 

SAMSUN VLBZELSML 14 19 5 63 

SAMSUN JLJXIYZAM 83 61 23 11 

SAMSUN VPXRSCMGQ 37 11 0 119 

SAMSUN MKESUXSTL 47 15 87 36 

SAMSUN TLFPWYYQW 201 79 103 89 

 
Using the proposed dynamic encryption algorithm described above, the plaintext “SAMSUN” was encrypted 

under multiple parameter configurations to evaluate the algorithm’s sensitivity to variable changes. Table 2 

presents the corresponding ciphertexts generated for different combinations of  𝛼, 𝛽, 𝑛, and 𝛿.  
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As shown in Table 2, even small variations in these parameters produce entirely different ciphertexts, 

demonstrating the algorithm’s high parameter dependency and strong diffusion capability across multiple 
transformation layers.  

 

3.3 Time and memory complexity analysis 

 

The algorithm presented in this study generates a dynamic cipher by subjecting an alphabetic plaintext to 

polynomial, exponential, and factorial-based operations. The computational process is structured into four 

main stages: text pre-processing, dynamic coefficient calculation, encryption packaging, and decryption. Each 
stage has different computational costs proportional to the number of characters processed. This number of 

characters is denoted by 𝑛. 
 
Table 3. Algorithm pseudo code 

 

cleaned_text ← remove_nonalpha(P) 

B ← text_to_nums(cleaned_text)                      
m ← length(B) 

#calculate_dynamic_G_vector(B, alpha, beta, n): 

initialize G[0..m+3] = 0 
for k = 0 to m−1 do                                

    if k == 0: 

        G[k] += 2α * B[k] 

    else: 
        G[k] += α * (β^k) * B[k] 

    apply_corrections(G, B, α, β, k)               

 factorial terms 
end for 

 

E ← [g + δ for g in G]                             

T ← [round(e) mod 26 for e in E]                   
L ← [(round(e) − t) // 26 for (e,t) in (E,T)]      

C ← nums_to_text(T) 

return (C, L) 
#decrypt_dynamic_from_G_vector(G, 

original_length, alpha, beta, n) 

initialize B[0..m−1] = 0 

for k = 0 to m−1 do                                
    coeff ← (2α) if k==0 else (α * β^k) 

    residual ← G[k] 

    undo_corrections(residual, B, α, β, k) 
    B[k] ← residual / coeff 

end for 

return nums_to_text(round(B)) 

 
As shown in Table 3, the pseudo code of the proposed encryption algorithm consists of two main stages, 

dynamic vector generation and inverse reconstruction. The text preprocessing stage involves filtering only the 

letter characters in the input text and converting them into numerical values within the [0–25] range. At this 
stage, each character is processed only once; therefore, both the text_to_nums() and nums_to_text() functions 

have a time complexity of 𝑂(𝑛) and a memory complexity of 𝑂(𝑛). The calculate_dynamic_G_vector() 

function, which is the main dynamic transformation step illustrated in Table 3, constitutes the highest 

computational load of the algorithm. For each index 𝑘 (0 ≤ 𝑘 < 𝑛), exponential expressions (𝛽𝑘) and 

factorial-based terms ((2𝑘)!) are calculated, and Bessel-like corrections are applied. Factorial operations grow 

factorially with respect to k and are recalculated at each iteration; therefore, the total number of operations 

increases cumulatively as shown in equation (10). 

 

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
              (10) 

 

Therefore, the asymptotic time complexity of this stage is 𝑂(𝑛²). The decryption stage, the 

decrypt_dynamic_from_G_vector () function, also operates at the same 𝑂(𝑛²) order since it performs the 

inverse of these calculations. Since the sizes of the G and B vectors used in both stages are limited to 𝑛, the 

memory complexity is 𝑂(𝑛). The encryption packaging stage, which involves creating the E, T, and L vectors, 

contains a fixed number of arithmetic operations for each element and is therefore linear time 𝑂(𝑛). 

 

Generally, the total runtime of all functions is determined by the step with the highest order. Therefore, the 

total time complexity of the algorithm can be defined as 𝑂(𝑛2), while the memory complexity is 𝑂(𝑛). This 
demonstrates that the algorithm is highly efficient for medium and short texts, while also offering a 

computationally balanced structure. It exhibits a methodological approach consistent with current research in 

terms of performance and computational balance. 
 

 



Demir et al., 2025 • Volume 15 • Issue 4 • Page 1244-1256 

1252 

4. Cryptanalysis 

 

Cryptanalysis is not merely a discipline aimed at breaking codes; it is also a scientific verification tool that 

measures the security level of existing algorithms, validates the robustness of newly developed methods, and 

ensures the continuity of information security (Coşkun & Ülker,  2013; Garipcan & Erdem, 2024). 
 

In this study, it was observed that the variables 𝛼, 𝛽, 𝑛, and 𝛿, which are used in encryption and shown in the 

mathematical operations given above, play an effective role in encryption, and that encryption is performed 

using the plaintext and the numbers obtained from it, along with the transformations and series expansions 
performed on them. Therefore, it is expected that the values these variables will take will be within a wide 

numerical space. In this section, the value of n can take on any of the values shown in the inequality 𝑛 ≥ 0. 

The values of 𝛼, 𝛽, and 𝛿 can use all values found in the space of all integers. Considering this perspective, the 
space of possible values for each variable becomes very wide across four different variables. For attacks like 

brute force, these large value spaces reduce the success of attacks and increase computational cost. The 

presence of four different variables means that the computational power spent on finding one, which can take 

a long time, is diverted to the others, giving the attacker a time and cost disadvantage. If we analyze the attack 
method from a logical perspective, it is observed that an attack on a single parameter has little impact on 

decrypting the ciphertext or finding the correct plaintext. For example, in the encryption of the word 

“SAMSUN," by taking the value 𝛼 = 12 from the values and keeping the other variables constant, it was 
observed that the ciphertext obtained was "BLPXJLHPL." Therefore, obtaining a complete plaintext requires 

simultaneously attacking four different variables, which demands parallel processing and significant time 

power. If pre-calculated tables (Rainbow Tables) are to be used for the attack, then the issue of memory power 

will also arise in terms of cost. 
 

Similarity metrics used to evaluate the performance of encryption algorithms aim to quantitatively examine 

the structural difference between plaintext and ciphertext. In this study, three basic criteria were used. These 
metrics are Normalized Hamming Distance, Jaccard Similarity, and Normalized Levenshtein Distance. 

Normalized Hamming Distance measures the proportion of differing positions between two character strings, 

and the result is normalized to the range  [0,1]. This metric is used to determine the intensity of bit or character-

level changes, especially when the lines are of equal length. 
 

High Hamming distance indicates that characters are largely transformed due to a strong mixing effect 

Rajarajeswari and Uma (2013). Jaccard Similarity measures the proportion of common elements between two 
sets and is calculated based on the sizes of the intersection and union of the sets. In cryptographic analysis, a 

low common character ratio between sets of plaintext and ciphertext means high resistance to attacks based on 

symbol frequency Fletcher and Islam (2018). Normalized Levenshtein Distance, on the other hand, normalizes 

the number of minimum insertion, deletion, and substitution operations required to transform one string into 
another. This metric assesses structural similarity by measuring the conversion cost between strings. A low 

value indicates that the texts are quite different from each other and have a high level of randomness Yujian 

and Bo (2007). 
 

In this study, the levels of similarity and difference were measured using 40 pairs of plain text and 

corresponding encrypted text based on the fundamental criteria mentioned above. As can be seen from the 
measurements and the graph, the obtained values provide safe results for the study and mathematical method. 

These measurements and numerical values are visualized in Figure 2. 

 

As seen in Figure 2, the Normalized Hamming Distance values largely range from 0.9 to 1.0. This situation 
indicates that almost all characters in the plain text are transformed into different characters, and the model 

provides maximum character-by-character mixing. The occasional small dips observed (e.g., around 0.8) 

indicate that some characters underwent similar transformations, but this happened irregularly. 
The fact that the Jaccard Similarity values remain close to zero across all samples indicates that there are no 

common symbols between the plain text and ciphertext sets, which makes the model strong against attacks 

based on frequency analysis. Normalized Levenshtein Similarity values are generally in the range of 0.0 −
0.3, indicating high conversion costs and low structural similarity after the encryption process. 
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Figure 2. Plaintext and ciphertext similarity analysis 

 
4. Conclusion 

 

In this study, a cryptographic transformation was implemented by applying the Laplace transform to a function 
formed as a linear combination of zero-order Bessel functions and exponential functions. This approach 

leveraged the analytical properties of both function types: the oscillatory and localized behavior of Bessel 

functions, and the growth/decay characteristics of exponential terms.  

 
The Laplace transform magnitude spectrum of the composite function shows that the energy is concentrated 

at low frequencies, with rapid attenuation as frequency increases. This characteristic suggests that the 

transform yields a representation where the dominant components are well-localized in the frequency domain, 
facilitating controlled manipulation of signal features for cryptographic purposes. Also, the Laplace transform 

enabled the conversion of the time-domain representation into a complex frequency-domain form, facilitating 

potential encoding schemes with mathematically tractable inversion properties. The results demonstrate that 
such composite functions offer flexibility in shaping cryptographic keys and signal structures, and suggest 

further exploration of special-function-based transforms as a foundation for secure communication systems. 

Together, the statistical randomness in the ciphertext and the well-defined spectral properties of the transform 

underscore the potential of combining special functions with Laplace-domain processing as a basis for secure 
and mathematically tractable encryption methodologies. Future work could explore parameter variations, 

resistance to cryptanalysis, and real-time implementation feasibility. These results verify that the model 

successfully complies with the cryptographic security principles of confusion and diffusion. Low Jaccard and 
Levenshtein values demonstrate that a significant correlation is lost, whereas a high Hamming distance 

suggests that the character impact extends over a large region on the output. The suggested model is immune 

to known-plaintext attacks and symbol frequency analyses because it demonstrates both statistical and 

structural randomness. 
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