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1. Introduction and Preliminaries
 

Choquet [2] introduced the concept of grill on a topological space and the

shown to be a essential tool for studying some topological concepts.

subsets of a topological space 

�∈G, and (ii) �, � ⊆ � and �
a grill topological space. 

 

Roy and Mukherjee [17] defined

concepts. For any point � of a topological space (

neighborhoods of �. A mapping 

all 	 ∈ 
 (�)} for each � ∈ �

for all � ∈ �(�). The map � satisfies Kuratowski closure axio

 

(i) �(∅) = ∅,  

(ii) if � ⊆ �, then �(�

(iii) if � ⊆ �, then �(�
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a topological space (�, 
) is called a grill on � if (i) � ∈ G and 

� ∪ � ∈ G implies that � ∈ G or � ∈ G. A tripl
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. A mapping � : �(�) → �(�) is defined as �(�) = {�

�(�). A mapping � : �(�) → �(�) is defined as 

satisfies Kuratowski closure axioms:  

�) ⊆ �(�),  

�(�)) = �(�), and  
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open sets, which is analogous to the        

continuous and G��-open functions 

introduced the concept of grill on a topological space and the idea of grills has 

A collection G of nonempty 

and � ⊆ � implies that      

. A triple (�, �, G) is  called 

a unique topology by a grill and they studied topological 

) denotes the collection of all open 

� ∈ � : � ∩ 	 ∈ G for 

) is defined as �(�) = � ∪ �(�) 
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(iv) if �, � ⊆ �, then �(� ∪ �) = �(�) ∪ �(�).  

 

Corresponding to a grill G on a topological space (�, 
), there exists a unique topology 
G (say) 

on � given by  
G = {	 ⊆ � : �(� – 	) = � – 	}, where for any � ⊆ �, �(�) = � ∪ �(�) =     


G-cl(�) and 
 ⊆ 
G. 

 

The concept of decompositions of continuity on a grill topological space and some classes of sets 

were defined with respect to grill (see [3, 7, 10] for details). A subset � in � is said to be  

 

(i) �-open if � ⊆ int(�(�)),  

(ii) G-�.open if � ⊆ int(�(int(�))),  

(iii) G-preopen if � ⊆ int(�(�)),  

(iv) G-semiopen if � ⊆ �(int(�)),  

(v) G-�.open if � ⊆ cl(int(�(�))).  

 

The family of all G-�.open (resp. G-preopen, G-semiopen, G-�.open) sets in a grill topological 

space (�,
,G) is denoted by G��(�) (rep. G��(�), G��(�), G��(�)). A function �: (�,
,G) → 

(�, �) is said to be G-semicontinuous if �–1
(�) ∈ G��(�) for each �∈ �.  

 

Mashhour et al. [14] introduced a class of preopen sets and he defined pre interior and pre 

closure in a topological space. A subset � in � is said to be preopen if � ⊆ int(cl(�)) and ��(�) 

denotes the family of preopen sets. For any subset � of �, (i) pint(�) = ∪{	 : 	 ∈ ��(�) and 	 

⊆ �}; (ii) pcl(�) = ∩{� : � − � ∈ ��(�) and � ⊆ �}.  

 

In this paper, we define a G��-open set in a grill topological space (�, �, G) and we study some 

of its basic properties. Moreover, we define G��-continuous, G��-open, G��-closed and G��
∗-

continuous functions on a grill topological space (�, �, G) and we discuss some of their essential 

properties. 

 

Proposition 1.1. [17] Let (�, 
,G) be a grill topological space. Then for all �, � ⊆ �:                                                    

(i) � ⊆ � implies that �(�) ⊆ �(�);                                                                                                                                                          

(ii) �(� ∪ � ) = �(�) ∪ �(�);                                                                                                                                                                   

(iii) �(�(�)) ⊆ �(�) = cl(�(�)) ⊆ cl(�).  

 

 

2. G��-Open Sets  

 

Definition 2.1. Let (�,
,G) be a grill topological space and let � be a subset � of �. Then � is 

said to be G��-open if and only if there exist a 	 ∈ ��(�) such that 	 ⊆ � ⊆ �(	). A set �                      

of � is G��-closed if its complement � − � is G��-open. The family of all G��-open                  

(resp. G��-closed) sets is denoted by G���(�) (resp. G���(�)).  

 

Example 2.1. Let � = {�,  , !, "}, 
 = {∅, �, {�,  }, {!, "}, {�,  , !}, {�,  , "}} and G = {{"}, 

{�, "}, { , "}, {!, "}, {�,  , "}, {�, !, "}, { , !, "}, �}. Then G���(�) = {∅, �, {�}, { }, {�, 

 }, {�, !}, {�, "}, { , !}, { , "}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}}.   
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Theorem 2.1. Let (�,
,G) be a grill topological space and let � ⊆ �. Then � ∈ G���(�) if and 

only if � ⊆ �(pint(�)).  

 

Proof. If � ∈ G���(�), then there exist a 	 ∈ ��(�) such that 	 ⊆ � ⊆ �(	). But 	 ⊆ �          

implies that 	 ⊆ pint(�). Hence �(	) ⊆ �(pint(�)). Therefore � ⊆ �(pint(�)).                       

Conversely, let � ⊆ �(pint(�)). To prove that � ∈ G���(�), take 	 = pint(�), then 	 ⊆ � ⊆ 

�(	). Hence � ∈ G���(�).  

 

Corollary 2.1.  If � ⊆ �, then � ∈ G���(�) if and only if �(�) = �(pint(�)). 

 

Proof. Let A ∈ G���(�). Then as � is monotonic and idempotent, �(�) ⊆ �(�(pint(�))) = 

�(pint(�)) ⊆ �(�) implies that �(�) = �(pint(�)). The converse is obvious. 

 

Theorem 2.2. Let (�,
,G) be a grill topological space. If A ∈ G���(�) and � ⊆ � such that                 

� ⊆ � ⊆ �(pint(�)), then � ∈ G���(�).   

                                                 

Proof. Given � ∈ G���(�). Then by Theorem 2.1, � ⊆ �(pint(�)). But � ⊆ � implies that 

pint(�) ⊆ pint(�) and hence by Theorem 2.4[17], �(pint(�)) ⊆ �(pint(�)). Therefore                 

� ⊆ �(pint(�)) ⊆ �(pint(�)). Hence � ∈ G���(�).  

 

Corollary 2.2. If A ∈ G���(�) and � ⊆ � such that � ⊆ � ⊆ �(�), then � ∈ G�%�(�). 

 

Proof. Follows from the Theorem 2.2 and Corollary 2.1. 

 

Proposition 2.1. If  	 ∈ ��(�), then 	 ∈ G���(�).  

 

Proof. Let 	 ∈ ��(�), it implies that 	 = pint(	) ⊆ �(pint(	)). Hence 	 ∈ G���(�). 

 

Note that the converse of the above proposition need not be true. Let � = {�,  , !, "}, 
 = {∅, �, 

{ }, {!}, {�,  }, { , !}, {�,  , !}} and G = {{�}, { }, {"}, {�,  }, {�, !}, {�, "}, { , !}, { , 

"}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}, �}. Then ��(�) = {∅, �, { }, {!}, {�,  }, 

{ , !}, {�,  , !}, { , !, "}} and G���(�) = {∅, �, { }, {!}, {�,  }, { , !}, { , "}, {�,  , !}, 

{�,  , "}, { , !, "}}. Here { , "} and {�,  , "} are G��-open sets but not preopen.                                                                                                 

 

Theorem 2.3. Let (�,
,G) be a grill topological space. If � ∈ G��(�), then � ∈ G���(�). 

                                                                                                                             

Proof. Given � ∈ G��(�). Then � ⊆ �(int(�)). Since int(�) ⊆ pint(�), we have that �(int(�)) ⊆ 

�(pint(�)) (by Theorem 2.4[17]). Hence � ⊆ �(pint(�)) and thus � ∈ G���(�).  

 

Note that the converse of the above theorem need not be true. By Example 2.1, we have that 

G��(�) = {∅, �, {�,  }, {!, "}, {�,  , !}, {�,  , "}}. Therefore {�}, { }, {�, !}, {�, "}, { , !}, 

{ , "}, {�, !, "} and { , !, "} are G��-open sets but not G-semiopen.                                                                                                                      
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Proposition 2.2. If ��(�) = 
, then G���(�) = G��(�). 

 

Proof. By Theorem 2.3, G��(�) ⊆ G���(�). Let � ∈ G���(�). Then by Theorem 2.1,                          

� ⊆ �(pint(�)). Since ��(�) = 
, we have that pint(�) = int(�) implies that � ⊆ �(pint(�)) = 

�(int(�)) and hence � ∈ G��(�). Thus G���(�) ⊆ G��(�).    

 

Theorem 2.4.  Let (�,
,G) be a grill topological space. 

(i) If �& ∈ G���(�) for each ' ∈ (, then ∪i∈J�& ∈ G���(�);    

(ii) If � ∈ G���(�) and 	 ∈ ��(�), then � ∩ 	 ∈ G���(�). 

 

Proof. (i) Since �& ∈ G���(�), we have that �& ⊆ �(pint(�&)) for each ' ∈ (. Thus, we obtain �& 

⊆ �(pint(�&)) ⊆ �(pint(∪i∈J�&)) and hence ∪i∈J�& ⊆ �(pint(∪i∈J�&)). This shows that ∪i∈J�& ∈ 

G���(�).  

       

(ii) Let � ∈ G���(�) and 	 ∈ ��(�). Then � ⊆ �(pint(�)) and pint(	) = 	. Now, � ∩ 	 ⊆ 

�(pint(�)) ∩ 	 =  (pint(�) ∪ �(pint(�))) ∩ 	 = (pint(�) ∩ 	) ∪ (�(pint(�)) ∩ 	) ⊆ pint(� ∩ 	) 

∪ �(pint(�) ∩ 	) (by Theorem 2.10[17]) = pint(� ∩ 	) ∪ �(pint(� ∩ 	)) = �(pint(� ∩ 	)). 

Therefore � ∩ 	 ∈ G���(�). 

 

Remark 2.1. The following example shows that if �, � ∈ G���(�), then � ∩ � ∉ G���(�).  

 

From Example 2.1, take � = { , !} and � = {!, "}, then �, � ∈ G���(�) but � ∩ � = {!}∉ 

G���(�).  

 

Theorem 2.5. Let (�,
,G) be a grill topological space and � ⊆ �. If � ∈ G���(�), then 

pint(�(�)) ⊆ �.  

 

Proof. Suppose � ∈ G���(�). Then � − �  ∈ G���(�) and hence � − � ⊆ �(pint(� − �)) ⊆ 

pcl(pint(� − �)) = � − pint(pcl(�)) ⊆ � − pint(�(�)), implies that pint(�(�)) ⊆ �.  

 

Theorem 2.6. Let (�,
,G) be a grill topological space and � ⊆ � such that � − pint(�(�)) = 

�(pint(� − �)). Then � ∈ G���(�) if and only if pint(�(�)) ⊆ �.  

 

Proof. Necessary part is proved by Theorem 2.5. Conversely, suppose that pint(�(�)) ⊆ �. Then 

� − � ⊆ � − pint(�(�)) = �(pint(� − �)), implies that � − � ∈ G���(�). Hence � ∈ G���(�).  

 

Definition 2.2. Let (�,
,G) be a grill topological space and � ⊆ �. Then  

(i) G��-interior of � is defined as union of all G��-open sets contained in �.   

     Thus G��int(�) = ∪{	 : 	 ∈ G���(�) and 	 ⊆ �};  

(ii) G��-closure of � is defined as intersection of all G��-closed sets containing �. 

      Thus G��cl(�) =  ∩{� : � – � ∈ G���(�) and � ⊆ �}. 
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Theorem 2.7. Let (�,
,G) be a grill topological space and � ⊆ �. Then  

(i) G��int(�) is a G��-open set contained in �; 

(ii) G��cl(�) is a G��-closed set containing �;  

(iii) � is G��-closed if and only if G��cl(�) = �; 

(iv) � is G��-open if and only if G��int(�) = �; 

(v) G��int(�) = � – G��cl(� − �); 

(vi) G��cl(�) = � – G��int(� − �).  

   

Proof. Follows form the Definition 2.15 and Theorem 2.4(i). 

 

Theorem 2.8. Let (�,
,G) be a grill topological space and �, � ⊆ �.  Then the following are 

hold: (i) If � ⊆ �, then G��int(�) ⊆ G��int(�);   

(ii) G��int(� ∪ �) ⊇ G��int(�) ∪ G��int(�); 

(iii) G��int(� ∩ �)  = G��int(�) ∩ G��int(�).  

 

Proof. Follows from the Theorem 2.8. 

 

Definition 2.3. A function �: (�,
,G) → (�, �) is said to be G��-continuous if �–1
(�) ∈ 

G���(�) for each �∈ ��(�).  

 

Example 2.2. Let � = {�,  , !, "}, � = {1, 2, 3, 4}, 
 = {∅, �, {�,  }, {!, "}}, � = {∅, �, {1, 2}, 

{3, 4}, {1, 2, 3}, {1, 2, 4}}and G = {{�,  , !}, �}. Then G���(�) = �(�) and ��(�) = {∅, �, 

{1}, {2}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. 

Define �: (�, 
,G) → (�, �) by �(�) = 2, �( ) = 1, �(!) = 4 and �(") = 3. Then inverse image of 

every preopen sets in � is G��-open in �. Hence � is G��-continuous.  

 

Remark 2.2. The concepts of G-semicontinuous and G��-continuous are independent. 

 

(i) From Example 2.2, we have that G��(�) = {∅, �, {�,  }, {!, "}} and the function � is G��-

continuous. Also �–1
({1, 2, 3}) = {�,  , "} is not G-semiopen in � for the open set {1, 2, 3} of 

�. Hence � is not G-semicontinuous. 

 

(ii) Let � = {�,  , !, "}, � = {1, 2, 3, 4}, 
 = {∅, �, {a}, {�,  }, {!, "}, {�, ! , "}, { , !, "}}, � = 

{∅, �, {1, 2}, {3, 4}} and G = {{ }, {�,  }, { , !}, { , "}, {!, "}, {�,  , !}, {�,  , "}, {�, !, 

"}, { , !, "}, �}. Then G��(�) = 
, G���(�) = {∅, �, {�}, {�,  }, {�, !}, {�, "}, { , !}, { , 

"}, {!, "}, {�,  , !}, {�,  , "}, {�, !, "}, { , !, "}} and ��(�) = �(�). Define �: (�, 
,G) → 

(�, �) by �(�) = 4, �( ) = 3, �(!) = 2 and �(") = 1. Then the function � is G-semicontinuous. 

Also the inverse image �–1({3}) = { } is not G��-open in � for the preopen set {3} of �. Hence 

� is not G��-continuous.   

 

From (i) and (ii), we got the concepts of G-semicontinuous and G��-continuous are independent. 
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Theorem 2.9. For a function �: (�,
,G) → (�, �), the following are equivalent:                                   

(i) �  is G��-continuous;                                                                                                                           

(ii) For each F ∈ ��(�), �–1
(�) ∈ G���(�);  

(iii)  For each � ∈ � and each � ∈ ��(�) containing �(�), there exists a 	 ∈ G���(�)  

        containing � such that �(	) ⊆ �. 

  

Proof. (i) ⇔ (ii): It is obvious. 

 

(i)  (iii): Let  � ∈ ��(�) and �(�) ∈ �(� ∈ �). Then by (i), �–1
(�) ∈ G���(�) containing �. 

Taking �–1(�) = 	, we have that � ∈ 	 and �(	) ⊆ �. 

 

(iii)  (i): Let � ∈ ��(�) and � ∈ �–1
(�). Then �(�) ∈ � ∈ ��(�) and hence by (iii), there 

exists a 	 ∈ G���(�) containing � such that �(	) ⊆ �. Thus, we obtain � ∈ 	 ⊆ � (pint(	)) ⊆ 

�(pint(�–1
(�))). This shows that �–1

(�) ⊆ �(pint(�–1
(�))). Hence � is G��-continuous.    

 

Theorem 2.10. A function �: (�,
,G) → (�, �) is G��-continuous if and only if  the graph 

function , : � → � × �, defined by ,(�) = (�, �(�)) for each � ∈ �, is G��-continuous.  

 

Proof. Suppose that � is G��-continuous. Let � ∈ � and  -    ∈∈∈∈ ��(� × �) containing ,(�). Then 

there exist a 	 ∈ ��(�) and � ∈ ��(�) such that ,(�) = (�, �(�)) ∈ 	 × � ⊆ -. Since � is 

G��-continuous, there exists a / ∈ G���(�) containing � such that �(/) ⊆ �. By Theorem 

2.4(b), / ∩ 	 ∈ G���(�) and ,(/ ∩ 	) ⊆ 	 × � ⊆ -. This shows that , is G��-continuous. 

Conversely, suppose that  , is G��-continuous. Let � ∈ � and � ∈ �(�) containing �(�). Then  

� × �     ∈∈∈∈ ��(� × �) and by G��-continuity of ,, there exists a 	 ∈ G���(�) containing � such 

that ,(	) ⊆ � × �. Thus we have that �(	) ⊆ � and hence � is G-��.continuous.         

    

Definition 2.3. Let (�, 
) be a topological space and (�,�,G) a grill topological space. A function 

�: (�, 
) → (�,�,G) is said to be G��-open (resp. G��-closed ) if for each 	 ∈ ��(�) (resp. for 

each 	 ∈ ��(�)), �(	) is G��-open (resp. G��-closed) in (�, �,G). 

 

Theorem 2.11. A function �: (�, 
) → (�,�,G) is G��-open if and only if  for each  � ∈ � and 

each pre-neighbourhood 	 of �, there exists a � ∈ G���(�) such that �(�) ∈ � ⊆ �(	).    

  

Proof. Suppose that � is a G-��.open function and let � ∈ �.  Also let 	 be any                                   

pre-neighbourhood of �.  Then there exists / ∈ ��(�) such that � ∈ / ⊆ 	. Since � is G��-

open, �(/) = � (say) ∈ G���(�) and � (�) ∈ � ⊆ �(	). Conversely, suppose that 	 ∈ ��(�). 

Then for each � ∈ 	, there exists a �0 ∈ G���(�) such that �(�) ∈ �0 ⊆ �(	). Thus �(	) = 

∪{�0  : � ∈ 	} and hence by Theorem 2.4(a), �(	) ∈ G���(�).  This shows that � is G��-open.  

 

Theorem 2.12. Let �: (�, 
) → (�,�,G) be a G-��.open function. If � ⊆ � and � ∈ ��(�) 

containing �–1(�), then there exists a 1 ∈ G���(�) containing � such that �–1(1) ⊆ �. 
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Proof. Suppose that � is G-��.open.  Let � ⊆ � and � ∈ ��(�) containing �–1(�). Then � − � ∈ 

��(�) and by G��-openness of �, �(� − �) ∈ G���(�). Thus H = � −  �(� − �) ∈ G���(�) 

consequently 
 
�–1

(�) ⊆ � implies that � ⊆ 1. Further, we obtain that �–1
(1) ⊆ �.  

 

Theorem 2.13. For any bijection  �: (�, 
) → (�,�,G), the following are equivalent: 

(i) �–1
: (�,�,G) → (�, 
) is G��-continuous; 

(ii) � is G��-open; 

(iii) � is G��-closed.  

 

Proof. It is obvious. 

 

Definition 2.4. Let (�,
,G) be a grill topological space. A subset � of � is said to be a G��
∗-set if 

� = 	 ∩ �,  where 	 ∈ ��(�) and �(pint(�)) = pint(�).  
      

Theorem 2.14. Let (�,
,G) be a grill topological space and let � ⊆ �. Then � ∈ ��(�) if and 

only if � ∈ G���(�) and � is G��
∗-set in (�,
,G). 

 

Proof. Let � ∈ ��(�). Then � ∈ G���(�), implies that � ⊆ �(pint(�)).  Also � can be 

expressed as � = � ∩ �, where � ∈ ��(�) and �(pint(�)) = pint(�). Thus � is a G��
∗-set. 

Conversely, Let � ∈ G���(�) and � be a G��
∗-set.  Thus � ⊆ �(pint(�)) = �(pint(	 ∩ �)), 

where 	 ∈ ��(�) and �(pint(�)) = pint(�).  Now � ⊆ 	 ∩ � ⊆ 	 ∩ �(pint(	 ∩ �)) =                         

	 ∩ �(	 ∩ pint(�)) ⊆ 	 ∩ �(	) ∩ �(pint(�)) = 	 ∩ pint(�) = pint(�). Hence � ∈ ��(�). 

 

Definition 2.5. A function �: (�,
,G) → (�, �) is G��
∗-continuous if for each � ∈ ��(�),                         

�–1(�) is a G��
∗-set in (�, 
,G). 

 

Theorem 2.15. Let (�,
,G) be a grill topological space. Then for a function �: (�,
,G) → (�, �), 

the following are equivalent: 

(i) � is precontinuous; 

(ii) � is G��-continuous and G��
∗-continuous.   

 

Proof. Straightforward. 
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